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Abstract

Many contour-based applications rely on the estimation of the geometry of the shape, such as pattern recognition or classification
methods. This paper proposes a comprehensive evaluation on the problem of tangent estimators on digital curves. The methods
taken into account use different paradigms : approximation and digital geometry. In the former paradigm, methods based on
polynomial fitting, smoothing and filtering are reviewed. In the latter case of digital geometry, we consider two methods that
mainly rely on digital straight line recognition [13] and optimization [9]. The comparison takes into account objective criteria such
as multi-grid convergence, average error, maximum error, isotropy and length estimation. Experiments underline that adaptive
methods based on digital straight line recognition often propose a good trade-off between time and precision and that if precision
is to be sought, non-adaptive methods can be easily transformed into adaptive methods to get more accurate estimations.
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1. Introduction

The proper detection of significant features along digi-
tal curves often relies on an accurate estimation of the ge-
ometry of the supposed underlying curve. Local geometric
quantities such as curvature and tangent orientation lead
naturally to the detection of dominant points on digital
curves [22,18]. Moreover some geometric quantities may al-
most be used directly to compute another quantity: tan-
gent estimation provides length estimation by simple inte-
gration. In fact the accurate comparison and estimation of
local geometric quantities on digitized shapes rely on four
tasks:

(1) Find an Euclidean continuous shape as the reference for
a given digitized shape.

(2) Determine the size of the computation window to achieve
the best possible estimation at a given digital point.

(3) Estimate noise or distortion of the digitized curve.
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(4) Compute the result as fast as possible.
The first problem requires additional hypotheses to define
a reference shape for a given digital shape, properties such
as smoothness, compactness, convexity, minimal perimeter
or maximal area are common choices. For instance, given
a digital disk, a reasonable hypothesis is that the underly-
ing shape is an Euclidean disk, and not some kind of gears
with small cogs. The second problem involves the adapt-
ability of computation windows to the local geometry of the
shape, e.g. curves with huge curvature variations require
different sizes for the computation windows. Sizes of com-
putation windows are known to have an important impact
on the multi-grid convergence (see [5]). The third problem
is a common problem which is efficiently addressed in the
continuous world, but lacks proper definitions in the digital
world. This entails that continuous methods are generally
preferred for the extraction of geometric quantities. The
fourth problem arises when the computation windows are
too large, while narrowing their sizes has a direct impact
on the precision of the method. These issues are related to
many interesting topics on digital geometry such as multi-
grid convergence [3,11], digitization problems and topology
issues [15], combinatorial properties of digitized shapes [1]
and new models for digital straight segments taking into
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account some distortions [6].
As mentioned earlier usual geometric estimators are

based on approximation techniques in the continuous Eu-
clidean space. They forget the particularities of subsets of
the digital plane. Doing so, they address problem (3) con-
sidering that it is the main issue. The noise is then handled
by tuning some external parameters. In fact the external
parameters often reduce to the choice of the size of the
computation window, handling problems (2), (3) and (4)
at the same time with a trade-off. The continuous methods
can be of various type with different aims with respect to
the digital curve: interpolation, reconstruction or fit. The
choice of the underlying curve in problem (1) is then often
made explicitly with the method itself, e.g. using cubic
splines to interpolate points along a digital curve lead to
degree three polynomials as the underlying curve. The
numerical methods required to extract the chosen solution
can be costly and may even require parameters themselves.
This is particularly true when the chosen underlying curve
is the solution of a non trivial optimization problem. As a
result problem (1) and (2) have a direct impact on (4).

On the contrary, standard digital estimators based on
digital straight segment recognition estimate local geomet-
ric quantities like tangent or curvature with an adaptive
computation window and, at the same time, they do not re-
quire any external parameters [7,12,24]. Recently, an eval-
uation of digital tangent estimators was performed in [12]
and the λ-MST was shown to outperform the others on
many criteria like precision, maximal error, isotropy, con-
vergence, convexity on ideal digital shapes (with very little
noise). The tangent orientation is determined using digital
straight segment recognition, which entails a computation
window adapted to the local curve geometry (addressing
problem (2)) and without assumptions on the underlying
curve (addressing problem (1)). For large families of shapes
the average size of the computation window is known and
is roughly in Θ

(

h−1/3
)

where h is the grid step (see [5] for
technical proofs). As a result, the asymptotic convergence
— or multi-grid convergence — of the λ-MST estimator is
proved for smooth and convex curves [13]. This estimator
is also the best among digital ones at rough scale [12,13].
Its computation on the whole digital curve, i.e. the compu-
tation of the tangent orientation field, may be done in time
linear with the number of digital points (optimal time, ad-
dressing (4)). This estimator has already been shown to be
as good as standard continuous methods [4].

This paper aims first at describing objective criteria for
the tangent estimation on various suitable representatives
types of digital curves. Among them we consider the prob-
lem of detecting false concavities on the estimation of con-
vex shapes. Time benchmarks are also taken into account
for the computation of the tangent orientation field. More-
over the multi-grid convergence criteria are also considered
using various aspect: the average absolute error is consid-
ered but also the maximal absolute error. Furthermore we
use criteria mixing the preceding ones to better reflect the
possible trade-off expected when estimating the tangent

orientation field.
Besides, our aim is not only to compare estimators but

also to see if they can benefit from one another. This is
the case here where we show how non-adaptive methods
can become adaptive to the local geometry using digital
straight segment recognition. The obtained improvements
are illustrated experimentally and discussed. Moreover the
use of our digital primitive allow us to prove the multi-grid
convergence for one of the proposed adaptive method us-
ing the Gaussian derivative. All these experiments indicate
that there is no estimator outperforming the others on ev-
ery objective criteria.

