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Abstract

In this thesis, we investigate the links between questions on dynamical systems, in par-
ticular cellular automata, and the theory of complexity. We compare the classical notion of
reduction, used to define the usual complexity “classes”, to the notion of simulation in cellular
automata. The idea of simulation is more topological, and better understood, than reductions
and completeness; moreover, for some definitions of a simulation, universal cellular automata
(that is, cellular automata able to simulate any other) are known.

After a short introduction to cellular automata in chapter 1, we present in chapter 2,
a novel approach on the links between cellular automata and another model of parallelism:
circuits. The previous works on this topic focused mainly either on showing that a particular
cellular automaton had a complex dynamics, or on showing that very strong hypotheses on
the rule of a cellular automaton yielded simple dynamics. Our approach is dual to these, as
it tries to characterize the classes of cellular automata described by an hypothesis on the
algorithmic complexity of predicting their dynamics. We show results on the cellular automata
with a constant number of dependencies, and on the cellular automata whose local rule is
monotonic and planar. The definitions and comparison results presented in this chapter allow
to speak of complexity classes in terms of simulation instead of reduction, that is, to see
computing systems as dynamical systems.

The rest of this thesis (chapters 3 and 4) focuses on a different notion of complexity: com-
munication complexity. We generalize the previous works to a more general notion of problem,
and show a very generic method to prove that a cellular automaton is not intrinsically universal;
that is, that a given cellular automaton does not simulate any other. This contrasts with the
situation in the Turing world, where the notion of universality and reduction is too general to
allow for such a technique. Moreover, the framework of communication complexity allowed us
to construct simple protocols, solving problems of high Turing complexity (pspace-complete,

01Π -complete), where the classical notions of reductions and completeness would not tell much
about intrinsic universality. Using these tools, we present the first proof that a large number of
elementary cellular automata are not universal for non-trivial reasons.

Finally, we compare two different definitions of simulations, namely the simulation by
sub-system and by factor. While the first one is best understood, and universal cellular automata
are known, the second one remains quite mysterious, and the existence of a universal cellular
automaton is a long-standing open problem of the field. We show how to generalize our work,
using non-determinism and randomization, to the simulation by factor, and conjecture that
this generalization is required, which opens a new and unexpected connection between this
problem and well-known results of communication complexity. We conclude with a proof
showing that the long-term behavior of cellular automata intrinsically universal by sub-system
simulations is much less constrained than for factor simulation, thus showing that the require-
ments of factor simulation may be too high for an intrinsically universal cellular automaton to
exist.
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Introduction

The intended goal of this manuscript is to build bridges between two definitions of com-
plexity. One of them, called the algorithmic complexity, is well-known to any computer scientist
as the difficulty of performing some task, such as sorting or optimizing the outcome of
some system. The other one, etymologically closer from the word “complexity”, is about what
happens when many parts of a system are interacting together. Just as cells in a living body,
producers and consumers in some non-planned economies, or mathematicians exchanging
ideas to prove theorems.

On the algorithmic side, the main objects that we are going to use are two models of
computations, one called communication protocols, and the other one circuits. Communication pro-
tocols are found everywhere in our world, they are the basic stone of almost any human collab-
oration and achievement. The definition we are going to use of communication reflects exactly
this idea of collaboration. Our other model, circuits, are basically combinations of logical gates,
put together with electrical wires carrying binary values. They are ubiquitous in our everyday
life; they are how computers compute, how cell phones make calls, yet the most basic questions
about them remain widely open: how to build the most efficient circuits computing a given
function? How to prove that some function does not have a circuit of a given size? For all but the
most basic computations, the question of whether they can be computed by a very small circuit
is still open.

On the other hand, our main object of study, cellular automata, is a prototype of our
second definition of complexity. What “does” a cellular automaton is exactly this definition:
making simple agents evolve with interaction with a small neighborhood. The theory of cel-
lular automata is related to other fields of mathematics, such as dynamical systems, symbolic
dynamics, and topology. Several uses of cellular automata have been suggested, ranging from
the simple application of them as a model of other biological or physical phenomena, to the
more general study in the theory of computation.

By their intrinsically parallel nature, cellular automata are a good candidate of such complex
functions. Since a cellular automaton performs the same operations, at the same time, on each
unit of its memory, it seems difficult to imagine that these operations could be further paral-
lelized. A key argument to this approach is the existence of the notion of simulation between
cellular automata. In the more general theory of computing, a common way of measuring the
complexity of an algorithm is by reducing it to as many problems as possible. To reduce, here,
means to use it to solve another problem, by transforming the input for the other problem, to
an input our algorithm understands. For instance, the problem of finding the largest group of
persons in a society, such that each person of the group knows the entire group, can be reduced
to the problem of deciding which objects among a given collection, each with a certain volume
and value, must be carried in a knapsack, to maximize the total value of the knapsack. It is not
really easy to see how the reduction works, and, unfortunately, experience on the reductions
we know shows that this is most often the case. The notion of simulation in cellular automata,
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however, provides a geometric means for embedding the dynamics of a cellular automaton into
one another. Moreover, this transformation can even be local, in the sense that each small part
of the input is transformed in the same way. In this work, we define a hierarchy of complexity,
using only simple reductions of this kind.

In this work, we investigate both the possibility of using cellular automata as a prototype
of such complex functions, and the use of provably complex functions to lower bound the com-
plexity of arbitrary cellular automata.

