
Experimental comparison of continuous and

discrete tangent estimators along digital curves

François de Vieilleville1 and Jacques-Olivier Lachaud2

1 LaBRI, UMR CNRS 5800, Université Bordeaux 1
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Abstract. Estimating the geometry of a digital shape or contour is an
important task in many image analysis applications. This paper pro-
poses an in-depth experimental comparison between various continuous
tangent estimators and a representative digital tangent estimator. The
continuous estimators belong to two standard approximation methods:
least square fitting and gaussian smoothing. The digital estimator is
based on the extraction of maximal digital straight segments [9, 10]. The
comprehensive comparison takes into account objective criteria such as
isotropy and multigrid convergence. Experiments underline that the pro-
posed digital estimator addresses many of the proposed objective criteria
and that it is in general as good - if not better - than continuous methods.

1 Introduction

The proper detection of significant features along digital curves often relies on
an accurate estimation of the geometry of the underlying curve that has been
digitized. Local geometric quantities such as the curvature at given points can
lead to corner detection [17], more generally curvature and tangent estimation
lead to the detection of dominant points on digital curves [14]. Correct tangent
estimation allows length computation by simple integration.

Estimating local geometric quantities on digitized shapes is a difficult task
in itself for at least four major reasons:

(1) Given a digitized shape there exists infinitely many continuous Euclidean
shapes that have the same digitization.

(2) Given a digital point and a point on the continuous curve, determining the
required size of the computation window to achieve a good estimation is
tricky.

(3) The digitized curve can be noisy or damaged, worsening the preceding prob-
lems.

(4) The time spent on computations may be limited.
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The first problem implies that, given a digital shape, additional hypotheses
are required to define its reference shape, such as smoothness, compactness,
convexity, minimal perimeter or maximal area. For instance, given a digital disk,
a reasonnable hypothesis is that the underlying shape is an Euclidean disk,
and not some kind of gears. The second problem involves the adaptability of
computation windows to the local geometry of the shape, e.g. curves with huge
curvature variations require different sizes for the computation windows. Sizes
of computation windows have a huge impact on the multi-grid convergence (see
[4]). The third problem is a common problem which is efficiently addressed in the
continuous world, but lacks proper definitions in the digital world. This entails
that continuous methods are generally preferred for the extraction of geometric
quantities. The fourth problem arises when the computation windows are too
large, and narrowing their sizes has a direct impact of the efficiency or precision of
the method. These issues are related to many interesting topics on digital curves
such as multi-grid convergence [3, 8], digitization problems and topology issues
[12], combinatorial problems [1] and new models for digital straight segments
taking into account some distortions [6].

As mentioned earlier usual geometric estimators are based on approximation
techniques in the continuous Euclidean spaces, and forget the specificities of
subsets of the digital plane. By this way, they address problem (3) considering
that it is the main issue. The noise is then handled by tuning some external
parameters. In fact the external parameters often reduce to the choice of the
size of the computation window, handling problems (2), (3) and (4) at the same
time with a trade-off. The continuous methods can be of various type with
different aims with respect to the digital curve: interpolation, reconstruction
or fit. The choice of the underlying curve in problem (1) is then often made
explicitly with the method itself, e.g. using C3-splines to interpolate points along
a digital curve lead to degree three polynomials as the underlying curve. The
numerical methods required to extract the chosen solution can be costly and may
even require parameters themselves, this is particularly true when the chosen
underlying curve is the solution of a non trivial optimisation problem. As a
result (1) and (2) have a direct impact on (4).

On the contrary, standard digital estimators based on digital straight seg-
ment recognition estimate local geometric quantities like tangent or curvature
with an adaptive computation window and, furthermore, they do not require any
external parameters [19, 7, 9]. Recently, an evaluation of digital tangent estima-
tors was performed in [9] and the λ-MST was shown to outperform the others
on many criteria like precision, maximal error, isotropy, convergence, convexity.
The tangent orientation is determined using digital straight segment recogni-
tion, which entails a computation window adapted to the local curve geometry
(addressing problem (2)) and without assumptions on the underlying curve (ad-
dressing problem (1)). The average size of the computation window is known and
is roughly in Θ

(

h−1/3
)

where h is the grid step (see [4] for technical proofs).
As a result, the asymptotic convergence — or multigrid convergence — of the
λ-MST estimator is proved for smooth and convex curves [10]. This estimator is
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also the best among digital ones at rough scale [9, 10]. Its computation on the
whole digital curve, i.e. the computation of the tangent orientation field, may be
done in time linear with the number of digital points (optimal time, addressing
(4)). This estimator is yet to be shown as good as standard continuous methods.

