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Abstract. We propose a robust estimator of geometric quantities such as
normals, curvature directions and sharp features for 3D digital surfaces. This
estimator only depends on the digitisation gridstep and is defined using a
digital version of the Voronoi Covariance Measure, which exploits the robust
geometric information contained in the Voronoi cells. It has been proved
in [1] that the Voronoi Covariance Measure is resilient to Hausdorff noise.
Our main theorem explicits the conditions under which this estimator is
multigrid convergent for digital data. Moreover, we determine what are the
parameters which maximise the convergence speed of this estimator, when
the normal vector is sought. Numerical experiments show that the digital
VCM estimator reliably estimates normals, curvature directions and sharp
features of 3D noisy digital shapes.

1 Introduction

Differential quantities estimation, surface reconstruction and sharp feature detection
are motivated by a large number of applications in computer graphics, geometry
processing or digital geometry.

Digital geometry estimators. The commun way to link the estimated differen-
tial quantities to the expect Euclidean one is the multigrid convergence principle:
when the shape is digitized on a grid with gridstep h tending to zero, the estimated
quantity should converge to the expected one. In dimension 2, several multigrid
convergent estimators have been introduced to approach normals [2, 3] and curva-
tures [3–5]. In 3D, empirical methods for normal and curvature estimation have
been introduced in [6]. More recently, a convergent curvature estimator based on
covariance matrix was presented in [7].

Voronoi-based geometry estimation. Classical principal component analysis
methods try to estimate normals by fitting a tangent plane or a higher-order poly-
nomial (e.g. see [8]). In contrast, Voronoi-based methods try to fit the normal cones
to the underlying shape, either geometrically [9] or more recently using the covari-
ance of the Voronoi cells [10, 1]. Authors of [1] have improved the method of [10] by
changing the domain of integration and the averaging process. The authors define



the Voronoi Covariance Measure (VCM) of any compact sets, and show that this
notion is stable under Hausdorff perturbation. Moreover, the VCM of a smooth sur-
face encodes a part of its differential information, such as its normals and curvatures.
With the stability result, one can therefore use the VCM to estimate differential
quantities of a surface from a Hausdorff approximation such as a point cloud or a
digital contour.

Voronoi Covariance measure background. The Voronoi covariance measure
(VCM) has been introduced in [1] for normals and curvature estimations. Let
K be a compact subset of R3 and dK the distance function to K, i.e. the map
dK(x) := minp∈K ‖p− x‖. A point p where the previous minimum is reached is
called a projection of x on K. Almost every point admits a single projection on
K, thus definining a map pK : R3 → K almost everywhere. The R-offset of K is
the R-sublevel set of dK , i.e. the set KR := d−1K (] −∞, R[). The VCM maps any
integrable function χ : R3 → R+ to the matrix

VK,R(χ) :=

∫
KR

(x− pK(x))(x− pK(x))tχ(pK(x))dx.

Remark that this definition matches the definition introduced in [1]: when χ is

Fig. 1: VCM domain of integration.

the indicatrix of a ball, one recovers a notion similar to the convolved VCM :
VK,R(χ) :=

∫
KR∩p−1

K (By(r))(x − pK(x))(x − pK(x))tdx. The domain of integration

KR ∩ p−1K (By(r)) is the offset of K intersected with a union of Voronoi cells (cf.
Figure 1). The stability result of [1] implies that information extracted from the
covariance matrix such as normals or principal directions are stable with respect to
Hausdorff perturbation.

Contributions. The contributions of the paper can be sketched as follows. First,
we define the estimator of the VCM in the case of digital data, for which we prove
the multigrid convergence (Sect. 2, Theorem 1). We then show that the normal
direction estimator, defined as the first eigenvector of the VCM estimator, is also
convergent with a speed in O(h

1
8 ) (Sect. 3, Corollary 2). Furthermore, Theorem 2

specifies how to choose parameters r and R as functions of h to get the convergence.
Finally, we present an experimental evaluation showing that this convergence speed
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is closer to O(h) in practice (Sect. 4). Moreover, experiments indicate that the VCM
estimator can be used to estimate curvature information and sharp features in the
case of digital data perturbated by Hausdorff noise.

2 VCM on digital sets

In this section, we define an estimator of the VCM in the case of 3D digital in-
put. Theorem 1 explicits the conditions under which this estimator is multigrid
convergent for digital data.

