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Abstract. This paper presents a new tangent estimator to digitized
curves based on digital line recognition. It outperforms existing ones on
important criteria while keeping the same computation time: accuracy on
smooth or polygonal shapes, isotropy, preservation of inflexion points and
convexity, asymptotic behaviour. Its asymptotic convergence (sometimes
called multigrid convergence) is proved in the case of convex shapes.

1 Introduction

In this paper, we address the problem of tangent estimation along contours of
digitized 2D objects. Tangent estimation is useful for estimating many geometric
quantities and has also many applications. For instance, the length of a digital
contour is accurately estimated from tangents by integration [3, 18]. Derivating
the orientation of the tangent provides an estimation of the curvature [18, 22,
23]. The previous geometric parameters are used in classical pattern recognition
applications. They also define the internal energies of discrete deformable mod-
els [15]. When rendering 3D digitized objects, the normal vector field can be
estimated from tangent directions along slice contours [16, 18].

When trying to estimate geometric properties of digitized objects, we face
the issue that infinitely many shapes have the same digitization: there is no good
approximation since there is no reference shape. Other hypotheses are thus re-
quired. The common assumption is that the original continuous object has some
“natural” properties such as: compactness (not a fractal), bounded curvature,
sometimes piecewise linear geometry (i.e. polygon). Therefore we restrict the
class of shapes we are interested in. Discrete boundaries will come from the dig-
itization of continuous shapes composed of polygonal parts and of smooth parts
with bounded curvature.

Many tangent estimators are based on a finite set of 2k+1 curve points around
the point of interest. Matas et al. [19] compute the tangent direction as the
median direction of the vectors linking the processed point to the k next points
and to the k previous points on the curve. Worring describes several methods
for computing the tangent orientation in a survey on curvature estimation [23].
Among them a method by Anderson and Bezdek [1] defines the tangent at a
point as a real line segment fitting the 2k+1 neighbouring points by minimizing
their squared distances to the line. Lenoir [18] uses a recursive gaussian filter to
obtain a local mean orientation of the curve.



Although interesting in some contexts, all the previous methods require an
external parameter, the size of the “computation window”, often fixed globally
by the user. One consequence is that the tangent estimation provided by these
methods cannot converge asymptotically toward the continuous value as the
digitization resolution increases: the computation scale is defined globally and is
not adapted to the local shape geometry. These tangent estimators are said to
be non convergent. This paper is concerned with the design of discrete tangent
estimators that are convergent (or multigrid convergent for some authors [12, 3]).

The convergence of some global geometric estimators in the plane and par-
ticularly of length estimators has been studied in several works [13, 2, 12]. They
proved that the shape perimeter, the shape area, its center of gravity, its ori-
entation and its elongation can be estimated more and more precisely as the
resolution increases. There are very few results about the convergence of local ge-
ometric estimators. Some elements about the convergence (or non-convergence)
of tangent and curvature estimation can be found in [4, 2, 6].

Although these studies do not prove the convergence of a local discrete geo-
metric estimator, they give hints as how to design convergent tangent estimators.
We will therefore consider tangent estimators based on digital straight segment
extraction [22, 10, 16]: digital straight segments along digitized curves naturally
define a window, whose size is dependent of the local shape geometry. In these
works, the discrete tangent is defined as a longest digital straight segment corre-
sponding to the digital curve around the point of interest. The tangent size thus
grows as the curvature decreases. It is well known that this estimation is ex-
act when the shape is a half-plane. These discrete tangent estimators thus seem
to be good candidates to design a convergent tangent estimator. This point is
however not straightforward. It is shown in [14] that even smooth and regular
curves frequently contain an infinite set of points called critical points where the
symmetric tangent estimator (see Section 2 for a definition) fails at giving a tan-
gent estimation that converges toward the expected value when the resolution
increases.

We propose in this paper a new discrete tangent estimator which is shown
to be asymptotically convergent. An upper bound on the average rate of conver-
gence is also given. Furthermore, it is accurate at low scale with low deviation
and maximum error and has good isotropic properties. Its computation cost de-
pends linearly on the number of curve points, i.e. it is optimal. Other interesting
intermediary properties are demonstrated in this paper: the length of maximal
segments is not bounded on finer and finer digitization of smooth curves, maxi-
mal segments are related to digital convexity.

The paper is organized as follows. In Section 2, we recall the existing defini-
tions of discrete tangents and compare qualitatively their advantages and draw-
backs. We then present the new tangent estimator, called λ-MST, that takes
the best out of the existing ones. This estimator is based on the set of maxi-
mal digital straight segments going through the point of interest. We prove in
Section 3 that it identifies convex and concave parts of the shape and behaves
accordingly. In Section 4, we prove in the case of convex shapes the asymptotic



convergence of tangent estimators defined by the direction of maximal segments
and, consequently, the convergence of λ-MST. In Section 5 we show that the
computational complexity of λ-MST is equivalent to the other existing estima-
tors both locally and globally for the whole curve. Section 6 is devoted to an
experimental evaluation of λ-MST which is compared to the other discrete tan-
gent estimators. We have checked the following points: tangent estimation on
smooth and straight parts of the shape, sharp corner recognition, isotropy, mean
and maximal asymptotic error with different shapes. Experiments confirm that
the λ-MST has the best behaviour in most practical cases.

2 Estimating tangent with digital straight segments

This section recalls some standard discrete geometry notions, presents tangent
estimators based on digital straight segment recognition, and propose a new
tangent estimator.

We restrict our study to the geometry of 4-connected digital curves. Indeed,
a digital object is a set of pixels and its boundary when seen as a collection
of pointels and linels is a 4-connected curve. Besides this work may easily be
adapted to 8-connected curves since it relies on discrete straight segment recog-
nition. We introduce some notations to get homogeneous definitions of existing
tangent estimators based on digital straight lines. In the remaining of the paper,
the digital curve is denoted by C. Its points (Ck) are assumed to be indexed
from 0 to N − 1. A set of successive points of C ordered increasingly from index
i to j will be conveniently denoted by Ci,j .

2.1 Standard line, digital straight segment, maximal segments

Definition 1. The set of points (x, y) of the digital plane verifying µ ≤ ax−by <
µ + |a| + |b|, with a, b and µ integer numbers, is called the standard line with
slope a/b and shift µ [21].

The standard lines are the 4-connected discrete lines. As we will see later, all
discrete tangents are defined as particular connected subset of standard lines
included in 4-connected digital curves.

Since the tangent is a local property of the curve, we can always assume
that we look at a restricted part of C, where the indices are totally ordered (the
curve can be re-indexed differently so that its indices are totally ordered on the
subpart of interest). The following definition is thus valid.

Definition 2. We say that a set of consecutive points Ci,j of the digital curve
C is a digital straight segment (DSS) iff there exists a standard line (a, b, µ)
containing them. Any DSS defines an angle between its carrying standard line
and the x-axis (in [0; 2π[ since a DSS is oriented). This angle will be called later
on the direction of the DSS.