Motivations and origins of this work

The model of cellular automata was first devised by John von Neumann [1], in the 1950s. The
field of discrete dynamical systems, and of symbolic dynamics with it, really emerged with
the works of Curtis, Lyndon, Hedlund and others in the 1960s (see for instance [2]). At the
same time, the idea of algorithmic complexity was given more and more attention. It is
difficult to trace the idea back exactly, but the idea of reasonable computation time is generally
attributed to Cobham [3]. The Cook-Levin theorem ([4] and [5]) emphasized the importance of
this study.

At the time of writing this thesis, about forty years later, the latest advances in the theory
show that exponential-time complete functions are not computable by constant-depth circuits
with logical and “sum modulo 6” gates, of unbounded arity (this is a result of 2011 by Williams
[6]). This illustrates our relatively poor understanding of algorithmic complexity. However, this
situation has motivated great research; indeed, this theory is the first one, of all mathematical
theories, to have hardness results about proofs in the theory. More specifically, Razborov
and Rudich defined proofs of complexity in [7], as programs deciding whether a function
given as input has high algorithmic complexity. They showed that such programs cannot
be fast and give the correct answer for a non-negligible number of functions. That is, if we
find a proof that some function is complex, the argument is likely to be neither simple, nor
easily generalizable.

On the side of cellular automata, important progresses have been made. Fundamental
results in symbolic dynamics, such as the Moore-Myhill theorem [8] have been proven. The
works of Kari, building upon the theory of tilings, especially on the aperiodic tilesets of Berger
or Robinson, proved the undecidability of many properties of cellular automata. These results
contributed to develop the computational side of cellular automata. Finally, an elegant notion of
computational equivalence, called bulking, developed by several authors, is now well understood,
and has been the source of a rich theory. We can cite the reference papers of Delorme, Mazoyer,
Ollinger and Theyssier, [9] and [10], but these notions date back to the works of Banks [11]. We
detail this theory in chapter 1.

As an attempt to lower bound the complexity of computations, and especially of parallel
ones, Yao introduced in 1979 the idea of communication complexity [12]. Communication com-
plexity extends and generalizes the wider area of information theory, started by the works of
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Shannon (for instance in [13]). The idea is to view any computation as a series of communica-
tion between the parts of the computing system. In this model, two players need to collaborate
to compute a given function. Each of them has an arbitrary computational power, but only
knows a half of the input. We review in chapter 3 the fundamental results of this theory,
as well as the connection between this model and cellular automata, first found by Dürr,
Rapaport and Theyssier in [14]. One of the interesting aspects of communication complexity,
that we used in a part of this manuscript, is the possibility to compute the actual commu-
nication complexity of a function by an actual algorithm (and thus computing experimental
values).

Cellular automata and parallel complexity

Razborov and Rudich's result about natural proofs gave us one of the starting questions of this
work: since cellular automata are very easy to simulate on a computer, even for quite large
input sizes, would it be possible to get an experimental lower bound on the circuit complexity
of predicting their evolution after a few steps? That is, would it be possible to compute an actual
lower bound of the depth of circuits necessary needed to predict the first fifteen or twenty steps
of the evolution?

This question remains open, but our chapter 2 shows links between cellular automata
and circuits. The main question of that chapter is to infer dynamics of a cellular automaton
based on hypotheses on its computational complexity. After showing how to extend the notion
of simulation to circuits, we examine in detail the most basic class of circuits that may be
used to predict the evolution of cellular automata: circuits of constant depth. Also, a major
circuit-related question is uniformity. Having a family of circuits computing some functions for
different input sizes does not necessarily mean that this function is computable. Indeed, an
unbounded number of uncomputable “hints” may be hidden in circuit families. We show, for
the small complexity classes that we studied, how the classical patch to this problem (that is,
generating the families by an algorithm on a Turing machine) becomes unnecessary for cellular
automata.

Finally, we present a generalization of a classical result about planar circuits with monotone
gates to multi-valued logic, and show how cellular automata with the same hypotheses can be
studied. For general monotonic cellular automata, we show how to construct an intrinsically
universal cellular automaton, with a similar hypothesis of monotonicity. Then, for a restriction
of the neighborhood of these automata, similar to the hypothesis of planarity for circuits, we
show several reasons to believe that the complexity of these objects is quite small. Our study also
opens the way to a generalization of these results, the proof of which is actually quite simple in
the boolean case, to multi-valued logic.

This line of research is the complexity side of a more algebraic theory called clone theory,
originated by Post, and more particularly his classification of boolean functions in [15].
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Lower-bounding the communications in cellular automata

A natural question of complex systems, is related to the “flow” of information between their
parts. The study of this question of information in cellular automata is fascinating, and a
large part of this manuscript is devoted to it. Our main results show that, for a single cellular
automaton to reproduce a large diversity of possible behaviors, it must have a high communica-
tion complexity; in other words, its dynamics must be a complicated combination of each
element of its initial configuration.

In the general theory of computing, reductions are usually defined to prove completeness of
a problem. If C is a complexity class, a problem is said to be C-complete for reduction R, if it
can be used to solve any problem of C, modulo a transformation of the input by an algorithm
of R. In cellular automata, the same notion exists for simulations. In this work, we will mainly
focus on two simulations: the sub-automaton relation, written \sqsubseteq , and the factor relation, written\unlhd . Although requiring a simulation between two problems instead of a reduction seems a stronger
condition, a fascinating fact is that there are complete cellular automata, at least for reduction\sqsubseteq , even for the class of all cellular automata. These last automata are called intrinsically universal
cellular automata.