2.1 Definition

Let X be a compact domain of R3 whose boundary is a surface of class C2. We
denote ∂X the boundary of X, Xh := Digh(X) = X ∩ (hZ)3 the Gauss digitisation
of X, and ∂hX ⊂ R3 the set of boundary surfels of Xh. We define a digital approx-
imation of the VCM on a subset of the point cloud : Zh = ∂hX ∩ h(Z + 1

2 )3. For
each point x ∈ h(Z + 1

2 )3 with x = (x1, x2, x3), we can define the voxel of center x
by vox(x) = [x1 − 1

2h, x1 + 1
2h]× [x2 − 1

2h, x2 + 1
2h]× [x3 − 1

2h, x3 + 1
2h]. We then

define the digital VCM estimator as

V̂Zh,R(χ) :=
∑
x∈ΩRh

h3(x− pZh(x))(x− pZh(x))tχ(pZh(x)),

where ΩRh = {x ∈ ZRh ∩ h(Z + 1
2 )3, vox(x) ⊂ ZRh } is the set of centers of voxels

entirely contained in ZRh , the R-offset of Zh (see Fig. 2). Remark that the Hausdorff
distance between ∂X and the point cloud Zh used in the definition is less than h.

Fig. 2: Digitisation of the offset and its localisation.

2.2 Multigrid convergence of the VCM-estimator

The main theoretical result of the paper is the following theorem. Roughly speaking,
it quantifies the approximation of the VCM of a smooth surface by the digital
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VCM of its Gauss digitisation. We denote by ‖.‖op the matrix norm induced by the
Euclidean metric. Given a function f : Rn → R, we let ‖f‖∞ = maxx∈Rn |f(x)| and
denote Lip(f) = maxx 6=y |f(x)− f(y)|/ ‖x− y‖ its Lipschitz constant.

Theorem 1. Let X be a compact domain of R3 whose boundary ∂X is a C2 surface
with reach ρ > 0. Let R < ρ

2 and χ : R3 → R+ be an integrable function whose
support is contained in a ball of radius r. Then for any h > 0 such that h ≤
min

(
R, r

2

32ρ

)
, one has∥∥∥V∂X,R(χ)− V̂Zh,R(χ)

∥∥∥
op

= O
(

Lip(χ)× [(r3R
5
2 + r2R3 + rR

9
2 )h

1
2 ]

+ ‖χ‖∞ × [(r3R
3
2 + r2R2 + rR

7
2 )h

1
2 + r2Rh]

)
.

In the theorem and in the following of the text, the constant involved in the notation
O(.) only depends on the reach of ∂X and on the dimension (which is three here).
Although the function χ can be general, it makes sense to take a Lipschitz function
that approaches the indicatrix of a ball. We highlight the following corollary since
we will take afterwards a function χr satisfying Lip(χr) = 1/r

3
2 and ‖χr‖∞ = 1.

Corollary 1. Let X be a compact domain of R3 whose boundary ∂X is a C2 surface
with reach ρ > 0. Let R and r bet two numbers such that r = ah

1
4 and R = bh

1
4 . Let

χr be such that Lip(χr) = 1/r
3
2 and ‖χr‖∞ = 1. Then for any h > 0 small enough,

one has ∥∥∥V∂X,R(χr)− V̂Zh,R(χr)
∥∥∥
op

= O
(
h

11
8

)
.

For the proof of Theorem 1, we introduce the VCM of the point cloud Zh, namely
VZh,R(χ). By the triangle inequality, one has∥∥∥V∂X,R(χ)− V̂Zh,R(χ)

∥∥∥
op
≤ ‖V∂X,R(χ)− VZh,R(χ)‖op +

∥∥∥VZh,R(χ)− V̂Zh,R(χ)
∥∥∥
op
.

In Proposition 1, we bound the second term and in Proposition 2, we bound the
first term.

Estimation of the VCM of a point cloud. Here and in the following of this
section, X is a compact domain of R3 whose boundary ∂X is a C2 surface with
reach ρ > 0. We put R < ρ

2 and χ : R3 → R+ is an integrable function whose
support is contained in a ball By(r) of center y and radius r.

Proposition 1. For any h ≤ min
(
R, r

2

32ρ

)
, one has∥∥∥VZh,R(χ)− V̂Zh,R(χ)

∥∥∥
op

= O
[
r2R2(Lip(χ)R+ ‖χ‖∞) h

1
2 + r2R‖χ‖∞h

]
.

Proof. Step 1: The aim of the first step is to prove that

VZh,R(χ) =

∫
vox(ΩRh )

(x− pZh(x))(x− pZh(x))tχ(pZh(x))dx+R2‖χ‖∞O(hr2).
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Since vox(ΩRh ) ⊂ ZRh , one has

VZh,R(χ) =
∫
vox(ΩRh )

(x− pZh(x))(x− pZh(x))tχ(pZh(x))dx

+
∫
ZRh \vox(Ω

R
h )

(x− pZh(x))(x− pZh(x))tχ(pZh(x))dx

By using the facts that ‖x − pZh(x)‖ ≤ R, χ is bounded by ‖χ‖∞, and the
support of χ is contained in the ball By(r) (see Figure 2), the second term of the
previous equation is bounded by

R2 × ‖χ‖∞ ×H3
([
ZRh \vox(ΩRh )

]
∩ p−1Zh(By(r))

)
.