The paper is organized as follow. First we describe the
objective criteria that will be used to discriminate the tan-
gent estimators and the suitable shapes that should be used
to run our experiments. We also elaborate on our frame-
work to explain how do we compare the estimated values
with the expected ones. In Section 3 we review the con-
tinuous tangent estimator based on approximation and at
a later time the digital ones. In Section 4 we conduct ex-
periments following the objective criteria proposed in Sec-
tion 1. An objective criterion called AAEBT taking into
account precision and time computation at the same time
shows that techniques based on digital straight segments
are very appealing. In Section 5, we propose improvements
for the non-adaptive methods, which are underlined experi-
mentally, especially regarding the precision criteria. For one
them, its multi-grid convergence is proved. These experi-
ments clearly show how much the precision improves when
the classical methods use an adaptive neighborhood and of-
ten yield a very good possible precision. However these pre-
cision improvements have a cost in terms of time and these
hybrid estimators would be considered average regarding
the AAEBT criterion. Our conclusion is thus that digital
straight segments are a very powerful tool to analyze locally
the geometry of digital curves and to get the proper adap-
tive computation windows for estimating the characteris-
tics of the underlying shape without a priori knowledge.

2. Criteria and Shapes Used for Comparison

In this section we elaborate on the different objective cri-
teria chosen for this study and what they reflect. As a conse-
quence we describe the different test shapes corresponding
to our chosen objective criteria. The experimental protocol
is also described.

2.1. Objective Criteria

In a general context, the efficiency of an estimator is
mainly measured by its precision, that is the less difference
with the theoretical value, the better. Due to problem (1),
one of the best way to measure the efficiency of an esti-
mator is to use the multi-grid convergence: that is, for a
given shape, to measure the deviation between the theoret-
ical value and the estimated value as a function of the in-
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verse of the grid step. This allows us to answer experimen-
tally to the question “Does a finer resolution yields a better
precision ?”. As experiments cannot be conducted on all
shape, representative ones have to be taken into account.
Since very large resolutions are considered, their digitiza-
tions will mainly depend on their curvature. Thus we need
shapes that would reflect the possible curvature variations.
As a consequence choose to focus on constant curvature,
smooth variations between two positive bounds and strong
variations between opposite signed bounds. On the other
hand the precision of the estimator is measured with the
average absolute error (AAE) or the maximal error (ME)
on the whole digital shape. These two criteria reflect the
general and the worst behaviour of the estimator. Although
we do not consider noise in this study, we consider for each
resolution fifty random shifts of the center of the Euclidean
shape (in a square whose side equals that of the grid step)
before its digitization so as to introduce some small varia-
tions in the considered digital shapes.

Other objective criteria for estimators address general
properties of the shape. Of course, as estimators work on
digitizations, not all the properties of the underlying shape
are meaningful. Nonetheless we consider that the convexity
is a remarkable property that should be kept by estimators,
as the digitization preserves it. As a result if an estimator
creates false inflexion points or concavities on the digitiza-
tion of a convex shape, it is considered as a severe defect.
Furthermore properties of a local estimator in the digital
space compared to the expected properties in the Euclidean
space are relevant for discriminating estimators. Thus prop-
erties such as isotropic behaviour have to be evaluated in
order to choose reliable estimators. Such evaluation is to
be conducted on the most regular shape possible regarding
the directions in the Euclidean plane. Let us also note that
in Euclidean geometry many geometric quantities are re-
lated to each other, for example the tangent along the curve
leads directly to length computation by integration. As a
result the tangent estimation should lead to good length
estimation provided the isotropic behaviour of the estima-
tor does not penalizes it too much. Thus the shape chosen
for the evaluation of the perimeter has to minimize the in-
fluence of the isotropic behaviour and has to be as regular
as possible in the possible direction of the Euclidean space.

The other usual criterion used for comparison is the time
spent on computation. This quantity can in fact also be
measured as a function of the grid step, enabling the formu-
lation of mixed criteria taking into account precision and
time. The product of the AAE by the time spent on com-
putation lead to another objective criteria for the perfor-
mance of an estimator, called AAEBT, balancing precision
and time as a function of the inverse of the grid step.

2.2. Test Shapes and Experimental Protocol

The considered shapes reflect the various comparison
needs for the evaluation of the tangent estimators. As men-

Fig. 1. Borders of Gauss digitizations with grid step equal to 0.02
for the proposed test shapes. (Left) Shape is a circle of radius 1.
(Middle) Shape is an ellipse with half-great axis equal to 1.0 and
a half-small axis equal to 0.7, rotated by 0.2 radian. (Right) Shape
is a flower with five branches, outer radius 1.0 and inner radius 0.4
rotated by 0.2 radian.

tioned above, we chose curves from their curvature as fol-
lows: for the constant curvature we choose a circle, for
smooth variations of the curvature we choose an ellipse and
for strong variations with sign changes we choose a flower.
More precisely the chosen ellipse has a curvature varia-
tion between 0.49 and 1.42857, and the flower between 5.8
and -26.1, with five inflexion points. The defects of estima-
tors regarding the convexity analysis are done on the bor-
der of the digitization of a disk, near points corresponding
to a quadrant change. For the isotropy behaviour and the
perimeter estimation, the best possible shape is the circle,
as it is the most regular shape in all directions of the Eu-
clidean plane. Nonetheless for this experiments the number
of random shifts of the center of the shape before the dig-
itization process will be increased to 100. Indeed, from a
theoretical point of view there is essentially 4π2R2 differ-
ent Gauss digitizations of a disk of radius R (see [8]), with
grid step equals to one, thus requiring more variations in
order to have a representative set of digital disks.

Of course we do not work directly on Euclidean shapes
but on the border of digitized shapes. We use the Gauss
digitization (that is the intersection of the Euclidean shape
with the digital plane, up to a factor representing the grid
step) and then extract the digital border using cell decom-
position. Border of the proposed digitized shapes are illus-
trated on Fig. 1.

In the remaining of the paper the considered digital
curves are digital 4-curves, that is a 4-connected closed se-
quence of points in Z

2 such that each of them has exactly
two 4-neighbors: a predecessor and a follower (given an
orientation). Such curves arise naturally from the cellular
decomposition (putting it simply the inter-pixel contour)
of the Gauss digitization of simple Euclidean objects, pro-
vided they are well-composed [14]. In our framework we
consider that the digital border of a shape is made of linel
(which can also be seen as the so-called Freeman moves),
that is the side of a square whose center has the coor-
dinates of a digital point. The obtained digital curve is
denoted C and its elements are ordered increasingly with
a counterclockwise order, Ci denotes the i-th linel of the
digital curve or its centroid and Ci,j is the digital path
from the i-th linel to the j-th linel.

