Jacques-Olivier Lachaud
Jacques-Olivier Lachaud
Home
Featured Research
Publications
Talks
Events
Projects
Gallery
Teaching
Experience
Students
Contact
CV
Privacy/Legal mentions
Light
Dark
Automatic
multigrid convergence
Parameter-Free and Multigrid Convergent Digital Curvature Estimators
In many geometry processing applications, the estimation of differential geometric quantities such as curvature or normal vector field …
J. Levallois
,
D. Coeurjolly
,
Jacques-Olivier Lachaud
PDF
Cite
Project
DOI
URL
Voronoi-Based Geometry Estimator for 3D Digital Surfaces
We propose a robust estimator of geometric quantities such as normals, curvature directions and sharp features for 3D digital surfaces. …
L. Cuel
,
Jacques-Olivier Lachaud
,
B. Thibert
PDF
Cite
Project
Project
DOI
Code (DGtal)
URL
Multigrid convergence of digital curvature estimators
Invited talk.
Nov 18, 2013 12:00 AM — Nov 22, 2013 12:00 AM
Centre International de Recherche Mathématique (CIRM), Luminy, France
Jacques-Olivier Lachaud
Code
Project
Project
Publication
Slides (PDF)
Paper (PDF)
URL
Integral based Curvature Estimators in Digital Geometry
In many geometry processing applications, the estimation of differential geometric quantities such as curvature or normal vector field …
D. Coeurjolly
,
Jacques-Olivier Lachaud
,
J. Levallois
PDF
Cite
Project
Demo (PDF)
Slides (PDF)
Multigrid Convergence of Discrete Geometric Estimators
The analysis of digital shapes requires tools to determine accurately their geometric characteristics. Their boundary is by essence …
D. Coeurjolly
,
Jacques-Olivier Lachaud
,
T. Roussillon
PDF
Cite
Project
DOI
URL
Asymptotic linear digital geometry
Invited talk.
Feb 8, 2011 12:00 AM — 12:00 AM
Paris, France
Jacques-Olivier Lachaud
Project
Slides (PDF)
Asymptotic linear digital geometry and applications
Invited talk.
Feb 8, 2011 12:00 AM — 12:00 AM
Perpignan, France
Jacques-Olivier Lachaud
Project
Slides (PDF)
Comparison and improvement of tangent estimators on digital curves
Many contour-based applications rely on the estimation of the geometry of the shape, such as pattern recognition or classification …
F. de Vieilleville
,
Jacques-Olivier Lachaud
PDF
Cite
DOI
URL
Experimental Comparison of Continuous and Discrete Tangent Estimators Along Digital Curves
Estimating the geometry of a digital shape or contour is an important task in many image analysis applications. This paper proposes an …
F. de Vieilleville
,
Jacques-Olivier Lachaud
PDF
Cite
Slides (PDF)
Fast, Accurate and Convergent Tangent Estimation on Digital Contours
This paper presents a new tangent estimator to digitized curves based on digital line recognition. It outperforms existing ones on …
Jacques-Olivier Lachaud
,
A. Vialard
,
F. de Vieilleville
PDF
Cite
Project
Code (DGtal)
«
»
Cite
×