Now, we claim that ZRh ∩ p
−1
Zh

(By(r)) ⊂ p−1∂X(By(2r)). Indeed, let x ∈ ZRh ∩
p−1Zh(By(r)). The fact that the Hausdorff distance between Zh and ∂X is less than

h implies that x ∈ ∂XR+h. Now, since h ≤ R, Lemma 4 implies that ‖p∂X(x) −
pZh(x)‖ ≤

√
8hρ+ h, which leads to

‖p∂X(x)− y‖ ≤ ‖p∂X(x)− pZh(x)‖+ ‖pZh(x)− y‖ ≤
√

8hρ+ h+ r ≤ 2r.

Now, we show that ZRh \vox(ΩRh ) ⊂ ∂XR+h\∂XR−(
√
3+1)h. Indeed, as said just

before, one has ZRh ⊂ ∂XR+h. Furthermore, if x ∈ ∂XR−(
√
3+1)h, then the fact

that the Hausdorff distance between Zh and ∂X is less than h implies that x ∈
ZR−

√
3h

h . Let c ∈ h(Z + 1
2 )3 be the center of a voxel containing x. The fact that

diam(vox(c)) =
√

3h implies that vox(c) ⊂ ZRh , and thus x ∈ ZRh . We then get

ZRh \vox(ΩRh ) ⊂ ∂XR+h\∂XR−(
√
3+1)h. We finally deduce that[

ZRh \vox(ΩRh )
]
∩ p−1Z (By(r)) ⊂

[
∂XR+3h\∂XR−3h] ∩ p−1∂X(By(2r)), (1)

whose volume is bounded by O(hr2) by Proposition 3, which allows us to conclude.
Step 2: We then have to bound the remaining term

∆ =

∫
vox(ΩRh )

(x− pZh(x))(x− pZh(x))tχ(pZh(x))dx− V̂Zh,R(χ).

By decomposing ∆ over all the voxels of vox(ΩRh ), one has

∆ =
∑
c∈ΩRh

∫
vox(c)

[
(x− pZh(x))(x− pZh(x))tχ(pZh(x))

−(c− pZh(c))(c− pZh(c))tχ(pZh(c))
]

dx

As in Step 1, we can localise the calculation around the support of χ and we in-
troduce the set of centers D = ΩRh ∩ p

−1
∂X(By(2r)). Using the relation χ(pZh(c)) =

χ(pZh(c)) + χ(pZh(x))− χ(pZh(x)), one gets ∆ = ∆1 +∆2, where

∆1 =
∑
c∈D

∫
vox(c)

(x− pZh(x))(x− pZh(x))t[χ(pZh(x))− χ(pZh(c))]dx

∆2 =
∑
c∈D

∫
vox(c)

[(x− pZh(x))(x− pZh(x))t − (c− pZh(c))(c− pZh(c))t]χ(pZh(c))
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We are now going to bound ∆1 and ∆2. One has

‖∆1‖op ≤
∑
c∈D

∫
vox(c)

‖x− pZh(x)‖
∥∥x− pZh(x)t

∥∥ ‖χ(pZh(x))− χ(pZh(c))‖dx.

For all c ∈ D and x ∈ vox(c), we have ‖x− c‖ ≤
√
3
2 h. Furthermore, by definition of

ΩRh , we have that x and c belong to ZRh ⊂ ∂XR+h. Then, since h ≤ R ≤ ρ
2 , Propo-

sition 4 implies ‖pZh(x)− pZh(c)‖ = O(h
1
2 ) and then ‖χ(pZh(x))− χ(pZh(c))‖ =

Lip(χ)O(h
1
2 ). Using the fact that ‖x− pZh(x)‖ ≤ R, one has

‖∆1‖op = Vol(vox(D))×R2 × Lip(χ)×O(h
1
2 ).

Since vox(D) ⊂ ZRh ∩p
−1
∂X(By(2r)) ⊂ ∂XR+h∩p−1∂X(By(2r)) and h ≤ R, Proposition

3 implies that Vol(vox(D)) = O(r2R). Finally ‖∆1‖op = Lip(χ)×O(r2R3h
1
2 ).

Similarly, let us bound ‖∆2‖op. We put u = (x − c), v = c − pZh(c) and w =
pZh(c)− pZh(x). We can write x− pZh(x) = u+ v + w, and we get

∆2 =
∑
c∈D

[∫
vox(c)

[(u+ v + w)(u+ v + w)t − vvt]χ(pZh(c))

]
.

From ‖u‖ ≤ h, ‖v‖ ≤ R and ‖w‖ = O(h
1
2 ), we bound the integrand byO(‖χ‖∞(R h

1
2 +

h)). From Vol(vox(D)) = O(r2R), one has ‖∆2‖op = O(‖χ‖∞ (R2r2h
1
2 + r2Rh)).