On the digital border of a shape, for a given linel/point
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it is difficult to find a point on the continuous border to
compare with. When dealing with the absolute deviation
of the tangent orientation, our theoretical value is obtained
by averaging the theoretical orientations that lies on the
border of the continuous shape within the projected end-
points of the linel of interest (from the origin); see Fig. 2
for an illustration. This enable us to compare the estimated
value with a representative theoretical value for the linel of
interest. On the other hand, when dealing with the maxi-
mal absolute deviation on a linel, our theoretical value is
the one that maximize the absolute error within the pro-
jected endpoints of the linel of interest on the border of the
continuous shape. Again this method allows us to have a
representative maximal error. Such methods are much eas-
ier when using polar coordinates. Eventually the tangent
orientation at a given point will be measured as the angle
between the vector (1, 0) and the one obtained from the
estimation of the derivative at the given point.

Fig. 2. Illustration of the comparison between estimated value and
theoretical value. The border of the underlying curve is drawn with
solid line, points of the digital shape are marked with a black cross.
The border of the digital shape is drawn with dashed line and the
linel of interest is drawn as a segment with bracket. The point of
estimation is drawn with a small circle in black, in blue the points
chosen for computing an average value from the theoretical values
of the underlying curve.

3. Continuous and Discrete Tangent Estimators

This section presents the three continuous methods and
the two discrete methods that are considered in this study.

3.1. Continuous Estimators

The three continuous method used need an external pa-
rameter to achieve the best possible accuracy: the size of
the computation window.

3.1.1. Least square methods using polynomials
The aim of these methods is to find a polynomial of

finite degree which minimizes a positional squared er-
ror from a set of samples. More precisely, let us denote
by (si = (xi, yi))1≤i≤M a set of M samples obtained
from a planar curve parametrized as y = f(x). We
thus seek to minimize the functional E(a0, . . . , aN) =
∑M

i=1

(

yi −
∑N

j=0 ajx
j
i

)2

.

The simplest form of this quantity is when N equals one
and is called a linear regression. In the general case, the
problem can be reduced to a matrix inversion problem. At
least one solution exists and can be efficiently computed

using QR factorisation [21]. For small degree polynomials,
direct computation is possible as it involves square matri-
ces of order two and three. It is not compulsory that the
polynomial be the supposed underlying curve itself. It can
also be its local Taylor expansion as explained in [16] for
implicit parabola fitting, an approach which is generalized
by the n-jets of [2].

Once the optimal polynomial for E is determined, the
coefficient associated to its X monomial may be used to
estimate the tangent orientation. We naturally focus on
low order polynomials. That is the linear regression (LR,
Eq. (1)), implicit parabola fitting (IPF, Eq. (2)), and ex-
plicit parabola fitting (EPF, Eq. (3)). When used for ap-
proaching the tangent orientation at the point of interest
C0, considered as the origin, with a computation window
ranging from C−q to Cq, those three methods give very
similar results (see Figure 3).

 3.05

 3.1

 3.15

 3.2

 3.25

 3.3

 1.5  1.53  1.56  1.59  1.62  1.65  1.68

ta
n

g
e

n
t 

o
ri
e

n
ta

ti
o

n
 

polar
angle

Th
EPF q=12
IPF q=12
RL q=12

 0.001

 0.01

 0.1

 1

 10  100  1000

A
A

E
 o

f 
ta

n
g

e
n

t 
o

ri
e

n
ta

ti
o

n

inv. of grid step

IPF q=8
EPF q=8

LR q=8
IPF q=16

EPF q=16
LR q=16
IPF q=32

EPF q=32
LR q=32

Fig. 3. We represent the tangent orientation estimated with IPF,EPF
and LR methods. The test shape is a circle of radius 1. Computation
window equals 2q+1. (Left) Grid step equals 0.01, we focus on a part
of the shape, x-axis represents the polar angle, the y-axis represents
the orientation of the tangent. (Right) The plot is in log-space and
represent the AAE between true tangent and estimated tangent as
a function of the grid step. For each grid step 50 experiments are
made with a random shift on the center of the shape.

ELR(a, b) = E(a, b, 0, . . .) (1)

EIPF (a, b) = E(0, a, b, 0, . . .) (2)

EEPF (a, b, c) = E(a, b, c, 0, . . .) (3)

A refinement of this method is the weighted least square
fitting, where each sample has a variable importance in the
fitting process: the heavier the weight, the more important
the fit. However, it is not easy to find meaningful weights
within our context.

When used with 4-connected contour, the use of indepen-
dent coordinates is a better solution (denoted ICIPF for im-
plicit parabola fitting using independent coordinates), as it
does not require to estimate the orientation of the samples.
The fit is done on each coordinates with respect to a given
parametrization of the curve. Usually centered windows are
considered: C0 is the point of interest, M = 2q+1 is the size
of the computation window going from C−q to Cq. When
using independent coordinates, the arc-length from C0 to
Ci, denoted li is computed as li =

∑i−1
k=0 d1(Ck, Ck+1) if
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i > 0 and −
∑i−1

k=0 d1(Ck, Ck+1) otherwise. 1 We are thus
interested in minimizing the two following quantities:

∑M
i=1

(

xCi −
∑N

j=0 aj l
j
i

)2

∑M
i=1

(

yCi −
∑N

j=0 bjl
j
i

)2

We hence use the preceding method with the under-
lying curve parametrized as (x(s), y(s)). This a priori
parametrization can be iteratively refined using the length
estimator proposed earlier-on, denoted ITICIPF. Unfortu-
nately, this method does not yield better result, even on
a circle (constant curvature) or the flower (fast curvature
variation) as shown on Fig. 4. As a result we will only con-
sider the ICIPF method for the comparison with the other
estimators.
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Fig. 4. Plot using the iterative version of ICIPF with ten iterations
and the ICIPF. (Left) The test shape is a circle digitized for a grid
step equal to 0.01. The iterative ICIPF method using the length
estimation is shown not to be better than the ICIPF method, giving
very similar values regarding the AAE (0.014855 for the ICIPF and
0.017265 for ITICIPF) and also regarding the ME (0.059590 for the
ICIPF and 0.061704 for ITSIPF). (Right) Multi-grid convergence
of the ICIPF and the iterative ICIPF with ten iterations, the test
shape is a flower, experiments are run in the conditions described
earlier-on. As shown on the plot there is little difference between the
two methods.