This is precisely the goal of this paper which is achieved by experimental com-
parison between the λ-MST estimator and two representative classes of continu-
ous estimators. We naturally examine classical criteria like the average absolute
error. Furthermore, we propose to use the product precision by computational
cost to compare them as objectively as possible. Besides, our aim is not only to
compare these estimators but to see if they can benefit from one another. This
is the case here where we show how an optimal computation window (problem
(2)) can be chosen for the Gaussian derivative technique. The obtained improve-
ments are illustrated experimentally. These experiments indicate that even with
the best possible window, the continuous estimators are outperformed by the λ-
MST according to the product precision by cost. We stress that we treat only the
ideal case where digital contours are perfect digitizations of continuous shapes,
without any perturbation or noise. Indeed, a first evaluation must be carried out
before in the ideal case, for instance to identify the best precision an estima-
tor may achieve. Secondly, the λ-MST estimator is easily extensible to maximal
blurred digital straight segments [6], which can accommodate local perturbations
in the digital contour. An experimental evaluation of continuous versus discrete
estimators in the presence of noise could then be carried out similarly, and would
be the object of a future work.

The paper is organized as follow. First we describe continuous tangent es-
timators methods, more specifically the ones based on least square fitting with
polynomials and the ones using convolution with a gaussian derivative. Their
main drawbacks are also recalled. In a second time we briefly recall the defi-
nition of the λ-MST estimator and its main properties (Section 3). In Section
4, an experimental evaluation between the different estimators is proposed, fol-
lowing some of objective criteria proposed in [9, 10]. We also propose several
improvements of the two continuous methods, which are then underlined ex-
perimentally. The criterion precision times computational cost shows that, even
with these improvments, the digital estimator compete with the best possible
continuous methods. Our conclusion is thus that digital straight segments are a
powerful tool to analyse the geometry of digital curves.

2 Continuous tangent estimators

This section presents two continuous classes of methods that are used to extract
geometric information from curves. Both methods need external parameters to
achieve the best possible accuracy. In the remaining of the paper the considered
digital curves are digital 4-curves, that is a 4-connected closed sequence of points
in Z

2 such that each of them has exactly two 4-neighbors: a predecessor and a
follower (given an orientation). Such curves arise naturally from the cellular
decomposition of the Gauss digitization of simple Euclidean objects, provided
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they are well-composed [11]. The obtained digital curve is denoted C and its
points are ordered increasingly with a counterclockwise order, Ci denotes the
i-th point of the digital curve and Ci,j is the digital path from the i-th point to
the j-th point.

2.1 Least square methods using polynomials

The aim of these methods is to find a polynomial of finite degree which minimizes
a positional squared error from a set of (possibly noisy) samples. More precisely,
let us denote by (si = (xi, yi))1≤i≤M a set of M samples obtained from a pla-
nar curve parameterized as y = f(x). We thus seek to minimize the functional

E(a0, . . . , aN ) =
∑M

i=1

(

yi −
∑j=N

j=0 ajx
j
i

)2

.

In the general case, the problem can be reduced to a matrix inversion prob-
lem. At least one solution exists and can be efficiently computed using QR fac-
torisation [16]. For small degree polynomials, direct computation is possible as
it involves square matrices of order two and three. It is not compulsory that
the polynomial be the supposed underlying curve itself. It can also be its local
Taylor expansion as explained in [13] for implicit parabola fitting, an approach
which is generalized by the n-jets of [2].

Once the optimal polynomial for E is determined, the coefficient associated
to its X monomial may be used to estimate the tangent orientation. We naturally
focus on low order polynomials. That is the linear regression (LR, Eq. (1)), im-
plicit parabola fitting (IPF, Eq. (2)), and explicit parabola fitting (EPF, Eq. (3)).
When used for approaching the tangent orientation at the point of interest C0,
considered as the origin, with a computation window ranging from C−q to Cq,
those three methods give very similar results (see Figure 1).