Stability of the VCM. It is known that the VCM is stable. More precisely,
Theorem 5.1 of [1] states that ‖V∂X,R(χr)− VZh,R(χr)‖op = O(h

1
2 ). However, the

constant involved in O(h
1
2 ) depends on the whole surface ∂X. We provide here a

more precise constant involving only local estimations, r and R. The proof is very
similar to the one of [1], except that we localise the calculation of the integral. It is
given in Appendix.

Proposition 2. For any h ≤ R such that
√

8hρ+ h ≤ r, one has

‖V∂X,R(χr)− VZh,R(χr)‖op
= O

(
Lip(χ)× [(r3R

5
2 + r2R

7
2 + rR

9
2 )h

1
2 ] + ‖χ‖∞ × [(r3R

3
2 + r2R

5
2 + rR

7
2 )h

1
2 ]
)
.

End of proof of Theorem 1. Let h ≤ min
(
R, r

2

32ρ

)
. The assumption h ≤ r2

32ρ

implies that
√

8hρ+ h ≤ r. Thus we can apply Proposition 1 and Proposition 2.

3 Multigrid convergence of the normal estimator

Let X be a compact domain of R3 whose boundary ∂X is a surface of class C2. We
now want to estimate the normal, denoted by n(p0), of ∂X at a point p0 from its
Gauss digitisation. We define the normal estimator by applying the digital VCM on
a Lipschitz function that approaches the indicatrix of the ball Bp0(r).
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Definition 1. The normal estimator n̂r,R(p0) is the unit eigenvector associated to

the largest eigenvalue of V̂Zh,R(χr), where χr is a Lipschitz function that is: equal

to 1 on Bp0(r), equal to 1− (‖x− p0‖− r)/r
3
2 on Bp0(r+ r

3
2 ) \Bp0(r), and equal to

0 elsewhere.

Remark that the normal estimator is defined only up to the sign. The following
theorem gives an error estimation between ±n̂r,R(p0) and n(p0).

Theorem 2. Let X be a compact domain of R3 whose boundary ∂X is a C2 surface

with reach ρ > 0. Let R < ρ
2 . Then for any h > 0 such that h ≤ min

(
R, r

2

32ρ

)
, the

angle between the lines spanned by n̂r,R(p0) and n(p0) satisfies

〈n̂r,R(p0), n(p0)〉 = O
(

(rR−
3
2 +R−1+r−

1
2R−

1
2 +r−

3
2 +r−

5
2R

3
2 )h

1
2 +R−2h+r

1
2 +R2

)
.

The following corollary is a direct consequence.

Corollary 2. Let X be a compact domain of R3 whose boundary ∂X is a C2 surface
with reach ρ > 0. Let a, b ∈ R+, r = ah

1
4 and R = bh

1
4 . Then for any h > 0 small

enough, one has

〈n̂r,R(p0), n(p0)〉 = O
(
h

1
8

)
.

Proof of Theorem 2. We introduce the normalized VCM N̂r,R(p0) = 3
2πr2R3 V̂Zh,R(χr).

From Davis-Kahan sin(θ) Theorem [11], up to the sign of ±n̂r,R(p0), one has

‖n̂r,R(p0)− n(p0)‖ ≤ 2
∥∥∥N̂r,R(p0)− n(p0)n(p0)t

∥∥∥
op
.

It is therefore sufficient to bound the right hand side. The triangle inequality gives∥∥∥N̂r,R(p0)− n(p0)n(p0)t
∥∥∥
op
≤ 3

2πR3r2

∥∥∥V̂Zh,R(χr)− V∂X,R(χr)
∥∥∥
op

+
3

2πR3r2

∥∥∥V∂X,R(χr)− V∂X,R(1Bp0 (r))
∥∥∥
op

+

∥∥∥∥ 3

2πR3r2
V∂X,R(1Bp0 (r))− n(p0)n(p0)t

∥∥∥∥
op

.

The proof of the theorem relies on Theorem 1, that controls the first term, and on
the two following lemmas.

Lemma 1. Under the assumption of Theorem 2, we have

3

2πr2R3

∥∥∥V∂X,R(χr)− V∂X,R(1Bp0 (r))
∥∥∥
op

= O(r
1
2 ).

Proof. Since χr = 1Bp0 (r) on the ball Bp0(r), by using similar arguments as previ-
ously, one has∥∥∥V∂X,R(χr)− V∂X,R(1Bp0 (r))

∥∥∥
op
≤ Vol

(
∂XR ∩

[
p−1∂X(By(r + r

3
2 ))
∖
p−1∂X(By(r))

])
×R2.
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Proposition 3 implies that the volume Vol
(
∂XR ∩

[
p−1∂X(By(r + r

3
2 ))
∖
p−1∂X(By(r))

])
is less than 4R × Area

(
By(r + r

3
2 )
∖
By(r)

)
. The fact that this area is bounded by

O(r
5
2 ) allows to conclude.

