

Integral based Curvature Estimators in Digital Geometry

David Coeurjolly¹

Jacques-Olivier Lachaud²

Jérémy Levallois^{1,2}

¹ Université de Lyon, CNRS INSA-Lyon, LIRIS, UMR5205, F-69621, France

> ²Université de Savoie, CNRS LAMA, UMR5127, F-73776, France

DGCI 2013

Table of content

1 Introduction

2 Integral Invariant Theory

3 Integral based curvature estimator in digital space

4 Experimental evaluation

Integral Invariant Theory

Context

Differential quantities...

- for shape analysis, shape matching, ...
- for mathematical modeling of deformable objects (DIGITALSNOW project)

How to make an estimator ?

- Experimental analysis of approximation errors on shapes with known Euclidean values
- Formal proof of convergence
- Computational cost & timing
- ⇒ Multigrid convergence framework

Let us consider a **family** X of smooth and compact subsets of \mathbb{R}^d . We denote **shape** X as $X \in X$, and $D_h(X)$ the **digitization** of X in a d-dimensional grid of resolution h. More precisely, we consider classical Gauss digitization defined as

$$\mathbb{D}_h(X) \stackrel{def}{=} \left(\frac{1}{h} \cdot X\right) \cap \mathbb{Z}^d$$

where $\frac{1}{h} \cdot X$ is the uniform scaling of X by factor $\frac{1}{h}$. Furthermore, the set ∂X denotes the **frontier** of X (i.e. its topological boundary). The *h*-boundary $\partial_h X$ is a d - 1-dimensional subset of \mathbb{R}^d , which is close to ∂X .

Multigrid convergence for local geometric quantities

Definition

A local discrete geometric estimator \hat{E} of some geometric quantity E is *multigrid convergent* for the family \mathbb{X} if and only if, for any $X \in \mathbb{X}$, there exists a grid step $h_X > 0$ such that the estimate $\hat{E}(D_h(X), \hat{x}, h)$ is defined for all $\hat{x} \in \partial_h X$ with $0 < h < h_X$, and for any $x \in \partial X$,

 $\forall \hat{x} \in \partial_h X \text{ with } \|\hat{x} - x\|_{\infty} \le h, |\hat{E}(\mathbb{D}_h(X), \hat{x}, h) - E(X, x)| \le \tau_{X, x}(h),$

where $\tau_{X,x} : \mathbb{R}^+ \setminus \{0\} \to \mathbb{R}^+$ has null limit at 0. This function defines the **speed of convergence** of \hat{E} toward E at point x of X. The convergence is **uniform** for X when every $\tau_{X,x}$ is **bounded** from above by a function τ_X independent of $x \in \partial X$ with **null limit at 0**.

Digital Curvature Estimators

Experimentally convergent in 2D

MDCA estimator [Roussillon, T. and Lachaud, J.O., 2011] Uses the most centered maximal Digital Circular Arc (DCA) to estimate the radius of the osculating circle.

Theoretically & Experimentally convergent in 2D

 ${}^{\Xi}$ BC curvature estimator [Esbelin, H.A. and Malgouyres, R., 2009] convergence speed in $O(h^{\frac{4}{9}})$

Non convergent in 3D

Curvature estimation for digital surfaces based convolutions [Fourey, S. and Malgouyres, R., 2008]

Main contribution

Digital curvature estimators:

- defined in both 2D and 3D
- easy to implement
- multigrid convergence is theoretically proved with an uniform convergence speed in $O(h^{\frac{1}{3}})$
- experimental validation of multigrid convergence

Introduction

Integral Invariant Theory 2

Integration based surface feature

Definition

Given $X \in \mathbb{X}$ and a radius $r \in \mathbb{R}^{+*}$, the volumetric integral $V_r(x)$ at $x \in \partial X$ is given by

$$V_r(x) \stackrel{def}{=} \int_{B_r(x)} \chi(p) dp$$

where $B_r(x)$ is the Euclidean ball (kernel) with radius r and center x and $\chi(p)$ the characteristic function of X. In dimension 2, we simply denote $A_r(x)$ such quantity.