We show in chapter 3, a general method, using communication complexity, to prove (for a
number of classes of cellular automata) that a given cellular automaton cannot be intrinsically
universal. Using the possibilities of simulations and experiments offered by the framework of
communication complexity, and by cellular automata, we then apply this method to a set of
cellular automata in which the existence of a universal cellular automaton is still an open
problem: the elementary cellular automata. Our main results in this chapter are compatibility
results: the general approach is to ask a question (we also say “problem”) about the dynamics
of cellular automata, and try to solve it using a communication protocol. For some cellular
automata, the question will be easy to answer; more precisely, it will not require the precise
knowledge of all the parts of the configuration to be answered, and a simple protocol will work.
On others, each precise detail will be needed, and answering the question will need many
communications. We show that there is a number of problems for which the existence of a
simple communication protocol for some automaton A implies that A cannot be intrinsically
universal.

Moreover, if the problems we study also have a computational interest, that is, if there
is something to be said about their algorithmic complexity, then these results, along with the
existence of an intrinsically universal cellular automaton, provides an example object for which
many questions we can ask about its dynamics have high algorithmic complexity.

Finally, in chapter 4, we present a generalization of this approach to the objects and ques-
tions of symbolic dynamics. We first show how to use two other definitions of communication
complexity, using non-determinism and randomization, to solve the new problems. The general
question of this chapter is related to the limit set of a cellular automaton, that is, the set of
patterns a cellular automaton can generate after an arbitrary time. Our main result shows that,
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although the communication complexity of the limit set increases with simulation \unlhd (that is, if F
simulates G with relation \unlhd , then F's limit set is more complex that G's), it is not the case for
simulation \sqsubseteq .

The proof of compatibility for simulation \unlhd requires a generalization of communication
complexity: we need to introduce either randomization, or non-determinism, and the theorem
even seems to be false for deterministic communication complexity. This fact gives a new and
original view on the difference between the two simulations, while the main open problem of
this field remains: is there an intrinsically universal cellular automaton for \unlhd ?
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1 Cellular automata: definitions

In this chapter, we introduce formally our main objects of study: cellular automata, and
give a few insights on the current state of knowledge of this field. Our point of view will be
divided between the discrete nature of these objects, with definitions and questions seeing
cellular automata as computing machines, and the more classical point of view of dynamical
systems and symbolic dynamics. This duality is intentional; it is one of the main justifica-
tions of our work, and many of our results relate dynamic properties with computational
ones.

1.1 First definitions

A dynamical system is a couple ( X,F) where X is a compact space and F a continuous function
of X → X. The main questions of dynamical systems are related to the iterations tF of the map,
hence the name “dynamical”. Cellular automata are a special kind of dynamical systems, initially
introduced by John Von Neumann in a book [1] as a model of “self-reproducing” machines. This
first definition looked more like the definition of a machine:

Definition 1.1.1 A cellular automaton is a 4-uple A= ( AC , AN , AQ , Aδ ) , where :

AC = dZ is the set of cells of cellular automaton, and d is called its dimension.

AN is a tuple of vectors, defining the neighborhood of A.

AQ is a finite set called the alphabet, whose elements are called the states.

Af : ANQ → Q is the local transition function.

A few years after this definition, the link with dynamical systems was found by Gustav Arnold
Hedlund in [2]. This is one of the roots of the ideas of this manuscript: if a complex object
can be given an equivalent definition in terms of simple mathematical objects, it allows to
reason on abstract objects without too much consideration for the problems raised by its
discrete nature.

For a given cellular automaton A, a configuration for A is any element of ACQ , that is, an
assignment of a state of Q to all cells of C. Given a configuration c and an element i of AC ,
we denote by ic the state assigned to cell i of c. Now, the global function of A is the function AF
from AQC → C QA such that F( c) [ i] = f( c[ i+ 1n ] ,…,c[ i+ | AN | n ] ) , where the in are the elements
of AN .

However, with this formalism, several local rules can represent the same global function.
Indeed, let f be a cellular automaton with neighborhood { 1,…,n} , and let f ' be a new local
function defined by f '( c[ 1] ,…,c[ n+m] ) = f( c[ 1] ,…,c[ n] ) . It defines the same global function
as f, only with a larger neighborhood. To avoid this problem, and useless formalism, we will only
consider in this work the canonical neighborhood of cellular automata, i.e. the representation
with the smallest neighborhood defining the same global function.
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When working with cellular automata, we rarely see actual configurations. Instead, we
work with finite parts of them, that we call hereafter finite configurations. Since we do not have
all the information required to compute the whole evolution, the rule can only be applied a
finite number of times. The application of a rule as long as possible means that we apply the
global function to a configuration until its size has reached a size smaller than the size of
the neighborhood. We denote this by f *:

f *( x) = \left_floor 2r| x| -1\right_floor f ( x) 
When working with cellular automata, we will often use the graphical representation

of figure 1.1, called a space-time diagram: we simply draw each of the configurations c,F( c) ,2F ( c) ,…, nF ( c) , as a horizontal series of squares representing the cells (the time goes from the
bottom up).