Lemma 2. Under the assumption of Theorem 2, we have∥∥∥∥ 3

2πR3r2
V∂X,R(1Bp0 (r))− n(p0)n(p0)t

∥∥∥∥
op

= O(r +R2)

Proof. We have the following relation (see Theorem 1 of [12])

V∂X,R(1Bp0 (r)) =
2

3
R3
[
1 +O(R2)

] ∫
p∈Bp0 (r)∩S

n(p)n(p)t dp. (2)

By the mean value theorem applied to the normal to ∂X, one has

‖n(p)− n(p0)‖ ≤ sup
q∈S
‖Dn(q)‖op lp,p0 ,

where lp,p0 is the length of a geodesic joining p and p0. Since the chord (pp0)
belongs to the offset ∂XR, where R < ρ, we have lp,p0 = O(‖p − p0‖) (see [13] for
example). Therefore ‖n(p)−n(p0)‖ = O(r) and thus n(p)n(p)t−n(p0)n(p0)t = O(r).
Consequently∫
p∈Bp0 (r)∩S

n(p)n(p)t dp = Area(Bp0(r) ∩ S)n(p0)n(p0)t + Area(Bp0(r) ∩ S) O(r).

Combining with Eq. (2), we have

3

2R3Area(Bp0(r) ∩ S)
V∂X,R(1Bp0 (r)) =

[
1 +O(R2)

]
×
(
n(p0)n(p0)t +O(r)

)
.

We conclude by using the fact that Area(Bp0(r) ∩ S) is equivalent to πr2.

4 Experiments

We evaluate experimentally the multigrid convergence, the accuracy and robustness
to Hausdorff noise of our normal estimator, and also its ability to detect features.

The first series of experiments analyzes the convergence of the normal estimation
by VCM toward the true normal of the shape boundary ∂X. The shape “torus”
is a torus of great radius 6 and small radius 2, and the shape “ellipsoid” is an
ellipsoid of half-axes

√
90,
√

45 and
√

45. We measure the absolute angle error with
ε(p) = 180

π cos−1(n̂(p) · n(p)) for every pointel p ∈ Zh of the digitized shape with
several normalized norms:

l1(ε)
def
=

1

Card(Zh)

∑
p∈Zh

ε(p), l∞(ε)
def
= sup

p∈Zh
ε(p). (3)
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Fig. 3: Multigrid convergence of angle error of normal estimator (in degree). Tests
are run on torus shape for three kernel radii (R = r = 3hα for α ∈ { 14 ,

1
3 ,

1
2}), two

norms (l1, l∞): (left) kernel ball function χ0
r, (right) kernel hat function χ1

r.

In experiments we tried several kernel functions χr and we display results for two
of them: the “ball” kernel χ0

p0,r(x) = 1 if ‖x − p0‖ ≤ r, 0 otherwise; the “hat”
kernel χ1

p0,r(x) = 1 − ‖x − p0‖/r if ‖x − p0‖ ≤ r, 0 otherwise. Figure 3 displays
the norms of the estimation angle error in degrees, for finer and finer digitization
steps. Corollary 2 predicts the multigrid convergence of the estimator when r = ah

1
4

and R = bh
1
4 at a rate in O(h

1
8 ). We observe the convergence of the estimator for

parameters R = r = 3h
1
4 , R = r = 3h

1
3 , R = r = 3h

1
2 , at an almost linear rate O(h),

for all norms. More experiments show that the most accurate results are obtained
for α ∈ [ 13 ,

1
2 ] if R = r = ahα. Note that the kernel function has not a great impact

on normal estimates, as long as it has a measure comparable to the ball kernel.

We perturbate the shape “torus” with a Kanungo noise model of parameter
p = 0.25 (the number pd is the probability that a voxel at digital distance d from
the boundary ∂X is flipped inside/out). This is not exactly a Hausdorff perturbation
but most perturbations lie in a band of size 2h/(1 − p). Figure 4 shows that the
normal is still convergent for all norms. Again convergence speed is experimentally
closer to O(h

2
3 ), much better than the proved O(h

1
8 ).

We then assess the visual quality of the estimators on several shapes, by ren-
dering the digital surfels according to their estimated normals. First of all, Figure 5
displays normal estimation results on a noisy “torus” shape perturbated with a
strong Kanungo noise of parameter p = 0.5. Then, Figure 6 displays the visual
improvement of using normals computed by the VCM estimator. In particular,
comparing Fig.6b and Fig.6c shows that convolving Voronoi cell geometry is much
more precise than convolving only surfel geometry. Furthermore, we have tested our
estimator on many classical digital geometry shapes (see Figure 7).