Curvature information with Integration

Lemma [Pottmann2009]

For a sufficiently smooth shape X in $\mathbb{R}^2 \ x \in \partial X$, we have

$$A_r(x) = \frac{\pi}{2}r^2 - \frac{\kappa(X,x)}{3}r^3 + O(r^4)$$

where $\kappa(X, x)$ is the curvature of ∂X at x. For a sufficiently smooth shape X in \mathbb{R}^3 and $x \in \partial X$, we have

$$V_r(x) = \frac{2\pi}{3}r^3 - \frac{\pi H(X,x)}{4}r^4 + O(r^5)$$

where H(X, x) is the mean curvature of ∂X at x.

Local estimators $\tilde{\kappa}_r(x)$ and $\tilde{H}_r(x)$

$$\tilde{\kappa}_r(X,x) \stackrel{def}{=} \frac{3\pi}{2r} - \frac{3A_r(x)}{r^3}, \quad \tilde{H}_r(X,x) \stackrel{def}{=} \frac{8}{3r} - \frac{4V_r(x)}{\pi r^4}$$

Then:

$$\tilde{\kappa}_r(X,x) = \kappa(X,x) + O(r), \quad \tilde{H}_r(X,x) = H(X,x) + O(r)$$

Integral Invariant Theory

3 Integral based curvature estimator in digital space

D. Coeurjolly, J-O. Lachaud, J. Levallois

 $-\pi_h^X(\hat{x})$

Proof process

$A_r(x) \to \widehat{\operatorname{Area}}(\mathbb{D}_h(B_r(x) \cap X), h)$

 $\partial_h X = \partial X$

Convergence of $\hat{\kappa}_r(\mathbf{D}_h(X), \mathbf{x}, h)$ and $\hat{H}_r(\mathbf{D}_h(X'), \mathbf{x}, h)$

Convergence of $\hat{\kappa}_r(\mathbb{D}_h(X), \hat{x}, h)$ and $\hat{H}_r(\mathbb{D}_h(X'), \hat{x}, h)$

D. Coeurjolly, J-O. Lachaud, J. Levallois

 $-\pi_h^X(\hat{x})$

Introduction

Conclusion & Future work

Step 1a - Area/Volume estimation

Given digital shapes $Z \subset \mathbb{Z}^2$, the discrete area estimator by counting at step *h* are defined:

 $\widehat{\operatorname{Area}}(Z,h) \stackrel{def}{=} h^2 \operatorname{Card}(Z)$

If $Z = D_h(X)$:

 $\widehat{\operatorname{Area}}(\mathsf{D}_h(X), h) = \operatorname{Area}(X) + O(h^{\beta})$

- $\beta = 1$ in general convex case [Gauss]
- $\beta = \frac{15}{11} \epsilon$ when the shape boundary is C^3 with non-zero curvature [Huxley1990]

Given digital shapes $Z' \subset \mathbb{Z}^3$, the discrete area estimator by counting at step *h* are defined:

$$\widehat{\operatorname{Vol}}(Z',h) \stackrel{def}{=} h^{3}\operatorname{Card}(Z')$$

If $Z' = D_h(X')$:

 $\widehat{\operatorname{Vol}}(\mathbb{D}_h(X'),h) = \operatorname{Vol}(X') + O(h^{\gamma})$

 $\begin{array}{l} \hline \gamma = 1 \text{ in general convex case [Kratzel1988]} \\ \hline \gamma = \frac{243}{158} \text{ for smoother boundary [Guo2010]} \end{array}$

Conclusion & Future work

LIRIS

15/33

Step 1b - Convergence of volumetric integral estimation

Lemma

$$\begin{split} |\widehat{\operatorname{Area}}(\mathsf{D}_{h}(B_{r}(x)\cap X),h) - A_{r}(x)| &\leq K_{1}'(r) \ h^{\beta}\\ \widehat{\operatorname{Area}}(\mathsf{D}_{h}(B_{r}(x)\cap X),h) &= r^{2}\widehat{\operatorname{Area}}(\mathsf{D}_{h/r}(B_{1}(\frac{1}{r}\cdot x)\cap \frac{1}{r}\cdot X),h/r)\\ |\widehat{\operatorname{Area}}(\mathsf{D}_{h}(B_{r}(x)\cap X),h) - A_{r}(x)| &\leq K_{1}h^{\beta}r^{2-\beta} \end{split}$$

with $1 \leq \beta < 2$.