Figure 1.1 - Space-time diagram of elementary rule 110

1.1.1 Information locality and uniformity

We can already remark, from the definition of cellular automata that we gave in definition , two
important properties of cellular automata, that distinguish them from other well-known models
of computation such as Turing machines or boolean circuits. These properties are their unifor-
mity, meaning that the definition of the computation does not depend on the position in the
configurations, nor on the size of the input. And the information locality, meaning that infor-
mation is subject to constraints on its travel speed.

The precise statement of what this means is the object of the Curtis-Hedlund-Lyndon
theorem, which proves an equivalence between definition and a definition of cellular automata
as a topological object. Our first definitions concern the configuration spaces:
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Definition 1.1.2 The Cantor topology on space X = CQ is the product topology over C of the
discrete topology over Q. A natural basis of open sets for this topology are cylinder sets, that
is, for each i ∈C and each word a ∈Q*, the following sets, that we write i[ a] :

i[ a] = { x ∈ CQ | ix = a[ 0] , …, x[ i+| a| -1] = a[ | a| -1] } 
The same topology can be defined by the following distance, called the Cantor distance:

Cantord ( x,y) = i∈C∑ 
d( 0,i) 2δ( x[ i] ,y[ i] ) 

According to definition 1.1.1, since C = dZ for some integer d, it is always a countable metric
space, so this definition always makes sense.

Also, when C = Z, we call the shift transformation, and we write σ, the function of CQ →CQ defined by σ( c) [ i] = c[ i+1] . Adopting the vocabulary of symbolic dynamics, we can now
restate our first definition of cellular automata, or at least of the space of the configurations:

Definition 1.1.3 Let Q be a finite set. A subshift, or shift space, is a closed subset of ZQ (for the
Cantor topology), stable under σ. A special case of subshift is the full shift, that is, the whole
space ZQ .

An equivalent definition of subshifts can be given as sets of the configurations that avoid
a given collection of finite patternsF ⊆ *Q , that is, sets of the form { x ∈ ZQ | x[ i] ,x[ i+1] ,…,x[ j] ∉F} .
In this definition, the complementary of F in Q* is called the language of subshift S, and is
written L( S) .

From our definition of the global function of a cellular automaton, we can already state
the following easy properties:

If A is a cellular automaton, then for any i ∈ Z:

AF ( σ( c) ) [ i] = Af ( i+ 1N +1,…,i+ nN +1) = AF ( c) [ i+1] 
Thus, AF ∘σ = σ∘ AF .
If A is a cellular automaton, then for any c ∈ CQ , and any neighborhood (in the topological
sense) V( F( c) ) of F( c) , there is a neighborhood V( c) of c such that F( V( c) ) ⊆ V( F( c) ) : for
instance if V( c) = { x ∈ V( F( c) ) | x[ i+ jN ] = c[ i+ jN ] , i ∈ pos( C) , jN ∈ AN } , where C is the
smallest cylinder in which V( F( c) ) is included, and pos( C) ⊆ AC is the set of those positions
for which all the points of C have the same value. This means that AF is continuous for the
Cantor topology.

Now, the more surprising result of [2] is that the converse also holds:
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Theorem 1.1.1 (theorem 3.1 of [2])A function from a shift space to itself is the global function of a
cellular automaton if and only if it is continuous for the Cantor topology and commutes with σ.
We will need also to distinguish two particular types of functions of this kind:

Definition 1.1.4 A factor map φ between two dynamical systems ( X,F) and ( Y,G) is a continuous
function of X → Y such that φ∘F = G∘φ.

By Theorem 1.1.1, if φ is a factor map, then it can be defined as the global function of a
cellular automaton. In the case where this cellular automaton has radius 0, we say that φ is
a coloring.

Subshifts are sets of infinite elements of ZQ , for some finite set Q, what we have called
configurations in the beginning of this chapter. To measure their complexity, we need a notion
of language, that is, of sets of finite words, associated to a subshift:

Definition 1.1.5 The language of a subshift S is the set of all finite patterns appearing in the
elements of S: L( S) = { s[ i] ,…, s[ i+n] | s ∈ S,i ∈ Z,n ∈ ℕ } 
Moreover, in this work, we will mainly consider a few special cases of subshifts:

Definition 1.1.6 A subshift of finite type, also called an SFT in the sequel, is a subshift whose
language is finite.

Definition 1.1.7 A sofic subshift is a subshift whose language is rational.

1.2 Simulations

One of the most elegant ideas of computability theory is the concept of acceptable programming
systems, and universal machines. This was the core idea behind the Von Neumann architec-
ture. However, the special properties of cellular automata, most remarkably their spatial and
temporal uniformity, allow for a stronger type of simulation, a syntactic one, preserving not
only the computational power, as with Turing machines, but also a large number of dynamical
properties. This idea was already present, although implicitly, in the notion of “self-reproducing
machines” of Von Neumann's book. The precise formalization that we are going to define
now was first done in the restricted context of two-dimensional cellular automata by Banks
in [11], before being generalized by Mazoyer and Rapaport in [16], and then further extended
by Ollinger in [17], then by Theyssier in [18]
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This new definition of universality is based on the idea of simulation by bulking, a local
transformation of the rule of a cellular automata. Its key ideas are a notion of rescaling and
different relations of embedding of cellular automata into one another.