Our VCM estimator is a matrix and carries also curvature information along
other eigendirections. Mérigot et al. [1] proposed to detect sharp features by using
the three eigenvalues l1, l2, l3 of the VCM as follows: if l1 ≥ l2 ≥ l3, compute
l2/(l1 + l2 + l3) and mark the point as sharp if this value exceeds a threshold T .
Figure 8 shows such sharp features detection on the “bunny” dataset at many
different scales, with T = 0.1 for all datasets (it corresponds to an angle of ≈ 25◦).
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Fig. 4: Multigrid convergence of angle error of normal estimator (in degree) on a
noisy shape. Tests are run on “torus” shape (upper row) and on “ellipsoid” shape
(lower row), perturbated by a Kanungo noise of parameter 0.25, for three kernel
radii (R = r = 3hα for α ∈ { 14 ,

1
3 ,

1
2}), two norms (l1, l∞): (left) kernel ball function

χ0
r, (right) kernel hat function χ1

r.

This shows that the VCM information is geometrically stable and essentially scale-
invariant. To conclude, we list below some information on computation times. This
estimator has been implemented using the DGtal library [14], and will soon be freely
available in it.

Image size #surfels (R, r) χr-VCM comput. Orienting normals
“Al” 1503 48017 (30, 3) 0.73 s 0.88 s

“rcruiser” 2503 66543 (30, 3) 1.26 s 0.99 s
“bunny” 5163 933886 (30, 5) 30.1 s 15.9 s

“Dig. Snow” 5123 3035307 (30, 5) 82.1 s 53.6 s

5 Conclusion

We have presented new stable geometry estimators for digital data, one approaching
the Voronoi Covariance Measure and the other approaching the normal vector field.
We have shown under which conditions they are multigrid convergent and provided
formulas to determine their parameters R and r as a function of the gridstep h.
Experiments have confirmed both the accuracy and the stability of our estimators.
In future works, we plan to compare numerically our estimator with other discrete
normal estimators (e.g. integral invariants [7], jets [15]) and also to perform a finer
multigrid analysis to get a better theoretical bound on the error.
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Fig. 5: Visual result of the normal estimation on the “torus” shape perturbated
with a strong Kanungo noise (p = 0.5) for gridsteps from left to right h =
0.5, 0.25, 0.125, 0.0626.

(a) (b) (c) (d)

Fig. 6: Visual aspect of normal estimation on “bunny66” for r = 3: (a) trivial
normals, (b) normals by χ1

r convolution of trivial normals with flat shading, (c)
χ1
r-VCM normals with flat shading, (d) χ1

r-VCM normals with Gouraud shading.

Fig. 7: Visual aspect of normal estimation on classical digital data structures: “Al”
1503, “Republic cruiser” 2503, “Digital snow” 5123.
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Fig. 8: Sharp feature detection on “bunny” dataset at increasing resolutions (R = 30,
T = 0.1): color is metallic blue when value is in [0, 23T ], then goes through cyan and
yellow in ] 23T, T [, till red in [T,+∞[.
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Appendix

We give here all the proofs to be self-content. Proposition 3 is classical and follows
from the well-known tube formula for smooth surfaces [16]. We give a complete
proof in the sake of completeness. Proposition 4 states that the projection map pK
onto a set K that is close to a smooth surface S behaves like the projection map pS .
It relies on classical properties of the projection map onto a set with positive reach.
The proof of Proposition 2 is similar to the proof of Theorem 5.1 of [1], except that
the calculations are done locally.

5.1 Hausdorff measure of offsets

Proposition 3. Let S ⊂ R3 be a surface of class C2 with reach ρ > 0. Let R > 0
and ε > 0 be such that R+ ε < ρ

2 . Then for any borelian B, one has:

1. Vol
(
SR ∩ p−1S (B ∩ S)

)
≤ 4 R Area(B ∩ S).

2. Vol
(
(SR+ε\SR−ε) ∩ p−1S (B ∩ S)

)
≤ 7 ε Area(B ∩ S).

3. Area
(
∂[SR ∩ p−1S (B ∩ S)]

)
≤ 3 R Length(∂(B ∩ S)) + 5 Area(B ∩ S)

In particular, if B is a ball of radius r, one has:

a. Vol
(
SR ∩ p−1S (B ∩ S)

)
= O(Rr2).

b. Vol
(
(SR+ε\SR−ε) ∩ p−1S (B ∩ S)

)
= O(εr2).

c. Area
(
∂[SR ∩ p−1S (B ∩ S)]

)
= O(Rr + r2),

where the notation O involves a constant that only depends on the reach ρ.

