Accurate Curvature Estimation along Digital Contours with Maximal Digital Circular Arcs

Abstract

We propose in this paper a new curvature estimator based on the set of maximal digital circular arcs. For strictly convex shapes with continuous curvature fields digitized on a grid of step h, we show that this estimator is mutligrid convergent if the discrete length of the maximal digital circular arcs grows in Ω(h^(-1/2)). We indeed observed this order of magnitude. Moreover, experiments showed that our estimator is at least as fast to compute as existing estimators and more accurate even at low resolution.

Publication
Proc. Int. Workshop Combinatorial Image Analysis (IWCIA2011), volume 6636 of Lecture Notes in Computer Science, pp 43-55, 2011. Springer
Jacques-Olivier Lachaud
Jacques-Olivier Lachaud
Professor of Computer Science

My research interests include digital geometry, geometry processing, image analysis, variational models and discrete calculus.