1.2.1 Rescaling

The ingredients of the rescaling are the following: temporal rescaling, that is, skipping a
constant number of time steps at each step; spatial “packing”, that is, taking blocks of a constant
number of cells as only one cell, and a translation (the shift). Formally, let F be the global
function of a one-dimensional cellular automaton on alphabet Q. For any m ≥1, we define the
following bijective packing map mb : ZQ → Z( mQ ) by:

∀z∈Z, mb ( c) [ z] = ( c[ mz] …c[ mz+m-1] ) 
We call the rescaling of F by parametersm,t, z, and we write \left_angle m,t,z\right_angle F , the following function:

\left_angle m,t,z\right_angle F = mb ∘ zσ ∘ tF ∘ m-1b
By theorem 1.1.1, this is still the global function of a cellular automaton, since all of these

four functions are continuous, and their composition clearly commutes with σ.
Now, how can we say that a cellular automaton simulates another one ? Obviously, this rescaling
operation does not change fundamentally the dynamics of cellular automata; the only real dis-
tortion is the skipping of a fixed number of steps, different in the simulator and the simulated
automaton. Now, we need a notion to say that a cellular automaton “embeds” another one. In
the sections 1.2.2 and 1.2.3, we show two different ways of defining such a relation; the first one,
called the sub-automaton relation, injects an automaton into a part of the simulator automaton.
The other one, called the factor relation, projects the states of the simulator onto states of the
simulated automaton.

Definition 1.2.1 Let F and G be two cellular automata, and R a preorder relation. We say thatF simulates G by R, and we write G R\preceq F, if:
∃ Fm , Ft , Fz , Gm , Gt , Gz , \left_angle Gm , Gt , Gz \right_angle G R \left_angle Fm , Ft , Fz \right_angle F

For both relations, we consider the question of the existence of intrinsically universal cellular
automata:
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Definition 1.2.2 A cellular automaton F is intrinsically universal, or simply universal, for some
set S of cellular automata, and relation R, if:

∀G∈S, G R\preceq F
1.2.2 The sub-automaton relation

Our first simulation relation “embeds” a cellular automaton into another one, in the sense that
only a part of the configurations of the simulator are used by the simulation.

Definition 1.2.3 Let F and G two one-dimensional cellular automata, we say that F is a
sub-automaton of G, and we write F \sqsubseteq G, if and only if:

∃ φ : FQ → GQ , φ is one-to-one and G∘φ = φ∘F
In this case, we say that φ is the map induced by \sqsubseteq .
There are several constructions of universal cellular automata using this relation, see [10] for
a complete account, or [17] and [19] for complete constructions of universal cellular automaton
for this relation.

1.2.3 The coloring relation

The other simulation, that we study in this work is called the factor relation, and comes from
symbolic dynamics. The idea behind sub-automata was to “hide” parts of the configuration
space, by simulating simpler automata only on a subset of the configurations. In the factor rela-
tion, this is forbidden. More precisely, any configuration of the simulator should simulate some
configuration of the factor automaton:

Definition 1.2.4 Let F and G two one-dimensional cellular automata, we say that F is a factor ofG, and we write F \unlhd G, if and only if:

∃ ψ : GQ → FQ , ψ is onto and F∘ψ = ψ∘G
In this case, we say that ψ is the map induced by \unlhd .
However natural this definition may seem, the existence of a \unlhd -universal automaton is still
unknown:

Open problem 1.2.1 (from [18]) Is there a cellular automaton \unlhd -universal ?
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1.3 Particular classes of cellular automata

We consider here several restrictions, or “classes”, of the general framework of cellular automata,
with specific properties. A first restriction that we may consider is the class of elementary cellular
automata, of radius 1 and alphabet { 0,1} , often referred to by their numbering:

Definition 1.3.1 The local rule called elementary rule n is the rule defined on alphabet { 0,1} 
by: f( c[ 0] ,c[ 1] ,c[ 2] ) = 4c[ 0] +2c[ 1] +c[ 2] 2 n mod 2
Another class of useful cellular automata is those cellular automata with a spreading state, that is,
a state that spreads everywhere if it appears once in the configuration:

Definition 1.3.2 Let F be a cellular automaton with alphabet Q, radius r and local rule f. A
state q∈Q is called a spreading state for F if for all x ∈ 2r+1Q , f( x) = q whenever q appears
in x.
Remark that there can be only one spreading state in a given cellular automaton, and that this
notion extends to any dimension d by considering a neighborhood of dimension d instead
of 2r+1Q .

Understanding the link between the local definition, and the global properties of cellular
automata is one of the key problems, and their properties as functions, and as dynamical
systems, give a convenient framework to start this study. In particular, several classes have been
investigated:

Definition 1.3.3 A surjective cellular automaton is a cellular automaton whose global functionF : ZQ → ZQ is surjective, that is,∀ y∈ ZQ, ∃ x∈ ZQ, F( x) = y
From now on, we will denote the set of surjective cellular automata by Surj.

This class, containing at the same time simple automata such as the shift, and very complex
ones such as elementary rule 30, has been extensively studied. One of the most notable results
about it, the Moore-Myhill theorem, gives an alternative characterization of class Surj:

Theorem 1.3.1 (from [8] and [20]) A cellular automaton F, of any dimension, is surjective if and
only if it is locally injective, that is,

∀x, y ∈ FFCQ , | { x[ i] ≠ y[ i] | i ∈ FC } | is finite ⇒ F( x) ≠ F( y) 
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Many results about this class have been proven by Hedlund [2], among which the following
results about the cardinality of the antecedents of a configuration, by a surjective rule:

Theorem 1.3.2 Let F be a surjective cellular automaton of radius r and alphabetQ. Then for any
configuration x ∈Q*: | -1F ( x) | = r| Q| 
Moreover, in one dimension, another surprising result is that surjectivity is decidable. This
result, due to Amoroso and Patt, first appeared in [21]:

Theorem 1.3.3 (from [21]) The set of onto one-dimensional cellular automata is recursive, as
well as the set of one-to-one cellular automata.