Proof. The proof is based on the tube formula for surfaces of class C2 [16, 17]. One
has

Vol(SR ∩ p−1S (B ∩ S)) =

∫
B∩S

∫ R

−R
(1− tλ1(x))(1− tλ2(x))dtdx,

where λ1(x) and λ2(x) are the principal curvatures of S at the point x. Now, since
|λ1(x)| and |λ2(x)| are smaller than 1

ρ , one has

Vol(SR∩p−1S (B∩S)) ≤
∫
B∩S

dx×
∫ R

−R

(
1 +

t

ρ

)2

dt ≤ Area(B∩S)×2R

(
1 +

R2

3ρ2

)
.

The proof of the second item is similar. The volume of (SR+ε\SR−ε) ∩ p−1S (B ∩ S)
is less than ∫

B∩S
dx×

[∫ R+ε

R−ε

(
1 +

t

ρ

)2

dt+

∫ −R+ε

−R−ε

(
1− t

ρ

)2

dt

]

The result then follows from the fact that∫ R+ε

R−ε

(
1 +

t

ρ

)2

dt = 2ε+
2εR

ρ
+

2ε(R+ ε)2

ρ2
≤ 7

2
ε.
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For the last point, one has

∂[SR ∩ p−1S (B ∩ S)] = A1 ∪A2,

where
A1 = {x ∈ R3, ‖x− pS(x)‖ = R and pS(x) ∈ B ∩ S}
A2 = SR ∩ p−1S (∂(B ∩ S))

Similarly as above, one has

Area(A1) =
∫
B∩S(1− λ1(x)R)(1− λ2(x)R)dx

≤ 2Area(B ∩ S)
(

1 + R
ρ

)2
≤ 5Area(B ∩ S).

We put C = ∂[B ∩ S]. As for the tube formula, the set A2 is parametrized by the
map

f : C × (−R,R) −→ A2

(x, t) 7−→ x+ t.n(x)

The 2-jacobian of f at (x, t) is given by ‖1− tλC(x)‖, where λC(x) is the curvature
of S at x in the direction tangent to C. One has

Area(A2) =

∫
C

∫ R

−R
‖1− tλC(x)‖dx ≤ Length(C)

∫ R

−R
1 +
|t|
ρ

dt ≤ 3 R Length(C).

The proofs of items a, b and c follows from the fact that if B is a ball of radius r,
then Area(B ∩ S) = O(r2) and Length(C) = O(r).

5.2 Stability of the projection on a compact set

Proposition 4. Let S be a surface of R3 of class C2 whose reach is greater than
ρ > 0. Let K be a compact set such that dH(S,K) = ε < 2ρ, and R < ρ a positive
number. If x and x′ are points of SR such that d(x, x′) ≤ η, then :

‖pK(x)− pK(x′)‖ ≤ 2
√

8ερ+ 2ε+
1

1− R
ρ

η

The proof of the proposition relies on Lemmas 3 and 4.

Lemma 3. Let S be a surface of R3 of class C2 whose reach is greater than ρ > 0.
Let r < ρ and x ∈ R3 such that d(x, S) = δ < ρ. If q ∈ S satisfies ‖q − pS(x)‖ > r

then ‖x− q‖2 > δ
ρr

2 + δ2.

Proof. Since S has a reach greater than ρ, there exists a ball Bc(ρ) of center c,
that is tangent to S at the point pS(x). The interior of this ball does not intersect
S and the points c, x, and pS(x) are aligned. Let q be a point of S such that
‖q − pS(x)‖ = r̄ ≥ r. We denote by P the plane passing through c, x, pS(x) and
p. Let y ∈ ∂Bc(ρ) ∩ ∂BpS(x)(r̄) ∩ P. Clearly, pS(x) is at equal distance of q and y.
Furthermore, since q /∈ Bc(ρ), c is closer to y than to q, hence the whole segment
[c, pS(x)] is closer to y than to q, which implies that ‖x− q‖ ≥ ‖x− y‖. Since

‖x− y‖ is the length of the diagonal of a regular trapezoid, we have ‖x− y‖2 ≥
δ
ρ r̄

2 + δ2, which allows to conclude.
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Lemma 4. Let S be a surface of R3 with a reach ρ > 0. Let K be a compact set
such that dH(S,K) = ε with ε ≤ 2ρ. Let R be a number such that R < ρ. For every
x ∈ SR, one has

pK(x) ∈ B(pS(x),
√

8ερ+ ε)

Proof. Let x ∈ SR. We denote δ = ‖x− pS(x)‖. There exists p0 ∈ K such that
‖pS(x)− p0‖ < ε. We then have ‖x− p0‖ ≤ ‖x− pS(x)‖ + ‖pS(x)− p0‖ ≤ δ +
ε, which implies that ‖x− pK(x)‖ ≤ δ + ε. Let now p ∈ K be such that p /∈
B(pS(x),

√
8ρε+ ε). We are going to prove that p 6= pK(x).