3.1.2. Smoothing and Filtering
The use of Gaussian filters is a common technique for

improving the quality of noisy images. This filter can also
be used when trying to analyze a digital curve, and has
been used in the pattern recognition community for al-
most 30 years. It is essentially a weighted averaging over
a finite window. The obtained smoothed continuous curve
is considered to be a good approximation of the underly-
ing curve. Its derivatives are easily computed yielding ge-
ometric quantities of the first and second order. This re-
construction has one major drawback, which is the choice
of the parameter σ. This tuning parameter is often chosen
for the whole curve, but it is not satisfying if the curve has
huge curvature variations, entailing then over-smoothing
for some region and under-smoothing for others. As a re-
sult techniques using scale-space were proposed [20,25] to
achieve a better localization of the dominant points across
the different σ values. From a discrete point of view we will
consider that the estimated derivative at the digital point

1 d1 denotes the distance obtained from the || · ||1 norm.

C0, say Ĉ′
0, is obtained as: Ĉ′

0 =
∑q

i=−q G′
σq

(−i)Ci, with
σq = q

3 and where G′
σ(t) is the first derivative of the Gaus-

sian function Gσ(t) = 1
σ
√

2π
exp

(

−t2

2σ2

)

.

We also consider an adaptation of the median filter
commonly used in image processing. This method was
proposed in [19] and consists in choosing the median ori-
entation among the following 2q vectors centered on Ci:
(Ci−qCi, . . . ,Ci−1Ci,CiCi+1, . . . ,CiCi+q) as illustrated
on Fig. 5.

Fig. 5. Illustration of the median filter method. Boxed point is Ci

and q = 6. Thick arrow represents the chosen tangent orientation at
point Ci.

3.2. Discrete Methods

This section briefly presents the discrete tangent estima-
tors chosen for this study. The first of them, the λ-MST
estimator, relies on DSS recognition, while the GMC esti-
mator rely on curvature through optimisation process.

3.2.1. The λ-MST tangent estimator
The λ-MST tangent estimator is based on the digital

straight segments of a digital curve, and more particularly
the set of inextensible digital straight segments, also called
the set of maximal segments. At a given point, this method
considers the set of maximal segments passing through the
point of interest (see Fig. 6), and estimates the tangent as
a convex combination of the orientation of each of these
maximal segments. The weights are parametrized by the
distance from the point of interest to their center point and
further tuned with a function λ. In this study, the function
λ is the triangle function. This choice guarantees that the
λ-MST estimator satisfies the convexity/concavity prop-
erty 2 , as shown in [13] (see Theorem 8). This estimator
also has a good isotropic behaviour, it is uniformly multi-
grid convergent and the computation of the tangent field
can be achieved in time linear with respect to the number
of curve points, see [13] for the detail of this properties.

3.2.2. The GMC Estimator
The Global Min-Curvature [9] (GMC for short) method

is based on a global optimization scheme. Given a digi-
tal shape, it finds a continuous shape which minimizes its
squared curvature along its boundary, within a family of
shapes with the same digitization as the input digital shape.
In a way, this method tries to find the smoothest shape

2 Estimated tangent directions are monotone for digitization of con-
vex shapes.
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Fig. 6. Set of maximal segments passing through a point on a portion
of the digital border of a shape.

whose digitization is the input data, and claims the geome-
try of this shape provides good geometric estimates for the
digital shape. More precisely, the optimization process is
casted in the space of tangent directions, where the shape
boundary is represented by its tangent direction as a func-
tion of the curvilinear abscissa. There, each maximal seg-
ment defines local bounds on the possible tangent direc-
tions, in order to ensure that the shape has approximately
the same Gauss digitization as the input shape. An iter-
ative relaxation scheme numerically extracts the optimal
shape within these bounds. After that, the computation of
the tangent estimation is straightforward.

4. Experimental evaluation

This section gathers the experiments done with the test
shapes described earlier-on, using the criteria proposed in
Section 2. The criteria chosen for the evaluation made here
on the various estimators is, to our knowledge, as compre-
hensive as possible.

4.1. Simple Objective Criteria

We here review the criteria that do not need multi-grid
analysis to reveal the properties of the estimators.

4.1.1. Concavity/Convexity Detection
When we consider the digitization of convex shapes, the

analysis of its border with a tangent estimator should not
lead to false concavity/convexity detection. Though con-
vex shapes can be complicated, we have chosen to show
that even on a simple shape such as the circle, whose dig-
itization is always digitally convex 3 for grid steps smaller
than a constant value, false detection may occur. As shown
on Figure 7, for fixed-sized estimators these defects appear
very clearly near a quadrant change as huge signed varia-
tions of the tangent orientation.

The false convexity/concavity detection can be alleged
to a wrong size of the computation window and quadrant
changes are not the only parts with such problems : as bor-
ders of digitized shapes have straight parts, tangent esti-

3 That is 4-connected and equal to the Gauss digitization of its
convex hull.

False Concavities Detection On a Digitized Disk
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Fig. 7. Test shape is a circle of radius 1, digitized with a grid step
equal to 0.01. Tangent orientation is plotted as a function of the
polar angle. The x-axis represents the polar angle, the y-axis repre-
sents the orientation of the tangent and the size of the computation
window equals 2q + 1. (Left-top) Tangent orientation obtained us-
ing convolutions by the Gaussian derivative σq . (Right-top) Tangent
orientation obtained using implicit parabola fitting with indepen-
dent coordinates. (Left-bottom) Tangent orientation obtained using
the median filtering. (Right-bottom) Tangent orientation using the
λ-MST estimator and the GMC estimator.

mators with small sizes of computation window will esti-
mate either 0, π/2, π or 3π/2 on such parts. Experimentally
on digitized circles it seems that if the size of the compu-
tation window exceeds some value being a function of the
radius and the grid step, false convexity/concavity points
disappear or at least the variations become smaller and
smaller. More precisely, this phenomenon is related to the
maximal curvature of the shape under study. This defect
can be clearly considered as a huge drawback of fixed-size
estimators which cannot be overcome unless the maximal
curvature of the shape is known a priori. As a result tan-
gent estimators using adaptive window size or those taking
into account the global geometry of the digitized shape be-
have much better, with the GMC estimator being clearly
the best on this point.