The predicate “Ci,j is a DSS” is denoted by S(i, j). When S(i, j), we denote
by D(i, j) the characteristics associated with the digital straight segment [7]:
the characteristics (a, b, µ) of the standard line containing all the points Ci,j , the
principal upper and lower leaning points Um, UM , Lm and LM . Let us recall that
an upper leaning point verifies ax− by = µ, i.e. it belongs to the upper leaning
line, while a lower leaning point belongs to the lower leaning line of equation
ax − by = |a| + |b| + µ − 1. We denote by Um (respectively by UM ) the upper
leaning point of minimum (resp. maximum) abscissa and by Lm (respectively
by LM ) the lower leaning point of minimum (resp. maximum) abscissa. The
previous definitions and notations are illustrated in Figure 1.

UM

Um

θ
LM

Lm

Ci

Cj

Fig. 1. Digital straight segment of characteristics (a, b, µ) = (2, 3,−3) and direction θ.

The first index j, i ≤ j, such that S(i, j) and ¬S(i, j + 1) is called the front
of i. The map associating any i to its front is denoted by F . Symmetrically, the
first index i such that S(i, j) and ¬S(i − 1, j) is called the back of j and the
corresponding mapping is denoted by B. We get the following obvious relations.

Proposition 1. (i) ∀i ≤ i′ ≤ j′ ≤ j, S(i, j)⇒ S(i′, j′);
(ii) F and B are locally increasing;
(iii) F ◦B ◦ F = F and B ◦ F ◦B = B.

The definition of maximal segments will be central for estimating tangents.
They form the longest possible DSS in the curve. They are used for polygonizing
a digital curve into the minimum number of segments [11], for defining discrete
convexity [8], for proving the convergence or the non-convergence of discrete ge-
ometric estimators [6]. Proposition 1 allows us to give four equivalent definitions
of maximal segments:

Definition 3. Any set of points Ci,j is called a maximal segment (MS) iff any
of the following equivalent characterizations holds: (1) S(i, j) and ¬S(i, j + 1)
and ¬S(i− 1, j), (2) B(j) = i and F (i) = j, (3) ∃k, i = B(k) and j = F (B(k)),
(4) ∃k′, i = B(F (k′)) and j = F (k′).

Figure 2 illustrates this definition.



Fig. 2. Three non-overlapping maximal segments (in white) on a digital contour.

Any contour point obviously belongs to at least one maximal segment. The
set of all maximal segments thus covers a digital contour. This notion was already
used for example by Feschet and Tougne under the name tangential cover [10].
It is illustrated in Figure 3.

Fig. 3. Tangential cover of a digital contour. Each maximal segment is represented by
its rectangular bounding box. Left : the digital shape is a disk of radius 14. Right : the
digital shape is a flower with important curvature variations and inflexion points.

2.2 Discrete tangents

Based on local DSS recognition, several tangent estimators at a digital curve
point have been proposed. Their quality is to adapt the computation window to
the local shape of the curve. Exact tangent estimation for digitizations of straight
lines can thus be achieved. They all try to make the right balance between longest
and most centered DSS around the point of interest.



Definition 4. The following DSS may be defined around any point Ck of the
digital curve C. They correspond to the notion of discrete tangent (see Fig. 4).

– The DSS Ck−l,k+l with S(k − l, k + l) and ¬S(k − l − 1, k + l + 1) is called
the symmetric tangent (ST) at Ck [16].

– The maximal segment with biggest indices that includes the symmetric tan-
gent at Ck is called the Feschet-Tougne tangent (FTT) at Ck [10].

– The extended tangent (ET) at Ck includes the symmetric tangent Ck−l,k+l

but may be extended in the two following cases: (i) if S(k−l, k+l+1)∧¬S(k−
l− 1, k + l) then it is extended forward as the maximal segment Ck−l,F (k−l),
(ii) if S(k − l − 1, k + l) ∧ ¬S(k − l, k + l + 1) then it is extended backward
as the maximal segment CB(k+l),k+l.

– The forward half-tangent at Ck is the DSS Ck,F (k) and the backward half-
tangent at Ck is the DSS CB(k),k. The median half-tangent (HT) at Ck is
the arithmetical line median to the two half-tangents.

(e)

(d)

(a)

(b)

(c)

ST

HTf

HTb

ET=FTT

ST = ET

FTT

Fig. 4. Illustration of different definitions of a discrete tangent. The point of interest
is represented in white as well as the set of contour edges of the discrete tangent. (a)
Symmetric Tangent. (b) Extended Tangent which is equivalent on this example to the
Feschet-Tougne Tangent. (c) forward and backward Half-Tangents. Subfigures (d) and
(e) emphasize the possible ambiguity in the definition of FTT: balanced tangent for
ET and ST versus arbitrarily unbalanced tangent for FTT.

The preceding discrete tangent definitions, except for the FTT, are inde-
pendent of the orientation chosen for the curve (Fig. 4d-e). ET can be seen as
an unambiguous version of FTT. Both FTT and ET are local longest DSS, to
the expense of a loss of localization around the point. FTT and ET tend to
polygonalize the digital curve even for underlying smooth shapes.

On the other hand, ST and HT have a very good localization around the
point (perfectly centered for ST). However they both may have a bad behavior
on even very regular shapes (e.g. at the points where a circle with integer radii



touches the axes). They may also not locate accurately convex or concave parts
of the curve. This point will be detailed in Section 3. Note that HT is also used
for estimating the curvature [2].

In the next section, we construct a new tangent estimator which combines
the qualities of the other ones: related to maximal segments as FTT and ET;
computation window identical to HT; significant position of the point wrt the
DSS surrounding it as ST; unambiguous definition.

2.3 Tangent estimation based on maximal segments

The new tangent estimator depends on the set of maximal segments that goes
through a point of the digital curve. This set is called the pencil of maximal
segments around the point of interest. As noted by Feschet and Tougne [10],
several successive points may have the same pencil. Therefore the tangent esti-
mator takes also into account the position of the point within the pencil. More
specifically, the point has a given eccentricity wrt each maximal segments. The
tangent direction is estimated by a combination of the direction of each maximal
segment weighted by the eccentricity.

We index all the maximal segments of the curve by increasing indices: Mi =
Cmi,ni

with F (mi) = ni and B(ni) = mi. From characterizations (3) and (4) of
the definition of maximal segment (Definition 3), any DSS Ci,j and hence any
point belongs to at least two maximal segments (possibly identical) CB(j),F (B(j))

and CB(F (i)),F (i). Therefore, the pencil of maximal segments P(k) = {Mi, k ∈
Mi} around any point Ck is never empty. We denote by θi the direction of the
DSS Mi. In the remaining of the paper, λ is a mapping from [0, 1] to R

+ with
λ(0) = λ(1) = 0 and λ > 0 elsewhere.

The eccentricity ei(k) of a point Ck wrt a maximal segment Mi is its relative
position between the extremeties of Mi:

ei(k) =

{

‖Ck−Cmi
‖1

Li
= k−mi

Li
if Mi ∈ P(k)

0 otherwise
, with Li = ‖Cni

− Cmi
‖1. (1)

Given a point on a maximal segment, the more its eccentricity is close to 1
2 the

more it is centered (see Fig. 5).

e = 3
9 e = 4

5

Fig. 5. Computation of the eccentricity e of a contour point (in black) wrt a maximal
segment (in white).