ELR(a, b) = E(a, b, 0, . . .) (1)

EIPF (a, b) = E(0, a, b, 0, . . .) (2)

EEPF (a, b, c) = E(a, b, c, 0, . . .) (3)

A refinement of this method is the weighted least square fitting, where each
sample have a variable importance in the fitting process: the heavier the weight,
the more important the fit. However, it is not easy to find meaningful weights
within our context. Another refinement is to use independent coordinates, that
is a fit on each coordinates with respect to a given parameterization of the
curve. Usually centered windows are considered: C0 is the point of interest,
M = 2q + 1 is the size of the computation window going from C−q to Cq. When
using independent coordinates, the arc-length from C0 to Ci, is computed as
∑i−1

k=O d1(Ck, Ck+1) if i > 0 and −
∑i−1

k=O d1(Ck, Ck+1) otherwise.3

2.2 Reconstruction using gaussian smoothing

The use of gaussian filters is a common technique for improving the quality of
noisy images. This filter can also be used when trying to analyze a digital curve,

3 d1 denotes the distance obtained from the || · ||1 norm.
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Fig. 1. We represent the tangent orientation estimated with IPF,EPF and LR methods.
The test shape is a circle of radius 1. Computation window equals 2q + 1. (Left) Grid
step equals 0.01, x-axis represents the polar angle, the y-axis represents the orientation
of the tangent. (Right) The plot is in log-space and represent the average absolute error
between true tangent and estimated tangent as a function of the grid step. For each
grid step 50 experiences are made with a random shift on the center of the shape.

and has been used in the pattern recognition community for almost 30 years. It
is essentially a weighted averaging over a finite window. The obtained smoothed
continuous curve is considered to be a good approximation of the underlying
curve. Its derivatives are easily computed yielding geometric quantities of the
first and second order. This reconstruction has one major drawback, which is
the choice of the parameter σ. This tuning parameter is often chosen for the
whole curve, but it is not satisfying if the curve has huge curvature variations,
entailing then over-smoothing for some region and under-smoothing for others.
As a result techniques using scale-space were proposed [15, 20] to achieve a better
localization of the dominant points across the different σ values. From a discrete
point of view we will consider that the estimated derivative at the digital point
C0, say Ĉ′

0, is obtained as : Ĉ′
0 =

∑q
i=−q G′

σq
(−i)Ci, with σq = 2q+1

3 and where

G′
σ(t) is the first derivative of the Gaussian function Gσ(t) = 1

σ
√

2π
exp

(

−t2

2σ2

)

.

2.3 Common drawbacks

In the context of digital geometry, the methods presented above share similar
drawbacks, which we try to analyze here. First of all, if we consider the digitiza-
tion of convex shapes, we see that the analysis of its border with the preceding
techniques may lead to false concavity/convexity detection, even in the simplest
case of the circle as shown on Figure 2. This is particularly true when the size
of the computation window is not large enough.

The false convexity/concavity detection can be alleged to a wrong size of the
computation window. Experimentally on digitized circles it seems that if the size
of the computation window exceeds some value being a functional of the radius
and the grid step, there is no false convexity/concavity points. More precisely,
this phenomenon is related to the maximal curvature of the shape under study.

Another fundamental problem related to fixed size computation windows
is that one parameter, even if suited for some regions, cannot adapt to the
geometry of a digitized shape with huge curvature variations. This statement is
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Fig. 2. Test shape is a circle of radius 1, digitized with a grid step equal to 0.01. Tan-
gent orientation is plotted as a function of the polar angle. The x-axis represents the
polar angle, the y-axis represents the orientation of the tangent and the size of the
computation window equals 2q +1. (Left) Tangent orientation obtained using convolu-
tions by the gaussian derivative σq. (Right) Tangent orientation obtained using implicit
parabola fitting with independent coordinates.

particularly underlined on Figure 3. Moreover, a fixed parameter prevents the
multigrid convergence of continuous estimators, since it limits the number of
data taken into account in the fitting or smoothing process, thus limiting the
number of possible local geometries. This is illustrated on Figure 4, where the
size on the computation window has a direct impact on the average error.

Last but not least, the computed curvilinear abscissa obtained from the sum-
mation of the elementary steps on digital curve is a poor estimation (see [18] for
a proof of non convergence for length estimators using fixed-size windows on eu-
clidean segments). Thus the problems of parametrization induce displacements
and errors in the continuous proposed methods. A way to solve this problem
would be to use an estimation of the elementary steps ds along the curve using
the tangent orientation computed with a convergent estimator.

3 Discrete tangent estimators

This section recalls the definitions of elementary objects regarding digital straight
segments, we then briefly present the λ-MST estimator and its properties.