The disparity of this class has raised intriguing open problems. We present some of them here:

Open problem 1.3.1 (from [10]) Is there a universal cellular automaton for class Surj ?

Another interesting open problem about cellular automata is known as the dense periodic orbits
conjecture:

Open problem 1.3.2 (from [22]) Let F be a surjective cellular automaton. Is the set of points x
such that the sequence t( tF ( x) ) is periodic dense in ZQ ?

An interesting subset of Surj is the class of reversible cellular automata, that is, those automata
whose global function is onto and one-to-one, like the shift, for instance. This class is better
understood, and a universal cellular automaton is even known, as proved in [23]. See also [24]
for recent results.

Figure 1.2 - Space-time diagram of elementary rule 30
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Several properties that have been studied come from the theory of dynamical systems. A
detailed account of this theory, applied to cellular automata, can be found in [25]. We restate
some of these definitions here:

Definition 1.3.4 Let X be a metric space, and F a function of X → X. F is said to be equicontin-
uous at point 0x ∈ X if:

∀ϵ>0, ∃δ>0, ∀ x∈X, ∀ t>0, d( x, 0x ) ≤ δ ⇒ d( tF ( x) , tF ( 0x ) ) ≤ϵ
Another class that we will need in this manuscript is the class of linear cellular automata. A
complete discussion of what this means, with a variety of applications and examples, can be
found in [26]. In the present work, we define it as follows:

Definition 1.3.5 A semigroup ( S,⊕) is an algebraic structure with a set S an an associative
law ⊕.

Definition 1.3.6 A linear cellular automaton is a cellular automaton whose alphabet is a semi-
group ( Q,⊕) , and whose global functions verifies:

F( x⊕ y) = F( x) ⊕ F( y) 
Where x⊕ y denotes the uniform extension of ⊕ to words or configurations:

( x⊕ y) [ i] = ( x[ i] ⊕y[ i] ) 
Interesting properties of these cellular automata include the existence of fractal structures, as
studied in [27], or [28].

1.3.1 Decidability

The decidability of the properties of a system is an important question in the study of its
computational power. One of the first examples of undecidable behaviors of a machine was
the halting problem, shown undecidable by Turing in [29], by one of the first applications of
Cantor's diagonal argument to computing. In cellular automata, a number of properties have
been shown undecidable.

The first property that we will present here is the periodicity of cellular automata. The
following result, due to Culik, Pachl and Yu in [30] in dimension at least two, and to Kari [31]
for dimension one, shows that there is no general way to detect whether a cellular automaton
given by its local rule is nilpotent:
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Definition 1.3.7 A cellular automaton F is nilpotent if there is a time step t and a state 0q of the
alphabet such that ∀ x∈ FCQ, ∀ i∈ FC , tF ( x) [ i] = 0q .

Theorem 1.3.4 The set of local rules of cellular automata representing a nilpotent cellular
automaton is recursively enumerable but not recursive.

Another variant of this kind of simple behavior after a few steps is the periodicity of a cellular
automaton. A periodic cellular automaton, of period t, will always return to its initial configura-
tion after t steps, independently of the what the initial configuration was:

Theorem 1.3.5 The set of local rules of cellular automata representing a periodic cellular automa-
ton, that is, a cellular automaton F such that tF ( x) = x, is recursively enumerable but not
recursive.
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2 Circuits and cellular automata

As soon as computer scientists began to understand the limitations of sequential computa-
tion that the Turing model provided, with the Cook-Levin theorem ([4] and [5]), the idea of
parallelism began to raise interest in the community. At this time, probably building upon the
experience gained in making computing hardware, the model of boolean circuits emerged as a
new paradigm to solve the hard questions of the recent algorithmic science. Unfortunately, it
was understood soon thereafter what new problems this model would cause. Indeed, if the p =
np problem was already identified as the limit of our understanding of algorithms, as soon as
nc, the equivalent for circuits of p in sequential computation as the “reasonable class of com-
putation”, had been formulated, a new question was asked: is p = nc? In other words, would it
be possible to further accelerate exponentially all the computations we know to be reasonable?

This chapter offers an overview of this field, and shows how our model of parallel com-
putation, cellular automata, compares to this classical one. To our knowledge, the main two
approaches that have been taken to study this question are the one of Cook in [32] and Neary
and Woods in [33], where the authors use the dynamics of cellular automata to lower-bound
their complexity, and the approach of e.g. Moore in [26], where the author upper-bounds the
complexity of cellular automata, by providing circuits to predict them. These approaches both
study the implications of hypotheses on the dynamics of cellular automata on their algorithmic
complexity. The first one to find completeness results, the other one to find upper bounds on
their complexity.

Our approach is complementary to this one, and our main question is: what do hypotheses
on the algorithmic complexity of cellular automata mean to their dynamics? After reviewing the
definitions and classical results of this field, we will mainly focus on two particular classes, the
monotonic planar cellular automata, and the automata with a number of dependencies bounded
by a constant.