Proof hints

- Rescale shapes Z to only a unit ball B₁
- True for any point of \mathbb{R}^2

D. Coeurjolly, J-O. Lachaud, J. Levallois

Integral based Curvature Estimators in Digital Geom.

16/33

Step 2a - Integral digital curvature estimators

Convergence of $\hat{\kappa}_r(D_h(X), \boldsymbol{x}, h)$ and $\hat{H}_r(\mathbf{D}_h(X'), \boldsymbol{x}, h)$

Reminder:

$$\tilde{\kappa}_r(X,x) \stackrel{def}{=} \frac{3\pi}{2r} - \frac{3A_r(x)}{r^3}, \quad \tilde{H}_r(X,x) \stackrel{def}{=} \frac{8}{3r} - \frac{4V_r(x)}{\pi r^4}$$

Then, we can define:

Integral digital curvature estimator $\hat{\kappa}_r$ of a digital shape Z at point $x \in \mathbb{R}^2$ and step h:

$$\forall 0 < h < r, \hat{\kappa}_r(Z, x, h) \stackrel{def}{=} \frac{3\pi}{2r} - \frac{3\widehat{\operatorname{Area}}(B_{r/h}(\frac{1}{h} \cdot x) \cap Z, h)}{r^3}$$

Integral digital curvature estimator \hat{H}_r of a digital shape Z' at point $x \in \mathbb{R}^3$ and step h:

$$\forall 0 < h < r, \hat{H}_r(Z', x, h) \stackrel{def}{=} \frac{8}{3r} - \frac{4 \widehat{\mathrm{Vol}}(B_{r/h}(\frac{1}{h} \cdot x) \cap Z', h)}{\pi r^4}$$

Introduction

Step 2b - Convergence when $x \in \partial_h X$

 $\text{Rem: } \tilde{\kappa}_r(X,x) \stackrel{def}{=} \frac{3\pi}{2r} - \frac{3A_r(x)}{r^3} \text{ and } \tilde{\kappa}_r(X,x) = \kappa(X,x) + O(r)$

$$\hat{\kappa}_r(\mathbf{D}_h(X), x, h) - \kappa(X, x)| \le O(r) + 3K_1 \frac{h^\beta}{r^{1+\beta}}$$

Let us set $r = kh^{\alpha}$, then

$$\left|\hat{\kappa}_{\tau}(\mathsf{D}_{h}(X), x, h) - \kappa(X, x)\right| \leq K_{2}kh^{\alpha} + \frac{3K_{1}}{k^{1+\beta}}h^{\beta-\alpha(1+\beta)}.$$

Theorem (Convergence of digital curvature estimator $\hat{\kappa}_r$ along ∂X)

Let X be some convex shape of $\mathbb{R}^2,$ with at least C^2 -boundary and bounded curvature. Then $\exists h_0,K_1,K_2,$ such that

$$\forall h < h_0, r = k_m h^{\alpha_m}, |\hat{\kappa}_r(\mathbf{D}_h(X), x, h) - \kappa(X, x)| \le K h^{\alpha_m},$$

where $\alpha_m = \frac{\beta}{2+\beta}$, $k_m = ((1+\beta)K_1/K_2)^{\frac{1}{2+\beta}}$, $K = K_2k_m + 3K_1/k_m^{1+\beta}$.

 $\alpha_m = \frac{15}{37} - \epsilon \approx 0.405$ when the boundary of X is C^3 without null curvature points, $\alpha_m = \frac{1}{3}$ otherwise.