4.1.2. Isotropy Behaviour
As the digital plane is not isotropic, it is important to

check if the methods used to extract geometric information
are heavily sensitive to the same problem. To achieve such
a study we have chosen to use the circle as a test shape,
digitized for a small enough grid step so that its digital
boundary is close enough to that of a circle. As shown on
Fig. 8, fixed-size estimators have bigger errors than the two
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Isotropy Behaviour On a Digitized Disk
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Fig. 8. Test shape is a circle of radius 1, digitized with a grid step
equal to 0.01. For this experiment 100 random shifts of the center
of the shape were performed. We plot the absolute average devia-
tion and maximal deviation between estimated tangent orientation
and theoretical tangent orientation in log-scale on the y-axis on 23
angular sector covering π/2. Values are plot as a function of the
polar angle and the size of the computation window equals 2q + 1.
(Left-top) Tangent orientation obtained using convolutions by the
Gaussian derivative σq . (Right-top) Tangent orientation obtained
using implicit parabola fitting with independent coordinates. (Left-
-bottom) Tangent orientation obtained using the median filtering.
(Right-bottom) Tangent orientation using the λ-MST estimator and
the GMC estimator.

digital methods. Moreover the Gaussian derivative and the
Matas median filtering technique are not isotropic at all as
their behaviour is different for points with a polar angle
near kπ/4 compared to the other points, this remark stands
both for the average absolute error and the maximal abso-
lute error. On the other hand the independent coordinates
implicit parabola fitting is more isotropic as the poor be-
haviour near quadrant and octant changes is not observed.
Eventually the λ-MST method and the GMC method be-
have more isotropically and have a smaller error both in
average absolute and maximal absolute error. Moreover the
GMC estimator outperforms in terms of precision the λ-
MST (almost by a factor 5!). This clearly reflects that meth-
ods using the whole shape geometry are likely to give the
best results.

4.1.3. Perimeter Estimation Using Tangent Orientation
The computed curvilinear abscissa obtained from the

summation of the elementary steps on digital curve is a
poor estimation (see [23] for a proof of non convergence for
length estimators using fixed-size windows on Euclidean
segments). We here use the tangent estimation to compute

Table 1
Evaluation of the average absolute error of perimeter using the

LθT AN
method on the digitization of circle of radius 50 with a grid

step equal to one. For this experiment 100 random shifts of the cen-
ter of the shape were performed. The estimators θTAN used are the
Gaussian derivative, the implicit parabola fitting with independent
coordinates, the Matas median filtering technique and the iterated
implicit parabola fitting with 10 iterations. The size of the compu-
tation window spans from 1 to 64 by power of two. We have also
computed the result for the λ-MST and the GMC estimators.

Win.size GD ICIPF MATAS ITICIPF λ-MST GMC

q=1 30.6724 30.6724 27.14933 29.67998

0.50378 0.02553

q=2 26.9072 2.35272 11.32574 4.032775

q=4 6.46475 0.40573 3.622088 0.897381

q=8 0.79856 0.11547 1.495153 0.181935

q=16 0.12082 0.06791 1.336123 0.070328

q=32 0.05776 0.08221 1.336123 0.145093

q=64 0.13503 0.24110 1.336123 0.462371

Absolute Perimeter Deviation On a Digitized Disk

Criterion GD ICIPF MATAS λ-MST GMC

Perimeter + + - = ++

the length of a linel of a digital curve and the perimeter
by simple summation. We use the method proposed in
[10], Chap. 10, Par. 2.4. This approach consider the lo-
cal length estimation as the dot product of the estimated
normal and the normal of the current linel toward the
exterior. For short, if θTAN (Ci) is the estimated normal
at point Ci, the estimated length, denoted LθTAN (Ci),
equals | cos(θTAN (Ci))| if the associated linel is horizontal,
| sin(θTAN (Ci))| otherwise. We evaluate the absolute error
of the perimeter, the chosen test shape is a circle of radius
50, digitized for a grid step equal to 1 with 100 random
shifts of the center. Results are shown on Table 1. Perime-
ter evaluation emphasize that there exists a best window
size which is a function of the curvature of the border of
the shape. The Gaussian derivative and the independent
coordinates implicit parabola fitting present good results
for particular window sizes, however the Matas median fil-
tering technique gives poor results : its smallest error is 10
times that of the GD or the ICIPF method. Surprisingly
the λ-MST gives average results and the best estimation is
clearly made by the global min-curvature estimator, its er-
ror being approximately .000081 of the expected perimeter.

4.2. Multi-grid Analysis

We here first present various experiments regarding the
experimental multi-grid analysis of the maximal absolute
error (denoted ME) and the average absolute error (de-
noted AAE) of tangent orientation on shapes with different
curvature variations. On all these experiments, estimators
using fixed-size windows clearly appear to be not multi-grid
convergent. However using various window size (spanning
from 3 to 257) we can infer the behaviour of the fixed size
estimators as if they were adaptive, using the optimal win-

7



Multi-Grid Convergence On Digitized Disks : Maximal Absolute

Error
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Fig. 9. Multi-grid analysis in log-space : x-axis is the inverse of the
grid step, y-axis is the maximal absolute error between theoretical
tangent and estimated tangent, the shape of reference is a circle. At
each grid step 50 experiments are made and center is shifted ran-
domly. (Left-top) Estimator is the Gaussian derivative. (Right-top)
Estimator is the independent coordinates implicit parabola fitting.
(Left-bottom) Estimator is the Matas median filtering technique.
(Right-bottom) Estimators are λ-MST and Global Min-Curvature,
their respective convergence rates are suggested with solid lines.