2.1 Circuits as graphs of algorithms

2.1.1 Definitions and examples

Definition 2.1.1 A circuit is a 4-uple C = ( Q,G,V,E) , with Q a finite set (the alphabet), ( V,E) a
directed acyclic graph, the underlying graph, G a finite set of functions of *Q → Q, called the
gates. The vertices of V are labeled as follows:

Each vertex of ingoing arity (or fan-in) d ≥ 0 is labeled by a function of
dQQ ∩G, that is, by

some function of G with d inputs.
The vertices with ingoing arity d = 0 are called the inputs of the circuit, and are labeled by
some i ∈ ℕ .

Some of the vertices of outgoing arity (or fan-out) 0 are called the output vertices. There must
be at least one output vertex, and, if there are N of them, they are numbered 1 through N.
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Finally, the maximal length of a path of graph ( V,E) is called the depth of C, and is
written d( C) .
We now need to define what we mean by “evaluating a circuit” or that a circuit “computes a
function”. The evaluation procedure of a circuit is as follows:

Algorithm 2.1.1 The process of computing a function with a circuit is as follows: on input x =
1x ,…, nx , we compute a valuation of the circuit, that is, we construct a function Val : E → Q,

such that:
For each input vertex v, labeled by i, we set Val( v) = ix .
Each other vertex v, with label g, such that Val has been constructed for all its predecessor
vertices (the 1v ,…, dv with an edge ( iv ,v) ∈ E), receives value Val( v) = g( Val( 1v ) ,…,Val( dv ) ) .

If there are N output vertices 1v ,…, Nv , the final value of the circuit is ( Val( 1v ) ,…,Val( Nv ) ) . In
the sequel, we will often write C( x) to mean “the final value of the circuit after its evaluation on
input x”.

The problem of computing C( x) is called the circuit value problem of C on input x.
Sometimes, depending on the circuit, the function Val can be computed faster than the canon-
ical procedure described by Algorithm 2.1.1. For instance, when the fan-out of all the vertices of a
circuit C is at most one (and hence the underlying graph of C is a forest), then the two children
of each node can be evaluated in parallel.

In the sequel, unless explicitly mentioned, we will only consider the case of finite Qs. See
[34] for an introduction to the existing generalizations to larger value sets. The first type of
circuits that will interest us are the boolean circuits, where Q= { 0,1} . Our first result shows what
kind of gates we need:

∧ 
∧ 

∧ 
1ϵ ( e[ 1] ) 2ϵ ( e[ 2] ) 

∧ 
3ϵ ( e[ 3] ) 4ϵ ( e[ 4] ) 

∧ 
∧ 

5ϵ ( e[ 5] ) 6ϵ ( e[ 6] ) 
∧ 

7ϵ ( e[ 7 ] ) 8ϵ ( e[ 8] ) 

Figure 2.1 - The circuit of a conjunction

Proposition 2.1.1 The gate setG= { ∧ ,∨ ,¬} is complete for functions of n{ 0,1} → { 0,1} , that is, any
function of n{ 0,1} → { 0,1} is exprimable by a circuit with gates from G, of depth n+ logn+2.
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Proof. We can clearly represent the 0 constant function by a formula of depth 1. Else, for anye ∈ n{ 0,1} such that f( e) =1, we build the expression 1ϵ ( e[ 1] ) ∧ …∧ nϵ ( e[ n] ) , where iϵ ( x) = x ife[ i] =1, and ¬ x else. This conjunction can be written as a circuit of depth logn+2 (see figure
2.1), because the conjunction requires a depth logn+1, and negating some of the variables
depth 1. Now, we can plug all these wires to a tree similar to the one on figure 2.1, but with ∨ 
gates instead of ∧ s. Since there are at most n2 inputs, this requires a tree of depth n.
Let us remark that in the proof of Proposition 2.1.1, the circuits we built were of depth n+
logn+2, and of size in O( n n2 ) . And changing the gate set, as long as the new one is also
complete, can only change the complexity up to a constant factor. And since any computational
problem can be encoded as a boolean function (more details about this can be found in the
proof of the Cook-Levin theorem [4]), the main question of the whole theory of algorithms can
be therefore reformulated as “under what conditions can we design better circuits?”. The answer
is “not often”, and this result is classically known as the Shannon effect:

Theorem 2.1.2 (from [35]) Most functions of n{ 0,1} → { 0,1} cannot be computed by circuits of
size in o( n2 ) .
Proof. This can be proved by a simple counting argument: there are

n22 distinct boolean
functions of n{ 0,1} → { 0,1} . How many circuits of size p( n) are there? If we can connect any
two gates with zero, one or two connections (since the underlying graph of a circuit is directed),
there are p 2( n) 3 different possible ways of connecting a circuit.

