Jacques-Olivier Lachaud
Jacques-Olivier Lachaud
Home
Featured Research
Publications
Talks
Events
Projects
Gallery
Teaching
Experience
Students
Contact
CV
Privacy/Legal mentions
Light
Dark
Automatic
integral invariants
Robust and Convergent Curvature and Normal Estimators with Digital Integral Invariants
We present, in details, a generic tool to estimate differential geometric quantities on digital shapes, which are subsets of …
Jacques-Olivier Lachaud
,
D. Coeurjolly
,
J. Levallois
PDF
Cite
Project
Project
DOI
Code (DGtal)
URL
Convergent Geometric Estimators with Digital Volume and Surface Integrals
Keynote speaker at DGCI 2016, Nantes.
Apr 18, 2016 9:00 AM — 10:00 AM
Nantes, France
Jacques-Olivier Lachaud
Project
Publication
Slides (PDF)
Paper (PDF)
URL
Convergent Geometric Estimators with Digital Volume and Surface Integrals
This paper presents several methods to estimate geometric quantities on subsets of the digital space Zd. We take an interest both on …
Jacques-Olivier Lachaud
PDF
Cite
Project
DOI
Slides (PDF)
Code II (DGtal)
Code VCM (DGtal)
DGCI'2016
URL
Multigrid convergent principal curvature estimators in digital geometry
In many geometry processing applications, the estimation of differential geometric quantities such as curvature or normal vector field …
D. Coeurjolly
,
Jacques-Olivier Lachaud
,
J. Levallois
PDF
Cite
Project
DOI
URL
Parameter-Free and Multigrid Convergent Digital Curvature Estimators
In many geometry processing applications, the estimation of differential geometric quantities such as curvature or normal vector field …
J. Levallois
,
D. Coeurjolly
,
Jacques-Olivier Lachaud
PDF
Cite
Project
DOI
URL
Integral based Curvature Estimators in Digital Geometry
In many geometry processing applications, the estimation of differential geometric quantities such as curvature or normal vector field …
D. Coeurjolly
,
Jacques-Olivier Lachaud
,
J. Levallois
PDF
Cite
Project
Demo (PDF)
Slides (PDF)
Cite
×