Definition 5. The λ-maximal segment tangent direction at point Ck (λ-MST)
is then defined as a weighted combination of the directions of the surrounding
maximal segments:

θ̂(k) =

∑

i∈P(k) λ(ei(k))θi
∑

i∈P(k) λ(ei(k))
=

∑

i λ(ei(k))θi
∑

i λ(ei(k))
. (2)

Considering the properties of the eccentricity and the non-emptyness of pencils,
this value is always defined and may be computed locally.

The preceding notion is extended to any real value k in [0, N [. It is enough to
consider k as the curvilinear parameterization of the 4-connected contour. Any
non-integer value of k corresponds to a real point on the straight line linking
C⌊k⌋ and C⌈k⌉. When λ is continuous, the angle θ̂(k) is continuous too and a
length estimator may be derived from it [17].1 The length of the curve can be
estimated by simple integration of this local measure. Cœurjolly and Klette have
reported that this method of length evaluation gives very good results [3].

3 Local convexity or concavity

One can expect that a tangent estimator preserves the inflexion points, i.e. it
detects them without creating false ones. It is not the case for ST or HT. Figure 6
shows an example of incorrect behaviour of ST. The digitized contour is here a
circular arc. The quadrant change around the point of interest implies that the
symmetric tangent has a slope greater than the slope of the following contour
points. In other words, the ST estimator has detected a concavity on a disk.

(a)

(b)

ST

ET = FTT

Fig. 6. Tangent estimation along the digitization of a circular shape. False concavity
detected by ST (a) versus correct straight line for ET and FTT (b).

Definition 6. The digital curve C is oriented counterclockwise wrt the discrete
object it bounds. C is locally convex (resp. concave) at point Ck iff the angles (θi)

1 For instance, if h is the grid step, the elementary length mat be given by l̂(k) =
h

|cos(θ̂(k))|+|sin(θ̂(k))|
.



of the sorted segments of P(k) is an nondecreasing sequence (resp. nonincreasing
sequence). (Angles are brought back in ]− π, π[ relatively to the first one.)

This local version of convexity is related to traditional convexity: the digiti-
zation of a convex shape is digitally convex for a fine enough grid step [9]; and it
is proven in [20] (Theorem 4.1) that a digitally convex shape satisfies the local
convexity property everywhere.

We say that a tangent estimator to a digital curve satisfies the convex-
ity/concavity property iff the estimated tangent direction is nondecreasing (resp.
nonincreasing) on every connected subset where the curve is locally convex (resp.
concave). This property holds for ET and FTT but does not hold for ST and HT
(e.g. see Fig. 6 or Fig. 16). For λ-MST, it depends on the function λ as indicated
below.

Theorem 1. If λ is differentiable on ]0, 1[, then the λ-MST estimator satisfies

the convexity/concavity property iff d
dt (t

λ′

λ (t)) ≤ 0 and d
dt ((1− t)λ′

λ (t)) ≤ 0 hold
on this interval.

The proof is given in appendix. It is easy to check that functions with a
bell shape satisfy this constraint (e.g. functions based on binomials). This is
for instance the case for the C2 function 64(−x6 + 3x5 − 3x4 + x3) or for the
C∞ function exp(4− 1

x −
1

1−x) extended by zeroes. One may also find functions
not differentiable everywhere which satisfies the convexity/concavity property.
Among them, we can quote the triangle function with a peak at 1

2 .

4 Asymptotic convergence

The main result of this section is the proof that the λ-MST estimator is con-
vergent (Theorem 4): its tangent direction estimation converges toward the true
continuous tangent direction as the digitization step gets finer and finer. This
study is restricted to the digitization of convex shapes, but the result remains
valid for shapes with a finite number of inflexion points.

Before detailing the proof, we first define properly what is a discrete local
estimator and what we call multigrid convergence. We recall that previous defi-
nitions of multigrid convergence (e.g. see [12]) were restricted to global geometric
properties of shapes and must be adapted to local geometric properties.

In this section S is a convex shape defined in R
2 whose boundary ∂S can be

parameterized as a twice differentiable curve of continuous curvature. We denote
by ∆h(S) the digitized boundary of S for a grid step h. We relate continuous
points of ∂S to discrete points of ∆h(S): a discrete point Ph is called an h-
digitization of a point P of ∂S iff ‖P − Ph‖1 ≤ h and Ph ∈ ∆h(S).

Given a grid step h, a local discrete estimator along a digital contour is a
map that associates some value in a vector space to any ot its discrete point. A
local geometric descriptor along a curve is a map that associates some value in
a vector space to any of its points.



Definition 7. For a shape S of R
2, a local discrete estimator Eh is multigrid

convergent toward a given local geometric descriptor F along ∂S iff, for any de-
creasing sequence of grid steps (hi) tending toward 0, for any point P of ∂S with
hi-digitizations Phi

, the sequence Ehi
(∆hi

(S), Phi
) converges toward F(∂S, P ).

In other words, multigrid convergence ensures asymptotically: the finer the sam-
pling, the better the estimation. The previous definition is equivalent to classical
pointwise convergence of functions with the subtlety that these functions have
not the same domain.

The following subsections show these results related to local multigrid con-
vergence:

Theorem 2. Both λ-MST and FTT estimators are multigrid convergent toward
the tangent direction along the boundary of any convex shape with twice differ-
entiable boundary and continuous curvature. An upper bound for their average

rate of convergence is O
(

h
1

3

)

, as the grid step h tends toward 0.

We proceed in three steps for the proof:

1. we show that maximal segments have unbounded digital length on the con-
tour of a shape digitized with finer and finer resolution (Proposition 2).

2. the slope of a maximal segment is then proved to tend toward the tangent
direction of any point it covers (Theorem 3).

3. tangent estimators based on directions of local maximal segments (λ-MST,
ET, FTT) are then proved to be (multigrid) convergent (Theorem 4).

4.1 Growth of maximal segments wrt resolution

The first important step of the proof is to establish that maximal segments on
digital contour have unbounded length while the resolution increases (Proposi-
tion 2). It is based on three preliminary lemmas (Lemma 1 to Lemma 3). The
first lemma tells that, on the digitization of convex shapes, contour points not
inside a given maximal segment are all on the same side. The second lemma
indicates that any circle separating interior and exterior pixels around a maxi-
mal segment extended on both sides has a finite radius. The last lemma shows
that maximums of curvature of digitized curves are inversely proportional to
the radius of separating circles. These lemmas give all the elements for prov-
ing Proposition 2: should the maximal segments be bounded as the resolution
increases, then separating circles would have smaller and smaller radius; conse-
quently the curve being digitized would have maximums of curvature tending
toward infinity, which is a contradiction.