dow size at each grid step.
We are first interested in the ME of tangent orientation

on the digitizations of a circle, illustrated on Fig. 9. Regard-
ing the maximal absolute error, it is clear that the both of
the discrete methods seems uniform multi-grid convergent,
the global optimisation method GMC seems to converge in
O(1/h) which is much faster than the λ-MST which seems
to converge in O((1/h)1.1/2). The very good results of the
GMC estimator are probably due to the fact that the un-
derlying test shape has constant curvature, which makes
easier the optimisation process. It is also clear that fixed-
size window estimators are not multi-grid convergent even
if for each resolution, a suitable window size can be found,
in the case of the Gaussian derivative the best reachable
precision is in O((1/h)2.5/3). Let us remark that among the
fixed-size estimators the Matas median filtering technique
has the poorer behaviour.

Let us consider now the AAE of tangent estimation on an
ellipse, this time the shape has a smooth curvature variation
within positive bounds, results are presented on Fig. 10.
The fixed size windows estimators are more or less equiv-
alent, except for the MATAS estimator which seems to be
slightly less precise. Surprisingly the GMC estimator is not

Multi-Grid Convergence On Digitized Ellipses : Average Absolute

Error
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Fig. 10. Multi-grid analysis in log-space: x-axis is the inverse of the
grid step, y-axis is the average absolute error between theoretical
tangent and estimated tangent, the shape of reference is an ellipse.
At each grid step 50 experiments are made and center is shifted
randomly. (Left-top) Estimator is Gaussian derivative. (Right-top)
Estimator is the independent coordinates implicit parabola fitting.
(Left-bottom) Estimator is median filtering. (Right-bottom) Estima-
tor are λ-MST and Global Min-Curvature their respective conver-
gence rates are suggested with solid lines.

as efficient as on the circle, even if it still seems multi-grid
convergent. The possible reason being the curvature vari-
ations of the real underlying shape, indeed the GMC esti-
mator will consider that the underlying shape which min-
imizes its squared curvature is not an ellipse. As a result
the λ-MST seems to be the better choice for curves with
smooth curvature variations within positive bounds.

Eventually we consider the AAE of tangent estimation on
a test shape with huge curvature variations within opposite
signed bounds : the flower, see Fig. 11 for the results. Even
though the test shape has much more abrupt curvature
variations, the results for the fixed-size estimators are very
similar to the ones obtained with the ellipse in terms of
best precision. However we can also clearly see that if the
computation windows does not suit the geometry of the
shape then huge errors will be produced. For example with
a window size of 257 points, the Gaussian derivative has an
average error which equals almost 1 for grid step 1/10, 1/20,
1/40 and 1/80. For smaller grid steps the error diminishes
but is still above the error of all the other window sizes.
Same remark applies to the ICIPF estimator and the Matas
median filtering technique. Again we also observe that the
discrete methods seems multi-grid convergent, the λ-MST
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Multi-Grid Convergence On Digitized Flowers : Average Absolute

Error
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Fig. 11. Multi-grid analysis in log-space: x-axis is the inverse of the
grid step, y-axis is the average absolute error between theoretical
tangent and estimated tangent, the shape of reference is a flower. At
each grid step 50 experiments are made and center is shifted ran-
domly. Left-top : The estimator is the Gaussian derivative. (Right–
top) The estimator is the independent coordinates implicit parabola
fitting. (Left-bottom) The estimator is the median filtering tech-
nique. (Right-bottom) The estimators are the λ-MST and the GMC,
their respective convergence rates are suggested with solid lines.

being the better of the two.
The previous experiments clearly show the main problem

when estimating geometric quantities on digital shapes :
there is a limit to the best reachable precision which is a
function of the size of the digital object under study.

Let us now recall a criterion introduced in [4] to com-
pare local tangent estimators, called AAEBT. This crite-
rion measure the product of the average absolute error of
tangent direction estimation by the computation time for
the tangent field on the whole curve, and is measured for
each grid step. The aim of this estimator is to penalise esti-
mators which make huge errors on average even if the time
required for the computation of the tangent field is linear
with the inverse of the grid step. Moreover this criterion
also penalizes multi-grid convergent estimators that require
too many computations. Estimators that have an AAEBT
which follows an asymptotic law in O((1/h)α) with 0 <
α < 1 are by definition multi-grid convergent. As problem
(2) penalizes estimators using fixed size windows on curves
with huge curvature variations we ran the experiments re-
garding the AAEBT on digitizations of a disk, with 50
random shifts of the center of the shape. The experiments
on Figure 12 clearly show that criterion AAEBT for the

Asymptotic Behaviour : Average Absolute Error By Time on Circle
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Fig. 12. Test shape is a circle of radius 1, the x-axis is the inverse
of the grid step. We represent the time spent on computing the
tangent field multiplied by the average absolute error between true
tangent orientation and estimated tangent. Plots are drawn in the
log-space. For fixed size estimators, their asymptotic law seems to
be linear with the inverse of the grid step after some rank. For the
λ-MST estimator, the asymptotic law seems to be in O

(

( 1

h
)1/3

)

and in O
(

( 1

h
)0.34

)

for the GMC estimator. (Top-left) Estimator is

the Gaussian compared to the λ-MST estimator. (Top-right) Esti-
mator is the implicit parabola fitting with independent coordinates
compared with the λ-MST estimator. (Bottom-left) Estimator is the
Matas median filtering technique compared with the λ-MST estima-
tor. (Bottom-right) Estimator is the global min-curvature estimator
compared with the λ-MST estimator.

fixed-size window estimators becomes linear with the in-
verse of the grid step after some rank, since they reach their
best achievable precision. However, judging from the exper-
iments, the λ-MST estimator has a much better AAEBT
which seems to be in O((1/h)1/3). This behaviour is consis-
tent with the average absolute error of the tangent orienta-
tion in O(h2/3) and the computational cost in O(1/h) (see
[4] for time experiments and [13] for proofs). The GMC esti-
mator seems experimentally to be in (( 1

h )0.34)), but has an
AAEBT which is at about 70 times the one of the λ-MST,
indicating that the global optimization scheme is costly
compared to the digital straight segment recognition.