3.1 Properties and definitions

Digital straight lines can be simply seen as the digitization of euclidean straight
lines. More formally, a standard line of characteristics (a, b, µ) ∈ Z

3 is the sub-
set of Z

2
{

(x, y) ∈ Z
2 | µ ≤ ax − by < µ + |a| + |b|

}

. They form 4-connected se-
quences of digital points. We say that a set of successive points Ci,j of the
digital curve C is a digital straight segment (DSS) iff there exists a standard line
(a, b, µ) containing them. The predicate “Ci,j is a DSS” is denoted by S(i, j).
When S(i, j), the characteristics associated with the digital straight segment
(extracted with the DR95 algorithm [5]) are the characteristics (a, b, µ), which
minimize |a| + |b|.
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an other scale. The different estimators are: gaussian derivative (GD - dashed plot),
parabola fitting with independent coordinates (ICIPF - dotted plot), linear regression
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curvature variation because of the size of the computation window which is not adapted
to the local geometry of the shape. On the contrary, the λ-MST which has an adaptive
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Fig. 4. Experimental multigrid convergence analysis drawn in log-space: x-axis is the
inverse of the grid step, y-axis is the average of the absolute error between theoretical
tangent and estimated tangent, shape of reference is a circle of radius one. At each grid
step 50 experiences are made and center is shifted randomly. (Left) Gaussian derivative
(GD) with various window size. (Right) Implicit parabola fitting (IPF). In both cases,
fixed parameters cannot achieve convergence.
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The slope a/b of a DSS provides a coarse estimation of the slope of the
underlying tangent. Upon the many existing classes of DSS, we choose to focus
on a particular class, the one that contains all the other DSS:

Definition 1. We say that a portion Ci,j of C is a maximal digital straight
segment (MS) iff S(i, j) ∧ ¬S(i − 1, j) ∧ ¬S(i, j + 1).

Maximal segments can be numbered with increasing indexes on the digital
curve, M i = Cbi,fi

denoting the i-th maximal segment. With an incremental
version of the DR95 algorithm (see [7, 10, 9]), the set of all the maximal segments
on a finite digital curve can be extracted in linear time with respect to the number
of points of the curve. As maximal segments generally overlap, we introduce the
set of all the maximal segments traversing a point.

Definition 2. The pencil of maximal segments of Ck, denoted P(k) is the set
of MS containing Ck.

Since every DSS can be extended to form a MS, the pencil of any point is
never empty. We also define the eccentricity of a point Ck with respect to a max-

imal segment M i in P(k) as: ei(k) =
‖Ck−Cbi

‖1

Li
= k−bi

Li
with Li = ‖Cfi

−Cbi
‖1.

This value indicates if a digital point is centered within a maximal segment: it is
perfectly centered if the value equals 1/2, limit values are 0 and 1 for extremal
points of a maximal segment.

3.2 The λ-MST tangent estimator

The λ-MST tangent estimator at one point is designed to take into account the
various orientations of the MS in the pencil weighted by a functional of their
respective eccentricity with respect to the point of interest:

Definition 3. The λ-maximal segment tangent direction at point Ck (λ-MST)

is defined as θ̂(k) =
P

i∈P(k) λ(ei(k))θi
P

i∈P(k) λ(ei(k)) , where θi is the angle of the slope of the

i-th MS with the x-abscissa.

Considering the properties of the eccentricity and the non-emptyness of pen-
cils, this value is always defined and may be computed locally. For particular λ
functions the λ-MST estimator satisfies the convexity/concavity property4 (see
Theorem 8 of [10]).

This implies that the border of digitally convex shapes analysed with the λ-
MST estimator under the conditions of the preceding theorem does not contain
any false concavity. In practice the triangle function is used as the λ function: it
matches the preceding conditions and brings good results.5 Other nice properties
are a good isotropic behaviour, multigrid convergence and computation of the
tangent field in time linear with respect to the number of curve points (see [10,
9] and Figure 5).

4 Estimated tangent directions are monotone for digitization of convex shapes.
5 The triangle function is defined as x → x if x ∈ [0, 1

2
] and x → 1 − x if x ∈ [ 1

2
, 1].
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Fig. 5. The test shape is a circle of radius 1, the x-axis represents the inverse of the
grid step. For each grid step, fifty experiences were launched with uniform random shift
of the center of the shape. Plots are drawn in log-space. (Left) Average absolute error
between true tangent and estimated tangent with the λ-MST, the law seems to be in
O(h−2/3). (Right) Time spent on computing the tangent orientation field with the λ-
MST, the law follows O(1/h), the same magnitude as the number of points constituting
the border of the digitized shape.