Lemma 1. Let C be a digital boundary resulting from the digitization of a con-
vex shape S. Let M = Ci,j be a maximal segment of C. The characteristics of
its carrying digital line Z are denoted by (a, b, µ). The values of the remainder
rZ(P ) = ax− by−µ at the two points just outside M , A ≡ Ci−1 and B ≡ Cj+1,
have the same sign, positive when convex and clock-wise oriented.



Proof. We suppose here that the coordinate axes are such that the maximal
segment M is located in the first octant, i.e. 0 < a ≤ b and that the digital points
under M belong to S while the points above M belong to S the complementary
of S. The remainder of B relatively to Z can be less or equal to −2 or greater
than |a|+ |b|. Let us suppose rZ(B) ≤ −2. Let us denote by Z ′ the result of the
translation of the line Z by (1

2 ,− 1
2 ) and by B′ the point B + (1

2 ,− 1
2 ). We have

rZ′(B′) = rZ(B) ≤ −2. Let U ′
1 be the upper leaning point of Z ′ of minimum

abscissa. It is chosen as the origin of the coordinate axes. All these notations are
illustrated in Figure 7.

According to Proposition 1 of [7], the system :

ax− by = −1, yB′x− xB′y ≥ 0, 0 < x < xB′

has at least one solution (x, y) in the digital plane. Thus there exists a point

E′ = (xE′ , yE′) in S , such that
yB′−yU′

1

xB′−xU′

1

≥ yE′

xE′

(since U ′
1 = (0, 0)). In other

words, the slope defined by the two points U ′
1 and B′ is greater than the slope

defined by the two points U ′
1 and E′. Moreover the three points U ′

1, E′ and B′

have increasing abscissae. The point E′ is thus below the straight line joining
U ′

1 and B′. The boundary of S must pass above U ′
1 (in S), below E′ (in S) and

above B′ (in S). The slope configuration between these three points is thus in
contradiction with the convexity of S. The hypothesis on rZ(B) is thus wrong
and the value of rZ(B) is in this case greater than |a|+ |b|. The same argument

B
B′

U ′
1

A

E′

S

Z
Z ′

Fig. 7. This exemple can not be the digitization of a locally convex shape S. The slope
defined by U ′

1 and E′ is lower than the slope defined by U ′
1 and B′, E′ being outside

S. The characteristics (a, b) of the digital line Z are (5, 7).

can be used at the other end of the maximal segment M to prove rZ(A) ≥ |a|+|b|.
⊓⊔

Lemma 2. Let C be a digital boundary resulting from the digitization of a con-
vex shape S. Let M = Ci,j be a maximal segment of C. Any separating circle
between the discrete points outside and inside the curve Ci−1,j+1 has a finite
radius.



Proof. We denote by Z the digital line carrying M and by (a, b, µ) its character-
ictics. We suppose here that M is located in the first octant, i.e. 0 < a ≤ b. Ac-
cording to Lemma 1, we consider the case where the value of rZ(P ) = ax−by−µ
at the two points A = Ci−1 and B = Cj+1 is strictly greater than a + b. We will
not detail the other case which is similar.

Let us denote by U an upper leaning point of M and by Z ′ the result of the
translation of Z by (1

2 ,− 1
2 ). Let U ′ be the point U + (1

2 ,− 1
2 ), A′ be A+ (− 1

2 , 1
2 )

and B′ be B + (− 1
2 , 1

2 ). These notations are illustrated in Fig. 8. We have the

following properties : A′ ∈ S and rZ′ (A′) = rZ(A) ≥ 1, B′ ∈ S and rZ′(B′) =
rZ(B) ≥ 1, U ′ ∈ S and rZ′(U ′) = 0.

A′

B′

B

A

U

U ′

Z ′ Z

S

Fig. 8. Digitization of a locally convex shape S. Any separating circle between the
inside and the outside has a finite radius bounded by the radius of the circumcircle
through A′, U ′ and B′.

The points A′, U ′ and B′ may not be colinear since A′ and B′ are strictly
under the upper leaning line of Z passing through U ′. They are ordered on Z ′.
Any circle separating the points inside and outside Ci−1,j+1 has thus a lower
radius than the circumcircle defined by A′, U ′ and B′ (it has to pass below A′

and B′ and above U ′). ⊓⊔

Lemma 3. Let C be the boundary of a digitized convex shape and M = Ci,j a
maximal segment of C. Any curve whose digitization contains the sequence of
points Ci−1,j+1 has locally a maximum of curvature greater than 1

r where r is
the radius of the separating circle of maximum radius.

Proof. This result comes directly from Lemma 2 and from the fact that the
curve traversing three non colinear given points and minimizing the curvature
maximum is the circumcircle. ⊓⊔

We are now ready to prove that maximal segments have unbounded discrete
length on digitized contours as resolution increases.

Proposition 2. Let S be a convex shape with twice differentiable contour and
continuous curvature. The discrete length of the maximal segments of ∆h(S) is
not bounded while h tends towards 0.



Proof. First of all and according to Lemma 3, two maximal segments that are
equal up to an integer translation have circles of maximal radius with same
radius. We consider now the set of all maximal segments of discrete length l that
can be found on digitization of arbitrary convex curves. The number of maximal
segments up to an arbitrary translation is clearly finite and so is the number of
possible radii for circles of maximal radius according to the first remark. This
number of radii being finite, we pick the greatest one and assign its inverse to
the map κ1(l).

Interpreting Lemma 3, any digitized contour that has somewhere a maximal
segment of discrete length l has also a maxima of curvature that is at least κ1(l)
and which lies on the contour somewhere under the maximal segment.

Assume now that, whatever fine the digitization step is, some maximal seg-
ments on the digitized shape contour ∆h(S) keep a discrete length bounded by
some constant L. There is a sequence (hi) of decreasing digitization step such
that there exist some maximal segment Mi ⊂ ∆hi

(S) with discrete length no
greater than L.

Let κmax(S) be the maxima of curvature of the boundary of S. Let S · 1
hi

be

the dilation of S by 1
hi

. We have

κmax(S) =
1

hi
κmax(S ·

1

hi
) (3)

Observing that the digitizations ∆hi
(S) and ∆1(S ·

1
hi

) are equivalent, we have:

κmax(S ·
1

hi
) ≥ κ1(L

1(Mi)) (4)

≥
L

min
l=1

κ1(l) (5)

Denoting by κ1(1, L) the non-zero value minL
l=1 κ1(l) and putting all together,

we get:

κmax(S) ≥
1

hi
κ1(1, L) (6)

The limit of κmax(S) is clearly +∞ when hi tends toward 0, meaning that the
contour of S has somewhere a non-bounded curvature, which is a contradiction.
We may thus conclude that maximal segments have unbounded length when h
tends towards 0. ⊓⊔

To conclude this subsection, we also examine what is the upper bound for
the discrete length of maximal segments on the digitization of a circle.

Lemma 4. Consider the digitization of step h of a circle of radius R. The dis-
crete length of any of its DSS is upper bounded by 2

7

4 (R
h )

1

2 .