4.3. Improving Continuous Estimators Using Fixed-size
Windows

Preceding experiments have shown that to achieve
multi-grid convergence, the size of the computation win-
dow should increase with the inverse of the grid step. Ex-
periments using a circle as a test shape with the Gaussian
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Size of Computation Window Required to Reach Best Accuracy for

Average Absolute Error on Circle
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Fig. 13. (Left) Suggested best possible average absolute error with

the Gaussian derivative estimator as being some O
(

( 1

h
)5/6

)

, with

parameter σ = (2q + 1)/3. The test shape is a circle of radius one.
(Right) The suggested size of the computation window to achieve

best possible accuracy is in O
(

( 1

h
)1/2

)

in the case of a circle of
radius one and the Gaussian derivative estimator.

derivative estimator, show that its best possible accuracy
is in O(h5/6) provided the size of the computation window
follow O((1/h)1/2) as shown on Figure 13.

Unfortunately, we do not know any digital primitive
growing at such a speed though we believe that the digital
length of circular arcs should follow a O((1/h)1/2) law,
yielding the desired computation window to reach the best
possible accuracy. Nonetheless the maximal segments can
be used to propose new computation windows for fixed-size
estimators. To define them let us introduce the functions
B(·) and F (·). For a point Cj on the border of a digital
shape, B(Cj) is the point Ci, i < j with the smallest index
i possible such that Ci,j is a digital straight segment. Sim-
ilarly F (Cj) is the point Ck, j < k with the biggest index
k possible such that Cj,k is a digital straight segment. We
propose seven different computation windows:

q1−0 = max(||B(Cj )) − Cj ||1, ||F (Cj)) − Cj ||1),

q1−1 = min(||B(Cj)) − Cj ||1, ||F (Cj)) − Cj ||1),

q1−2 = (q1−0 + q1−1)/2,

q2 =
⌊

q1−0(1/h)1/6
⌋

,

q3 =
⌊

(
∑

i
||MSi||1)/nb(MSi)

⌋

,

q4 =

⌊

(

(
∑

i
||MSi||1)/nb(MSi)

)3/2
⌋

,

q5 = ⌊(||F (Cj)) − B(F (Cj))||1 − 1)/2⌋ .

The q3 window represents the average length of the max-
imal segments on the digital boundary and the q5 window
starts from B(F (PTj)). The defined windows are either
local of global adaptive and their average sizes can be de-
duced since we know the average size of maximal segments
and some of them should grow in O

(

(1/h)1/2
)

; Table 2
gathers the adaptivity and expected sizes.

We focus on the behaviour of the Gaussian derivative
when using the proposed windows, results are presented in
Fig. 14. First of all, on Fig. 14 (a) and (b), regarding the
false concavity detection, H1-0 GD, H2 GD, H3 GD, H4
GD and H5 GD seems to behave correctly, although H5
makes a huge error in its estimation compared with the
others. In fact H5 GD tends to polygonize the digital curve
under study. On Fig. 14 (c), (d) and (e), the poor isotropic

Table 2
Adaptivity of the seven proposed computation windows and their

expected average size as a function of the inverse of the grid step.

Window Adaptivity
Average

Expected Size

q1−0 Local O

(

( 1

h
)
1

3

)

q1−1 Local O

(

( 1

h
)
1

3

)

q1−2 Local O

(

( 1

h
)
1

3

)

q2 Local O

(

( 1

h
)
1

2

)

q3 Global O

(

( 1

h
)
1

3

)

q4 Global O

(

( 1

h
)
1

2

)

q5 Local O

(

( 1

h
)
1

3

)

behaviour of the Gaussian derivative does not benefit from
the proposed windows. The perimeter evaluation gets bet-
ter, being better than the λ-MST except for H1-1 GD and
H5 GD, H3 GD being very close to the best value obtained
with q = 32 and. On Fig. 14 (f) the multi-grid convergence
with the ME on the circle bring the uniform convergence
for all hybrid estimators except for the H1-1 GD. This is
explained by the huge error near quadrant changes already
observed for the false concavities detection. We distinguish
two extremal convergence speeds, one in O(1/h)1/2 with
the H5 GD estimator which is the slowest, the other one in
O(1/h)2.5/3 with the H2 GD estimator which is the fastest.
The convergence rates obtained with the q1−0, q1−2, q3

and q4 window sizes are in-between the ones obtained for
q5 and q2 window sizes. Experimentally, the convergence
rate achieved with the q2 window size is the best reachable
for the Gaussian derivative estimator regarding the ME
on the circle. On Fig. 14 (g) hybrid estimators have two
behaviours, either O(1/h)1/2 for H4 GD and H5 GD, or
O(1/h)2.7/3 for all the others. Eventually on Fig. 14 (h) hy-
brid estimators are between two behaviours: O(1/h)1.23/2

for H4 GD and O(1/h)2.7/3 for H1-x GD and H3 GD.
Moreover the multi-grid convergence of the Gaussian es-

timator using the q5 window can be proved. This is done
in two steps : first we show that our discrete convolution
on the border of a digital straight line behaves as expected,
then we relate our adaptive size of computation window to
the growth of maximal digital straight segments (see [5] for
technical proofs).
Lemma 1 If C is a 4-connected digital straight line

with rational slope a
b then the quantity

Ĉ′

y(k)

Ĉ′

x(k)
with Ĉ′

k =
∑q

i=−q G′
σq

(−i)Ck+i converges toward a
b with an error

term in O
(

1
q

)

.