Step 3a - Convergence of $\hat{x} \in \partial_h X$

 \hat{x} lies on the normal direction to ∂X at x, at a distance $\delta \stackrel{def}{=} \|x - \hat{x}\|_2 \stackrel{def}{=} h^{\alpha'}$

 $|A_r(\hat{x}) - A_r(x)| = 2r\delta(1 + O(r^2) + O(\delta))$ [Pottmann2009]

$$\begin{aligned} \widehat{\operatorname{Area}}(\mathbb{D}_h(B_r(\hat{x}) \cap X), h) - A_r(x)| &\leq K_1 h^\beta r^{2-\beta} \\ &+ 2r\delta(1 + O(r^2) + O(\delta)) \end{aligned}$$

$$|\hat{\kappa}_r(\mathbb{D}_h(X), \hat{x}, h) - \kappa(X, x)| \le O(r) + 3K_1 \frac{h^{eta}}{r^{1+eta}} + \frac{6\delta}{r^2}(1 + O(r^2) + O(\delta))$$

Back-projection π_h^X [Lachaud2006]

Let $\hat{x} \in \partial_h X$ and set $x_0 = \pi_h^X(\hat{x})$. $\|\hat{x} - x_0\|_{\infty} \le \frac{\sqrt{2}}{2}h < h$

18/33

 $-\pi_h^X(\hat{x})$

Step 3b - Convergence when $\hat{x} \in \partial_h X$

Theorem (Uniform convergence of curvature estimator $\hat{\kappa}_r$ along $\partial_h X$)

Let X be some convex shape of \mathbb{R}^2 , with at least C^3 -boundary and bounded curvature. Then, $\exists h_0 \in \mathbb{R}^+$, for any $h \leq h_0$, setting $r = kh^{\alpha}$, $\delta = O(h^{\alpha'})$ where $\alpha \geq 1$, we have

$$\forall x \in \partial X, \forall \hat{x} \in \partial_h X, \|\hat{x} - x\|_{\infty} \le h \Rightarrow$$

$$\begin{aligned} |\hat{\kappa}_{r}(\mathbb{D}_{h}(X),\hat{x},h)-\kappa(X,x)| &\leq O(h^{\alpha}) \\ &+ O(h^{\beta-\alpha(1+\beta)}) \\ &+ O(h^{\alpha'-2\alpha})+O(h^{\alpha'})+O(h^{2\alpha'-2\alpha}) \end{aligned}$$

Finding the best possible parameter $\alpha_m = \frac{\beta}{1+\beta}$ if $\alpha' \ge \frac{3\beta}{1+\beta}$, otherwise $\alpha_m = \frac{\alpha'}{3}$

$$\begin{array}{l} [\mathsf{Gauss}] \Rightarrow \beta = 1 \\ [\mathsf{Lachaud2006}] \Rightarrow \alpha' = 1 \end{array} \end{array} \} \Rightarrow \alpha_m = \frac{1}{3} \Rightarrow |\hat{\kappa}_r(\mathsf{D}_h(X), \hat{x}, h) - \kappa(X, x)| \le Kh^{\frac{1}{3}} \end{array}$$

Mean curvature in 3D

In the same way, we have in 3D :

Theorem (Uniform convergence of \hat{H}_r along $\partial_h X$)

Let X' be some convex shape of \mathbb{R}^3 , with at least C^2 -boundary and bounded curvature. Then, $\exists h_0 \in \mathbb{R}^+$, for any $h \leq h_0 \ \forall x \in \partial X', \forall \hat{x} \in \partial_h X', \|\hat{x} - x\|_\infty \leq h$

$$\forall 0 < h < r, \hat{H}_r(\partial_h X', \hat{x}, h) \stackrel{def}{=} \frac{8}{3r} - \frac{4\widehat{\operatorname{Vol}}(B_{r/h}(\hat{x}) \cap \partial_h X', h)}{\pi r^4}$$

Setting $r = k' h^{\frac{1}{3}}$, we have

 $|\hat{H}_r(\mathbf{D}_h(X'), \hat{x}, h) - H(X', x)| \le K' h^{\frac{1}{3}}.$

Gaussian Curvature on Digital Surface

Main idea

Instead of computing the volume of $Y = B_r(x) \cap X$, we compute its covariance matrix

$$J(Y) \stackrel{def}{=} \int_{Y} (p - \overline{Y})(p - \overline{Y})^{T} dp = \int_{Y} p p^{T} dp - \operatorname{Vol}(Y) \overline{Y} \overline{Y}^{T},$$

where \overline{Y} denotes the centroid of Y.