Proof. Any digital straight line is included in a strip of thickness 2
1

2 . Hence
the same holds for any digital segment on the boundary of any digitized circle.
The intersection of such a strip with the circle of radius R determines an upper



bound for the length of the DSS. The outer boundary of the strip is distant from
the circle of 0 ≤ ǫ ≤ 2

1

2 . Thus the length of the strip equals 2(2Rǫ− ǫ2)
1

2 (see

Figure 9). This quantity is clearly no greater than 2(2R2
1

2 )
1

2 . Considering now
the digitization with a grid step of h, we get that the length is upper bounded
by 2(2R

h 2
1

2 )
1

2 . ⊓⊔

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�� �� ����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

����

����

��

������

��������

R− ǫ

(R2 − (R− ǫ)2)
1

2

ǫ

Fig. 9. A strip bounding a DSS and its intersection with a circle.

4.2 Direction of maximal segment wrt direction of tangent

We show here that maximal segments have a direction that converges to the
tangent direction on the points they cover (Theorem 3). This part of the proof
is mainly based on a first order Taylor expansion of the curve.

A maximal segment of ∆h(S) is said to cover a point P of ∂S iff it contains
a discrete point that is an h-digitization of P . For small enough h, the set of
maximal segments covering P is never empty and contains the pencil of maximal
segments of the point on the digitized boundary that is closest to P . The direction
of maximal segments depends on the geometry of the continuous shape as follows:

Theorem 3. Let P be a point of ∂S. The direction of any maximal segment of
∆h(S) covering P tends towards the direction of the tangent at P while h tends
towards 0.

Proof. Let Mh be some maximal maximal segment covering P . We further sup-
pose that Mh belongs to the first octant and that P is the origin of the coordinate
axes. We consider the case where P is located in the left part of Mh, the other
case being symmetrical. Let l be the x-coordinate of the end point of Mh of maxi-
mum abscissa. We locally parameterize the boundary ∂S(t) = γ(t) = (x(t), y(t))



as (x, f(x)). We denote by Q the point of ∂S with abscissa l, i.e. Q = (l, f(l)).
See Figure 10 for an illustration of these notations.

Let ǫ(h) be the vertical thickness of Mh, i.e. the vertical distance between
its two leaning lines. By definition of covering maximal segment, the distance
between P and the leaning lines of Mh is at most ǫ(h) + h. The same holds for
Q. If ph denotes the slope of Mh, we have:

∀x ∈ [0, l] phx− ǫ(h)− h ≤ f(x) ≤ phx + ǫ(h) + h. (7)

Mh
Leaning lines of Mh

∆h(S)
y

P
x

Q

γ

l

Fig. 10. Notations used in Theorem 3.

Consider that P lies on a linear part of γ, then any maximal segment covering
P reaches at least one end of the linear part. Thus if D denotes the abscissa of
this end of the linear part, we have:

∀x ∈ [0, D] f(x) = f ′(0)x (8)

Substituting Eq. (8) in Eq. (7), setting x = D and solving it for ph, we get:

f ′(0)−
ǫ(h) + h

D
≤ ph ≤ f ′(0) +

ǫ(h) + h

D

Using 0 < ǫ(h) ≤ 2h leads to:

f ′(0)−
3h

D
≤ ph ≤ f ′(0) +

3h

D

Which gives the asymptotic relation limh→0 ph = f ′(0) for linear parts.
We now focus on non linear part where, according to Taylor’s relation, we

have:

f(l) = lf ′(0) + O(l2) (9)

From Equations (9) and (7) we get:

phl− ǫ(h)− h ≤ lf ′(0) + O(l2) ≤ phl + ǫ(h) + h⇔ ph = f ′(0)±
ǫ(h) + h

l
+ O(l)



If we denote by L(Mh) the discrete length of Mh (i.e. its number of steps),
the position of point Q on the right side of Mh gives the bounds:

hL(Mh)

4
≤ l ≤ hL(Mh). (10)

Combining the two previous relations induces:

ph = f ′(0)± 4
ǫ(h) + h

hL(Mh)
+ O(hL(Mh))

As 0 < ǫ(h) ≤ 2h and limh→0 L(Mh) = +∞ (Proposition 2), we have

limh→0
4ǫ(h)+h
hL(Mh) = 0. Since P is on a non-linear part, the boundary curve ∂S

around P behaves locally as a circle of radius R. Thus using Lemma 4 and
the fact that the distance d1 and the euclidean distance are equivalent, we
get hL(Mh) = O(hR)1/2 whose limit is 0 as h tends toward 0. This entails
limh→0 ph = f ′(0).

We have just proved that the direction of Mh (slope ph) tends toward the
tangent direction at P (slope f ′(0)) on linear and non-linear part of the shape
boundary. ⊓⊔

4.3 Multigrid convergence of tangent estimators based on maximal

segments

We are now able to prove the multigrid convergence of the λ-MST and the FTT
toward the tangent direction.

Theorem 4. Both λ-MST and FTT estimators are multigrid convergent toward
the tangent direction along the boundary of any convex shape with twice differ-
entiable boundary and continuous curvature. An upper bound for their average

rate of convergence is O
(

h
1

3

)

, as the grid step h tends toward 0.

Proof. Let S be such a shape, P a point on its boundary and θ(P ) the tangent
direction at P . Let (hi) be any decreasing sequence of grid steps tending toward
0. We denote by Phi

an hi-digitization of P . Any maximal segment in the pencil
of Phi

is covering P . Consider now the λ-MST estimation at point Phi
:

θ̂(Phi
) =

∑

j∈P(Phi
) λ(ej(Phi

))θj
∑

j∈P(Phi
) λ(ej(Phi

))
.

The direction θ̂(Phi
) is thus a convex combination of the direction of every

maximal segments containing Phi
. Maximal segments in the pencil of Phi

also
covers P . According to Theorem 3, as i tends toward infinity, each maximal
segment in the pencil of Phi

has a direction tending toward θ(P ). Any convex
combination of values tending toward θ(P ) tends also toward θ(P ). The λ-MST
estimator is thus multigrid convergent to the tangent direction. For the FTT
estimator, it is enough to note that its direction is determined by some maximal



segment in the pencil of Phi
, hence a maximal segment covering P . Theorem 3

then concludes.

We may now examine the convergence speed of these estimators. From the
proof of Theorem 3, the convergence speed of the direction of a maximal segment
covering a point on a linear part is linear with respect to the grid step. Using
the same notations as earlier-on we have for non linear parts:

ph = f ′(0)± 4
ǫ(h) + h

hL(Mh)
+ O(hL(Mh))

Since h ≤ ǫ(h) ≤ 2h, the convergence speed is at least as fast as that
of 1

L(Mh) . The average discrete length of maximal segments on digitizations

of smooth shapes has been tackled in [5] and is shown to be no slower than

Θ
(

h
−1

3

)

and no faster than Θ
(

h
−1

3 log 1
h

)

. This in turn entails that the aver-

age convergence speed of the maximal segment direction is upper bounded by
O(h

1

3 ) + O(h
2

3 log 1
h ) = O(h

1

3 ). ⊓⊔

Experiments confirm the growth of maximal segments, as exemplified in Fig-
ure 11: they grow on average like h

1

3 , no one has a finite length but no one grows
faster than h

1

2 . Other experiments confirm the convergence of the λ-estimator.
The observed convergence speed seems even faster for this estimator on partic-
ular curves as shown on Figure 12.