4 Experimental evaluation

The multigrid convergence of the λ-MST estimator is shown on Figure 5 and its
good behaviour with respect to huge curvature variations is exemplified on Fig-
ure 3. On the contrary the non multigrid convergence of the proposed estimators
using fixed size computation window is shown on Figure 4 with the measure of
the average absolute error as a function of the grid step. Though the precision
of an estimator is important the time spent on the computation has also to be
taken into account, a criterion measuring these two parameters at the same time
is proposed in the next subsection, yielding the same conclusion.

4.1 A new criterion balancing precision and computation time

This subsection introduces a new criterion to compare local tangent estimators,
called AAEBT: we measure the product of the average absolute error of tangent
direction estimation by the computation time for the whole curve. The lower the
quantity as the grid step decreases, the better. As problem (2) penalizes estima-
tors using fixed size windows on curves with huge curvature variations we ran the
experiments on digitizations of a disk. The experiments on Figure 6 clearly show
that criterion AAEBT for the GD estimator of fixed size window becomes linear
with the inverse of the grid step after some rank. For each window size, there
is thus a bound to the maximum reachable precision (Figure 4 also illustrates
this matter). However, judging from the experiments, the λ-MST estimator has
a much better AAEBT which seems to be in O((1/h)1/3). This behaviour is
consistent with the average absolute error of the tangent orientation in O(h2/3)
and the computational cost in O(1/h) (see Figure 5).

4.2 Improving continuous estimators using fixed-size windows

The Figure 4 clearly suggests that there is a somewhat best window size to pick
for each grid step. Judging from experiments on the circle for the GD estimator,
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Fig. 6. Test shape is a circle of radius 1, the x-axis is the inverse of the grid step.
We represent the time spent on computing the tangent field multiplied by the average
absolute error between true tangent orientation and estimation with particular estima-
tors. Plots are drawn in the log-space. (Left) Comparison between gaussian derivative
with various window sizes and the λ-MST estimator. For the GD estimator, curves
tend to be linear once the maximum precision is reached. (Right) Comparison between
implicit parabola fitting with independent coordinates with various window sizes and
the λ-MST estimator. For the λ-MST estimator, the law seem to be in O((1/h)1/3).

the best possible accuracy is in O(h5/6) provided the size of the computation
window follow O((1/h)1/2) as shown on Figure 7. The parameter σ of GD is
set to one third of the computation window size. It is clear that the size of the
computation window should increase with the inverse of the grid step.

Let us use an adaptive window defined as the maximum distance between the
point of interest and the ends of its pencil. The defined size of the computation
window increase with the inverse of the grid step, and even though on average
it only grows in O((1/h)1/3) this size brings multigrid convergence for both fits
and gaussian derivative, as exemplified on Figure 8 (H-GD and H-ICIPF). The
size can also be set globally using the average size of the maximal segments,
again multigrid convergence is observed, see Figure 8 (HG-GD and HG-ICIPF).

 1e-04

 0.001

 0.01

 10  100  1000

ave.
abs.
err.of
tan.
orient.

inv.of grid step

GD q = 12
GD q = 16
GD q = 24
GD q = 32
GD q = 48
GD q = 64
GD q = 96
GD q = 128
x^(2.5/3)  10

 100

 10  100  1000

size
of
comp.
win.

inv.of grid step

GD
x^(1/2)

Fig. 7. (Left) Suggested best possible average absolute error with GD as being some
O((1/h)5/6), with parameter σ = (2q + 1)/3. (Right) The suggested size of the com-
putation window to achieve best possible accuracy is in O((1/h)1/2).
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5 Conclusion

The presented experiments have shown how digital tangent estimators compare
to classic continuous methods in the ideal digitization case: they are as precise
and they are faster. This is clearly underlined when using the criterion precision
multiplied by cost. Furthermore, we have shown how to introduce the adaptive
window of digital estimators into continuous estimators to get an optimal window
size. Future works will consider noise in the evaluation. Although defining noise
in the discrete world is tricky, we plan to use maximal blurred digital straight
segments to take into account distortion in the digital curve.
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