We first suppose that δ < ε. The assumption ε ≤ 2ρ implies that 3ε <
√

8ρε+ ε
and thus ‖p− pS(x)‖ ≥ 3ε. We have

‖x− p‖ > ‖p− pS(x)‖ − ‖pS(x)− x‖ > 3ε− δ > 2ε ≥ ‖x− pK(x)‖ ,

which ensures that p 6= pK(x).
We now suppose that δ ≥ ε. There exists q ∈ S such that ‖p̃− p‖ ≤ ε and thus

‖q − pS(x)‖ ≥
√

8ρε. Lemma 3 therefore implies that ‖x− q‖2 > δ
ρ × 8ρε+ δ2. The

fact that δ ≥ ε implies that ‖x− q‖ > δ+2ε. We finally get ‖x− p‖ ≥ ‖x− q‖−ε >
δ + ε ≥ ‖x− pK(x)‖, which ensures that p 6= pK(x).

Proof (of Proposition 4). By the triangle inequality, we have

‖pK(x)− pK(x′)‖ ≤ ‖pK(x)− pS(x)‖+ ‖pS(x)− pS(x′)‖+ ‖pS(x′)− pK(x′)‖ .

It is well-known that the projection map pS is 1
1−Rρ

-Lipschitz in SR (Theorem 4.8

of [17]). We then have ‖pS(x)− pS(x′)‖ ≤ 1
1−Rρ

η. The two other terms are bounded

with Lemma 4.

5.3 Proof of Proposition 2

As in the proof of the previous lemma, the hypothesis h ≤ ρ
2 and

√
8hρ + h ≤ r

imply that p−1Zh(supp(χ)) ⊂ p−1∂X(By(2r)). We then introduce the common set E =

∂XR−h ∩ p−1∂X(By(2r)), on which we are going to integrate. We have :

V∂X,R(χr) =

∫
∂XR

(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x))

=

∫
∂XR∩p−1

∂X(By(2r))
(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x))

=

∫
E

(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x)) + Err1,

where the error Err1 satisfies

‖Err1‖op ≤ R2 × ‖χ‖∞ ×Vol(∂XR ∩ p−1∂X(By(2r)) \ E).
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Furthermore, one has ∂XR ∩ p−1∂X(By(2r)) \ E =
[
∂XR\∂XR−h] ∩ p−1∂X(By(2r)),

whose volume is bounded by Proposition 3 by O(r2h). Then

‖Err1‖op = ‖χ‖∞ ×O(R2r2h).

Similarly, one has

V∂X,R(χr) =

∫
ZRh

(x− pZh(x))(x− pZh(x))tχ(pZh(x))

=

∫
ZRh ∩p

−1
∂X(By(2r))

(x− pZh(x))(x− pZh(x))tχ(pZh(x))

=

∫
E

(x− pZh(x))(x− pZh(x))tχ(pZh(x)) + Err2,

where the error Err2 satisfies

‖Err2‖op ≤ (R+ h)2 × ‖χ‖∞ ×Vol(ZRh ∩ p−1∂X(By(2r)) \ E).

Since the set ZRh ∩p
−1
∂X(By(2r))\E ⊂

[
∂XR+h\∂XR−h]∩p−1∂X(By(2r)) has a volume

bounded by O(r2h), one has

‖Err2‖op = (R+ h)2 × ‖χ‖∞ ×O(r2h).

We now have to compare the two integrals on the common set E

∆ =

∫
E

[
(x− p∂X(x))(x− p∂X(x))tχ(p∂X(x))− (x− pZh(x))(x− pZh(x))tχ(pZh(x))

]
.

Following now the proof of Theorem 5.1 of [1], one has

‖∆‖op ≤ (R2Lip(χ)+2R‖χ‖∞)×[Vol(E)+(diam(E)+R+
√
Rh)×Area(∂E)]×

√
Rh.

Proposition 3 gives that Vol(E) is bounded by O(r2R) and Area(∂E) is bounded
by O(rR+ r2). We then have

‖∆‖op = O
(
Lip(χ)× [(r3R

5
2 + r2R

7
2 + rR

9
2 )h

1
2 ] + ‖χ‖∞ × [(r3R

3
2 + r2R

5
2 + rR

7
2 )h

1
2 ]
)
.

Adding the bounds of ‖Err1‖op, ‖Err2‖op and ‖∆‖op, we find the same bound :

‖V∂X,R(χr)− VZh,R(χr)‖op
= O

(
Lip(χ)× [(r3R

5
2 + r2R

7
2 + rR

9
2 )h

1
2 ] + ‖χ‖∞ × [(r3R

3
2 + r2R

5
2 + rR

7
2 )h

1
2 ]
)
.
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