PROOF. We here consider a and b to be positive in-
tegers. C is a 4-connected digital straight line with ra-
tional slope a

b and thus can be parametrized as Ci =
(

i − ⌊ ai
a+b⌋ + ǫX , ⌊ ai

a+b⌋ + ǫY

)

. The values ǫX and ǫY rep-
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Improvements of The Gaussian Derivative Estimator
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Fig. 14. Improvements of the Gaussian derivative using the proposed
windows. The Estimator called H1-0 GD uses the q1−0 window, H1-1
GD uses q1−1, H1-2GD uses q1−2, H2 GD uses q2, H3 GD q3, H4
GD uses q4 and H5 GD uses q5. (a) & (b) Experiments focus on the
false concavity detection for the hybrid estimators. (c) & (d) & (e)
Experiments focus on the isotropy behaviour of hybrid estimators.
(f) Experiment focuses on the ME for all the hybrid estimators on
the circle. The extreme asymptotic laws are suggested with solid
lines, in O((1/h)2/3) for the H2 GD estimator and in O((1/h)1/2)
for the H5 GD estimator. (g) Experiment focuses on the AAE for the
hybrid estimators on the ellipse. Extremal laws are in O((1/h)2.7/3)
and in O((1/h)1/2). (h) Experiment focuses on the AAE for the
hybrid estimators on the flower. Extremal laws are in O((1/h)2.7/3)
and in O((1/h)1.23/2).

resent the possible shifts of the digital line on the digital
plane.

We have to evaluate I1(q) =
∑q

i=−q G′
σq

(−i)⌊ ai
a+b⌋ and

I2(q) =
∑q

i=−q G′
σq

(−i)i since
∑q

i=−q G′
σq

(−i) = 0.

Let us remark that ai
a+b − 1 ≤ ⌊ ai

a+b⌋ ≤
ai

a+b entails :
∑q

i=−q G′
σq

(−i) ai
a+b−

∑q
i=0 G′

σq
(−i) ≤ I1(q) and I1(q) ≤

∑q
i=−q G′

σq
(−i) ai

a+b −
∑0

i=−q G′
σq

(−i)
As the above summations are approximations of integrals

using the well-known “rectangle method” we can thus infer
that :

−

q
∑

i=0

G′
σq

(−i) =

0
∑

i=−q

G′
σq

(−i) =
K1

q
+ O

(

1

q2

)

q
∑

i=−q

G′
σq

(−i)
ai

a + b
= K2

a

a + b
+ O

(

1

q

)

q
∑

i=−q

G′
σq

(−i)i = K2 + O

(

1

q

)

with K1 = 3
2

√
2

(

e−
9

2 −1

)

√
π

and K2 =
−3

√
2e−

9

2 +erf ( 3

2

√
2)

√
π

√
π

All computation done, since error terms in K1

q are ab-

sorbed in the O
(

1
q

)

both on the numerator and the de-

nominator, we find that the quantity
Ĉ′

y(k)

Ĉ′

x(k)
equals :

K2a
a+b + O

(

1
q

)

K2 −
K2a
a+b + O

(

1
q

) =
a

b
+ O

(

1

q

)

Theorem 2 The Gaussian derivative estimator using the
q5 window is multi-grid convergent on average with an error

term in O
(

(

1
h

)1/3
)

.

PROOF. The q5 window is such that the whole compu-
tation window (2 ∗ q5 +1 points) is contained in a maximal
segment. As a result, Lemma 1 applies, moreover the slope
of maximal segments are known to converge, when the grid
step tends toward 0, toward the slope of the real tangent of
the underlying shape. More precisely, for a point P on the
real underlying shape, the slope of the maximal segments
on the boundary of the digital border at grid step h of the
shape which have a digital point in the disk centered at P of
radius h converge toward the slope of the tangent at point
P with an error term following O

(

h1/3
)

on average. As a

result the error term is bounded by O( 1
1

h
1/3

) + O
(

h1/3
)

,

that is O
(

h1/3
)

.

5. Conclusion

The presented experiments have shown how the digital
tangent estimator compares to classic continuous methods
in the ideal digitization case: they are as precise and they
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Table 3
This table sums-up the criteria used in this study for the various

estimators reviewed. Legend is as follow: (-) poor behaviour, (=)
average behaviour, (+) good behaviour, (++) very good behaviour,
(?) not tested. Greyed cells correspond to best value for regular
estimators and for hybrid estimators.
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.
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i-
g
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d
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n
v
.

A
A

E
o
n

F
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w
er

GD Yes - + No No No

ICIPF Yes = + No No No

MATAS Yes - - No No No

λ-MST No = = O

(

( 1

h
)
1.1
2

)

O

(

( 1

h
)
2

3

)

O

(

( 1

h
)
2.5
3

)

GMC No ++ ++ O (1/h) O

(

( 1

h
)
1.3
3

)

O

(

( 1

h
)
1

2

)

H1-0 GD No - + Yes O

(

( 1

h
)
2.7
3

)

O

(

( 1

h
)
2.7
3

)

H1-1 GD Yes - = No O

(

( 1

h
)
2.7
3

)

O

(

( 1

h
)
2.7
3

)

H1-2 GD Yes - + Yes O

(

( 1

h
)
2.7
3

)

O

(

( 1

h
)
2.7
3

)

H2 GD No - + O

(

( 1

h
)
2.5
3

)

O

(

( 1

h
)
2.7
3

)

Yes

H3 GD No - + O

(

( 1

h
)
2.5
3

)

O

(

( 1

h
)
2.7
3

)

Yes

H4 GD No - + Yes O

(

( 1

h
)
1

2

)

O

(

( 1

h
)
1.23
2

)

H5 GD No - = O

(

( 1

h
)
1

2

)

O

(

( 1

h
)
1

2

)

Yes

Asymptotic Behaviour AAEBT on Circle

GD ICIPF MATAS λ-MST GMC

O
(

1

h

)

O
(

1

h

)

O
(

1

h

)

O

(

( 1

h
)
1

3

)

O
(

( 1

h
)0.34

)

are faster as illustrated by Table 3. This is clearly under-
lined when using the criterion AAEBT. Furthermore, we
have shown how to introduce the adaptive window of dig-
ital estimators into continuous estimators to add adaptive
properties entailing multi-grid convergence and a general
better behaviour. Future works will consider noise in the
evaluation. Although defining noise in the discrete world is
tricky, we plan to use maximal blurred digital straight seg-
ments to take into account distortion in the digital curve.
We also plan to evaluate the recently published Brunet-
Malgouyres estimator [17].
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