 1
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 1000

 10  100  1000

max
min

mean
4x^(1/3)
4x^(1/2)

Fig. 11. Plot in log-space of the L1-size of maximal segments. The digitized shape is
a disk of radius 1 and the abscissa is the inverse of the grid step.
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Fig. 12. Plot in log-space of the absolute deviation between the estimated tangent
direction using λ-MST and the theoretical one. The digitized shape is a disk of radius
1 and the abscissa is the inverse of the grid step. The convergence speed on this shape

is likely to be in Θ(h
2

3 ).

5 Complexity of tangent estimation

We show here that the computation time of the λ-MST for all the points of a
curve depends linearly on the number of points. The λ-MST estimator is thus
a discrete tangent estimator with better results than the others, particularly at
low scale (see Section 6 for experimental results), while keeping a computation
time of the same order. One can refer to Feschet and Tougne algorithm [10] that
computes the FTT along an 8-connected curve in linear time. Their algorithm
is based on a O(1) algorithm to remove a point to an 8-connected line segment.
Moreover it finds point sequences where all points have the same tangent value
which decreases the number of necessary tangent computations.

The λ-MST computation is based on an incremental update of the maximal
segment Mk+1 from the preceding maximal segment Mk. This process is efficient
because adding or removing a point to a DSS can be done in constant time. This
will be detailed in the following so as to provide the information needed to
implement the tangent computation.

Given a maximal segment Mk = Cmk,nk
, its next maximal segment can be

defined as CB(nk+1),F (B(nk+1)). It is the maximal segment containing the point

nk +1 and obtained from Mk with a minimal number of operations (adding and
removing a point). The following algorithm computes it:



Compute next maximal segment (C, Mk = Cmk,nk
)

first← mk + 1 // removal of Cfirst (O(1) from Theorem 5)
last← nk + 1
while ¬S(first, last)

first← first+ 1 // removal of Cfirst (O(1) from Theorem 5)
while S(first, last)

last← last+ 1 // addition of Clast (O(1) from Theorem 5)
return Mk+1 = Cfirst,last−1

Its principle is to remove points at the backward extremity of Mk until it
becomes possible to extend the resulting segment at the other end. Of course,
the characteristics of the intermediate DSS must be updated at each removal or
addition of a point. The time complexity of the preceding function depends on
the complexity of the updates, which are proved to be O(1) by:

Theorem 5. Assume S(i, j), and assume the characteristics D(i, j) of the cor-
responding DSS are known. Then,

1. (Addition of point Ci or Cj) - Deciding S(i, j + 1) or S(i − 1, j) are O(1)
operations and, when appropriate, computing D(i, j + 1) or D(i − 1, j) are
O(1) operations too (proved by Debled-Renesson and Réveillès [7]);

2. (Removal of point Ci or Cj) - Computing D(i + 1, j) or D(i, j− 1) are O(1)
operations (see below).

An immediate corollary is that all the maximal segments of a given closed
digital curve are computed with a linear complexity (each point of the curve is
added once to a segment and removed once). The λ-MST can thus be computed
for all the curve points in linear time : once the maximal segments are computed,
the tangent direction at each point is a weighted sum of n directions of maximal
segments. We have experimentally established that the pencil of a given point
contains at most 7 maximal segments. More precisely, the experiment was run
on circles of increasing radii inferior to 16000. For standard images, this number
is thus bounded. On average, a point belongs to 3.5 maximal segments.

We now explain briefly how to update a DSS in constant time when removing
a point to prove point 2 of Theorem 5. Let Ci,j be a DSS of characteristics
D(i, j) = (a, b, µ, Um, UM , Lm, LM ). Without any loss in generality we suppose
that the digital segment Ci,j belongs to the first quadrant. In the following, we
denote by (a′, b′, µ′, U ′

m, U ′
M , L′

m, L′
M ) the characteristics D(i + 1, j) of the DSS

Ci+1,j , which we wish to compute. Our algorithm is based on the observation
that if the addition of the point Ci to Ci+1,j has changed the characteristics
D(i + 1, j), its removal from Ci,j should do an inverse modification to D(i, j).

We have first to recall how the characteristics of a DSS are updated when
a point is added according to Debled’s incremental algorithm [7]. When adding
the point Ci to the DSS Ci+1,j , three cases may appear:

(1) Ci is in between the leaning lines: the characteristics do not change.
(2) Ci is just over the upper leaning line (a′xCi

− b′yCi
= µ′ − 1): the slope

decreases and the characteristics have to be updated.



(3) Ci is just under the lower leaning line (a′xCi
− b′yCi

= µ′ +a′+ b′): the slope
increases and the characteristics have to be updated.

In case (2), the characteristics are updated as follows :

(a, b, µ, Um, UM , Lm, LM ) = (yU ′

M
−yCi

, xU ′

M
−xCi

, axU ′

M
−byU ′

M
, Ci, U

′
M , L′

m, L′
m)

See Figure 13 for an illustration. We will not detail case (3) which is similar.

(b) (c)(a)

Ci

Cj UM
Cj

Lm = LM

Ci = UmU ′
m

Ci+1 L′
m

U ′
M

L′
M

Cj

Fig. 13. Addition of a point to a DSS. (a) DSS Ci+1,j . (b) The point Ci is just over
the upper leaning line and its addition will decrease the segment slope. The update
can be interpreted as a rotation of the leaning lines around the pivot points U ′

M and
L′

m (in gray). (c) DSS Ci,j . Its slope and the leaning points Um and LM have to be
recomputed.

If the addition of the point Ci to Ci+1,j has changed the DSS characteristics,
then Ci is an upper or lower leaning point of Ci,j . Fig. 14 illustrates the case
where Ci is an upper leaning point that is being removed from the DSS.

(b)(a) (c)

Ci

CjUM
Cj

Lm = LM

Ci = Um

L′
m

U ′
M

U ′
m

L′
M

Cj

Ci+1

Fig. 14. Removal of a point from a DSS. (a) DSS Ci,j . The point Ci is an upper leaning
point and its removal will increase the segment slope. (b) Rotation of the leaning lines
around the pivot points (in gray) during the removal of Ci. (c) DSS Ci+1,j . Its slope
and the leaning points U ′

m and L′
M have to be recomputed.