Principal curvatures k^1 and k^2 at x are related to eigenvalues of J(Y)

$$\lambda_1 = \frac{2\pi}{15}R^5 - \frac{\pi}{48}(3\kappa^1(X, x) + \kappa^2(X, x))R^6 + O(R^7)$$
$$\lambda_2 = \frac{2\pi}{15}R^5 - \frac{\pi}{48}(\kappa^1(X, x) + 3\kappa^2(X, x))R^6 + O(R^7)$$
$$\lambda_3 = \frac{19\pi}{480}R^5 - \frac{9\pi}{512}(\kappa^1(X, x) + \kappa^2(X, x))R^6 + O(R^7)$$

 \Rightarrow From convergence of high order moment estimator and specific error propagation analysis, convergence proofs can be designed for κ^1 and κ^2

D. Coeurjolly, J-O. Lachaud, J. Levallois

Integral based Curvature Estimators in Digital Geom.

Integral Invariant Theory

4 Experimental evaluation

Experimentation

Experimental Settings

- Family of Euclidean shapes (implicit, parametric) with *exact* curvature information
- Digitization process at resolution h
- Error metrics
 - Worst-case l_{∞} error: maximum of absolute difference value $\max_{\hat{x} \in \partial_h X, x \in \partial X} (|\hat{\kappa}_r(\mathbb{D}_h(X), \hat{x}, h) \kappa(X, x)|)$
 - Quadratic l₂ error

Validation of α parameter

Convolution kernel radius

 $r = kh^{\alpha}$

α	Observed	
	convergence speed	
1/2	$0(h^{0.024})$	
2/5	$0(h^{0.24})$	
1/3	$0(h^{0.38})$	
2/7	$0(h^{0.41})$	
1/4	$0(h^{0.44})$	

Validation of α parameter

Convolution kernel radius

 $r = kh^{\alpha}$

Validation of α parameter

Convolution kernel radius

 $r = kh^{\alpha}$

Implicit surface is $x^2 + y^2 + z^2 - 25 = 0$

26/33

Binomial

0.1

Comparison

27/33

LIRIS

3D curvature estimation

Introduction

Integral based digital curvature estimator

Experimental evaluation

Optimizations with convolution

- Open-source C++ library
- Geometry structures, algorithm & tools for digital data
- http://libdgtal.org

Optimization with displacement masks

Complexity:

- without optimization: $O((r/h)^d)$
- with optimization: $O((r/h)^{d-1})$

Integral Invariant Theory

Introduction

Conclusion & Future work

Conclusion & Future work

- Integral Invariant is perfect for digital geometry
- A unique estimator for both 2D and 3D
- Easy to implement
- Fast computation with masks
- Convergent with a least a uniform convergence speed in $O(h^{\frac{1}{3}})$
- Needs a parameter (r for the kernel radius), as BC .. but we have better results

For an Ellipse, and the same L_∞ error between BC and our estimator (0.0461726), we have :

	BC	II
h	0.00302755	0.0301974
time (in ms.)	421945	350
mask size	91336	8349
mask size (optim.)		8*145

Future work

- Theoretical demonstration of Gaussian curvature convergence
- Comportment with noised data
- Scale-Space analysis

D. Coeurjolly, J-O. Lachaud, J. Levallois

Integral based Curvature Estimators in Digital Geom.

Choice of radius

D. Coeurjolly, J-O. Lachaud, J. Levallois

More information

For more information (l₂ graphs, high-res images, scripts, etc.):

http://liris.cnrs.fr/jeremy.levallois/Papers/DGCI2013/