More precisely in this case (Ci = Um), the addition algorithm indicates that

the slope has changed iff
−−−→
CiUM = (b, a) and Lm = LM . Clearly, the addition

of Ci to Ci+1,j has decreased the slope of the DSS. Geometrically, the addi-
tion corresponds to a rotation of the upper leaning line around U ′

M and of the
lower leaning line around L′

m. The two leaning points UM and Lm are thus
left unchanged by the removal of Ci. We can also easily state that the point



P = (xCi
+1, yCi

−1) would have extended Ci+1,j without modifying its charac-
teristics D(i + 1, j). The values (a′, b′, µ′) are deduced from P . Updating of Um

and LM is a little more tricky and exploits the property that the vector linking
two successive upper (or lower) leaning points is (b′, a′). The computation of
the characteristics D(i + 1, j) are summed up in the first column of Table 1. Its
second column corresponds to the case where Ci is a lower leaning point and its
removal decreases the slope.

Ci = Um ∧
−−−→
CiUM = (b, a) ∧ Lm = LM Ci = Lm ∧

−−−→
CiLM = (b, a) ∧ Um = UM

a′ yLm − (yCi
− 1) yUm − (yCi

+ 1)

b′ xLm − (xCi
+ 1) xUm − (xCi

− 1)

µ′ a′xUM
− b′yUM

a′xUm − b′yUm

U ′
m UM −

j

xUM
−xCi

−1

b′

k

(b′, a′) Um

U ′
M UM Um +

j

yCj
−yCi

−1

a′−1

k

(b′, a′)

L′
m Lm LM −

j

yLM
−yCi

−1

a′

k

(b′, a′)

L′
M Lm +

j

xCj
−xCi

−1

b′−1

k

(b′, a′) LM

Table 1. Updates of D(i, j) when removing point Ci.

We have shown that the computation time of the λ-MST for all the points
of a curve depends linearly on the number of points. The tangent can also be
computed at only one point Ck of a given curve. The complexity of the tangent
computation from this local point of view is equivalent to the complexity of
computing the pencil P(k) around Ck. It depends on the local shape of the
curve (O(F (k) −B(k))).

6 Experimental evaluation

In this section, we perform a quantitative evaluation of tangent estimators based
on DSS recognition. The behaviour of the λ-MST estimator relies on the λ
function which monitor the estimation of the underlying curve. For example
recontructing C∞ functions requires C∞ λ functions. We choose to minimize
the curvature of the underlying curve by taking the symmetric triangle function
with a peak at 1

2 as λ function. This function estimates the continuous underlying
curve as a circular arc when the pencil of maximal segments is reduced to two
maximal segments. Moreover it gives very good practical results. In the computer
implementation, all tangent directions are estimated wrt linels, not points (i.e.
geometric quantities are computed at curvilinear abscissa k + 1

2 and all DSS
includes k and k + 1).

We first compare the behavior of tangent estimators on smooth and flat parts
and on corners. The shape is a circle in three quadrants and a right angle in the
fourth (see “rsquare” in Fig. 15). Fig. 16 displays (a subset of) the estimations of
the tangent direction. Estimators that satisfies the convexity/concavity property,



continuous “rsquare” theoretical tangent direction
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Fig. 15. The real “rsquare” shape (left) and the corresponding theoretical tangent
direction (right).

(a) HT estimator (b) ST estimator
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(c) ET estimator (d) λ-MST estimator
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Fig. 16. Plots of the estimated tangent direction as a function of the polar angle. The
shape is a circle of radius 10 with a sharp corner in the first quadrant. Solid lines
correspond to expected values, dashed lines to estimations with a grid step of 0.5,
dotted lines to estimations with a finer grid step of 0.25.

i.e. ET and λ-MST, create a non-decreasing sequence of directions. ST and HT
clearly fail, especially at points where the digital contour meets a quadrant
change. Most estimators behave correctly at corners. λ-MST slightly smoothes
the corner at low resolution. The tendency to polygonalize the curve of ET (and
thus FTT) appears clearly on Fig. 16c.



We then evaluate the anisotropy of the estimators with the experiment de-
scribed in Fig. 17. The λ-MST is more isotropic than the others, with a steady
and low mean and maximal error.
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Fig. 17. Isotropy of tangent estimators measured with absolute error |θ̂(t)−θ(t)| (thick
solid line: λ-MST, thin solid line: HT, dashed line: ST, dotted line: ET). Left: mean of
absolute error. Right: Maximum of absolute error. For each estimator, 100 experiments
are run on a circle of radius 50 with a center arbitrarily shifted in its pixel. The absolute
error is drawn as a function of the polar angle and gathered by sectors of 5

180
π.

We finally examine the asymptotic behavior of the absolute error for different
shapes on Table 2. Both λ-MST and ET have an asymptotic convergence in mean
and in maximum. The maximum error of ST and HT cannot converge toward
0 for arbitrary shapes as shown in [14]. Although the λ-MST is not always the
best in mean at coarse resolution, it has the fastest asymptotic convergence in
mean and in maximum whatever the shape is.

7 Conclusions

In this paper, we have compared several tangent estimators based on DSS recog-
nition. After a first qualitative analysis, we have proposed a new estimator which
takes the best out of the existing ones. We have first checked that it satisfies
the convexity/concavity property: it does not create false inflexion points along
digitized shapes. Then we have proved that this tangent estimator is multigrid
convergent and we have exhibited an upper bound for the average speed of
convergence. We have shown too how to compute it efficiently in optimal time
wrt to input data. After experimental evaluation, the λ-MST appears to be the
most robust tangent estimator and very often the most accurate. The results are
summed up in Table 3. Future work will focus on curvature estimators based on
maximal segments and their properties.
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A Proof of Theorem 1

We show here a necessary and sufficient condition for the λ function to define a
λ-MST tangent estimator satisfying the convexity/concavity property.

Theorem 1. If λ is differentiable on ]0, 1[, then the λ-MST estimator satisfies

the convexity/concavity property iff d
dt (t

λ′

λ (t)) ≤ 0 and d
dt ((1− t)λ′

λ (t)) ≤ 0 hold
on this interval.

These two conditions once put together entail λ is necessarily log-concave

(i.e. lnλ is a concave function or d2

dt2 (ln λ(t)) ≤ 0). Furthermore, it is enough to

check d
dt(t

λ′

λ (t)) ≤ 0 for functions symmetric around 1
2 .

Proof. We first rewrite θ̂′(k) as

∑

i<j(θi − θj)
(

λ(ej(k))λ′(ei(k))
Li

−
λ(ei(k))λ′(ej(k))

Lj

)

(
∑

j λ(ej(k)))2
. (11)

We assume for instance that the angles (θi) of the segment in the pencil around

k are nondecreasing. We must thus prove θ̂′(k) is nonnegative, whatever is the
curve under examination. Since some curves have points with exactly two max-
imal segments going through, Eq. (11) may be reduced to one pair. It is thus
necessary to show that each term of this sum is nonnegative. It is also a sufficient
condition. Otherwise said, we have to prove for any i < j,

∀k, mj < k < ni,
λ(ej(k))λ′(ei(k))

Li
−

λ(ei(k))λ′(ej(k))

Lj
≤ 0. (12)

Let Rij = ni−mj be the size of the common part of both segments. Setting

t =
k−mj

Rij
, we define two analogs of the eccentricities ei(k) and ej(k) as ǫi(t) =



ei(k) = 1−
Rij

Li
(1− t) and ǫj(t) = ej(k) =

Rij

Lj
t. Eq. (12) is then equivalent to

∀t ∈]0, 1[, λ(ǫj(t))
λ′(ǫi(t))

Li
≤ λ(ǫi(t))

λ′(ǫj(t))

Lj
(13)

⇔
Rij

Li

λ′

λ
(ǫi(t)) ≤

Rij

Lj

λ′

λ
(ǫj(t))⇔

d

dt
(ln λ(ǫi(t))) ≤

d

dt
(lnλ(ǫj(t))) (14)

It is easy to see that ǫi(t) > t > ǫj(t) which gives the idea to break Eq. (14) in
two parts as follows, for all t ∈]0, 1[:

d

dt
(lnλ(ǫi(t))) ≤

d

dt
(lnλ(t)) and

d

dt
(lnλ(t)) ≤

d

dt
(ln λ(ǫj(t))) (15)

Eq. (15) clearly implies Eq. (14), but the converse is also true by letting Li or
Lj tend toward Rij .

We focus on the right part of Eq. (15). Letting δ =
Rij

Lj
and f = lnλ, we get

∀δ, 0 < δ < 1,
d

dt
(f(t)) ≤

d

dt
(f(δt)), otherwise said f ′(t) ≤ δf ′(δt). (16)

We now show that Eq. (16) is equivalent to

d

dt
(tf ′(t)) ≤ 0. (17)

Indeed, integrating both terms of the last inequality between δt and t shows
sufficiency. It is also necessary since Eq. (16) can be rewritten with h = (1− δ)t
as:

f ′(t) ≤ (1−
h

t
)f ′(t− h) (18)

f ′(t)− f ′(t− h)

h
+

f ′(t− h)

t
≤ 0 (19)

Getting the limit when h tends toward 0 and multiplying both sides by t give
tf ′′(t) + f ′(t) ≤ 0, which is exactly Eq. (17).

We now focus on the left part of Eq. (15). Letting δ′ =
Rij

Li
and g(t) = f(1−t),

we get

∀δ′, 0 < δ′ < 1,
d

dt
(f(1− δ′(1− t))) ≤

d

dt
(f(t)), (20)

with u = 1− t, we have −
d

du
(f(1− δ′u)) ≤ −

d

du
(f(1− u)), (21)

or
d

du
(g(u)) ≤

d

du
(g(δ′u)), otherwise said g′(u) ≤ δ′g′(δ′u). (22)

From the preceding paragraph, we deduce that d
du (ug′(u)) ≤ 0. Since g′(u) =

−f ′(1 − u), we get
d

dt
((1 − t)f ′(t)) ≤ 0, (23)

which concludes the proof. ⊓⊔



circle flower
rsquare

HT ET ST λ-MST HT ET ST λ-MST HT ET ST λ-MST
m

ea
n

er
ro

r

1
10

0.0624 0.0830 0.0665 0.0541 0.1736 0.1364 0.1258 0.1541 0.0734 0.0876 0.0834 0.0529
1
20

0.0411 0.0565 0.0443 0.0378 0.1050 0.0868 0.0756 0.0881 0.0501 0.0572 0.0560 0.0344
1
40

0.0265 0.0367 0.0295 0.0218 0.0621 0.0561 0.0487 0.0519 0.0328 0.0357 0.0368 0.0194
1
80

0.0174 0.0236 0.0185 0.0144 0.0364 0.0369 0.0311 0.0293 0.0204 0.0220 0.0220 0.0127
1

160
0.0115 0.0152 0.0120 0.0086 0.0209 0.0232 0.0190 0.0165 0.0130 0.0137 0.0137 0.0080

1
320

0.0077 0.0098 0.0079 0.0057 0.0128 0.0151 0.0123 0.0098 0.0081 0.0087 0.0084 0.0052
1

640
0.0049 0.0062 0.0049 0.0035 0.0078 0.0095 0.0075 0.0059 0.0052 0.0054 0.0052 0.0032

m
a
x
im

u
m

er
ro

r

1
10

0.5432 0.3887 0.7700 0.2934 1.2836 1.4821 1.2415 1.4821 0.5228 0.3858 0.7496 0.2880
1
20

0.5267 0.2695 0.7840 0.1997 1.1753 1.2028 0.9831 1.1705 0.5201 0.2903 0.7775 0.1775
1
40

0.0353 0.0455 0.0383 0.0306 0.8760 0.9690 0.7803 0.9576 0.2871 0.2049 0.4701 0.1216
1
80

0.2717 0.1232 0.4639 0.0770 0.7220 0.7317 0.8201 0.6496 0.2151 0.1498 0.3270 0.0832
1

160
0.0137 0.0174 0.0142 0.0108 0.6070 0.5023 0.7796 0.3872 0.2671 0.1055 0.4645 0.0597

1
320

0.1395 0.0592 0.2450 0.0383 0.5269 0.3312 0.7931 0.2483 0.1809 0.0763 0.3202 0.0440
1

640
0.0935 0.0422 0.1651 0.0281 0.5018 0.2178 0.7878 0.1479 0.1359 0.0543 0.2452 0.0304

st
d
.
d
ev

.
(1

0
−

3
)

1
10

3.0355 4.6088 4.5854 2.2948 23.13 17.58 15.205 21.56 2.5668 3.7235 3.7503 2.0155
1
20

1.5298 2.0248 2.2530 0.9036 11.41 9.570 8.096 11.025 1.30458 1.7415 1.7463 0.8679
1
40

0.6966 0.8301 0.9847 0.3411 5.05 4.478 4.004 4.480 0.5835 0.7531 0.7707 0.3395
1
80

0.3139 0.3663 0.4497 0.1411 1.939 2.109 1.978 1.4257 0.2796 0.3439 0.3417 0.1488
1

160
0.1382 0.1563 0.1885 0.0568 0.717 0.8563 0.845 0.4638 0.1224 0.1519 0.1405 0.0607

1
320

0.0624 0.0673 0.0809 0.0247 0.296 0.3773 0.3821 0.1653 0.0616 0.0684 0.0674 0.0278
1

640
0.0267 .0281 0.0331 0.0100 0.121 0.1561 0.1537 0.0624 0.0244 0.0286 0.0266 0.0116

Table 2. Asymptotic convergence of mean and maximum absolute error on tangent
estimators and standard deviation of mean absolute error. Best value is shaded. Grid
step vary from 1

10
to 1

640
. The maximum and minimum curvatures of the shapes are

“circle” : κM = κm = 1 , “flower” : κM ≈ 5.8, κm ≈ −26.1, “rsquare” : κM = 100,
κm = 0.

tangent straight smooth corners convexity isotropy mean maximal point
estimator parts parts /concavity error error convergence

λ-MST + + = Yes∗ + ++ ++ Yes

HT = +/− + No − + − No

ET + = + Yes = + + Yes

ST = +/− = No − + − No

(*) For λ functions satisfying conditions of Theorem 1.

Table 3. Comparison of discrete tangent estimators. The λ-MST estimator has an
average behaviour on corners and seems to be the best elsewhere.