We also need to decide what gates the vertices will be labeled by. Each vertex might be
labeled by a gate from G, a variable among { 1x ,…, nx } , or a constant 0 or 1. Hence, there
are p( n) ( n+| G| +2) possible labelings. In total, there are at most p 2( n) 3 p( n) ( n+2+| G| ) circuits
of size p( n) , which is negligible compared to the number of boolean functions, as soon asp( n) ∈ o( n2 ) .
This theorem allows to define the first notion of algorithmic complexity of this manuscript,
namely, circuit complexity. Contrarily to Turing machines, one circuit only operates on inputs of
a given fixed size. To solve algorithmic problems with circuits, we need to define circuits for
all possible input sizes:

Definition 2.1.2 A circuit family is a sequence n( nC ) of circuits. Moreover, if f is a function of{ 0,1} * → { 0,1} , we say that n( nC ) computes f if ∀n∈ℕ , x ∈ n{ 0,1} , nC ( x) = f( x) . We call functionn ↦ d( nC ) the circuit complexity of n( nC ) .
However, this is not a very realistic model of computation. For instance, according to our
definitions, the circuit family n( nC ) defined for all n and x ∈ n{ 0,1} by “ nC ( x) =1 ⇔ nφ halts on
input n”, where nφ is the nth Turing machine, is a legal circuit family, of depth and size 1, but
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it computes an uncomputable function. A common restriction imposed on circuit families to
avoid this situation is uniformity:

Definition 2.1.3 Let C be a Turing complexity class. A C-uniform circuit family is a circuit family
such that there is a Turing machine φ∈C writing, when given the unary representation of n as
input, an encoding of nC on its output tape.

Only now can we define a notion of circuit complexity that can be compared to Turing complex-
ity. The surprising fact about Theorem 2.1.2 is that although we know that most functions are
“hard”, no one has been able to prove yet that a boolean function could not be computed by a
uniform family of circuits of, say, polynomial size.

The same problem is also open for parallel time. We do not know a proof that a boolean
function cannot be computed by a uniform family of polylogarithmic depth. The name “parallel
time” is accurate here, since boolean circuits are really a model of parallel computing. This is
because if we want evaluate a circuit C, as described by Algorithm 2.1.1, we can do so in “round-
s”, where in each round we compute Val( v) for all the vertices v where this is possible, then we
will be done evaluating the whole circuit in exactly d( C) rounds. An immediate corollary of the
Shannon effect is that most functions also require a linear depth to be computed, because n2
gates do not fit in much less than O( n) rounds.

Understanding this problem means finding what, in a computation, must be done sequen-
tially. The answer is known as Spira's theorem for formulas, that is, circuits in which the
underlying graph is a tree:

Theorem 2.1.3 (Spira's theorem) Any boolean formula F is equivalent to a formula F' of depth
at most 4⋅log( | F| ) .
Proof. By induction on | F| . It is true for | F| =1. For | F| ≥ 2, letG be the minimal subformula ofF of size greater than t/2. Since | G| ≥ 2, G must have one or two direct subformulas, of size at
most t/2 by minimality of | G| . Hence, by induction hypothesis, G can be written as a formula of
depth 1+ 4⋅log( t/2) .

If G= F, the proof is finished. Else, let us write 0F (respectively 1F ) the formula where G
has been replaced by 0 (respectively 1) in F. Since 0F and 1F are of size at most t/2, they are
equivalent, by induction hypothesis, to formulas 0F' and 1F ', of depth 4⋅log( t/2) .

Finally, F is clearly equivalent to ( G ∧ 1F ') ∨ ( ¬ G ∧ 0F') , which is a formula of depth 3+1+4⋅log( t/2) , that is, 4⋅logt.
As for the general situation, we do not know. Even the latest progresses, such as William's result
[6], do not bring much intuition on the proof techniques needed to solve these problems. Even
worse, a paper of 1994, by Razoborov and Rudich [7] introduced the notion of natural proof,
which are algorithms recognizing functions with no polynomial-size circuit family. Their proof
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shows that, under commonly believed hypotheses, for such an algorithm to exist, it must either
be applicable to a very small number of functions, or its running time must be unpracticable
(more precisely, an exponential in the size of the truth table of the input function, which is
already of size n2 for input size n).

Finally, let us state a few more definitions that we will need in our study.

Definition 2.1.4 The complexity class p is the set of all languages over some finite alphabet
that are recognized by a Turing machine running in time polynomial in the size of the input.

Definition 2.1.5 The complexity class logspace is the set of all languages over some finite
alphabet that are recognized by a Turing machine running in space logarithmic in the size of
the input.

Definition 2.1.6 The complexity class nc is the set of all languages over a finite alphabet Q that
are recognizable by a logspace-uniform family of circuits with one output, of polynomial size,
and polylogarithmic depth, that is, O( klog n) for some k. “Recognizable” here means that there
are a distinguished state ⊤q ∈Q such that a word is recognized if and only if the circuit outputs

⊤q .

In this chapter, we try to show why we think that cellular automata, as an inherently parallel
computational model, may be an appropriate model for the study of these questions.

2.2 Circuits and cellular automata

The first problem we need to deal with, in this adaptation of cellular automata to boolean
circuitry, is the problem of input and output representation. Circuits compute on bits, and
cellular automata on states. This problem is far from being trivial, as we will see.

2.2.1 Of states and bits

However, choosing an alphabet Q different from { 0,1} for our gates to operate on does not
change drastically the complexity as we have defined it in section 2.1.1, as shown by the
following propositions:

Lemma 2.2.1 Let C be a circuit over alphabet Q and gates G with arity at most d. Then, for
any complete gate set G' on an alphabet Q' such that | Q'| ≥| Q| , there is a circuit C' and a
one-to-one application φ : Q → Q' such that:

for any x ∈ nQ , C'∘φ = φ∘C.
there are two positive integer constants α and β, depending only on | Q| and G, such thatd( C') ≤βd( C) and | C'| ≤α| C| .
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Proof. φ can be any one-to-one application of Q → Q'. We simply replace any gate in C
by a small circuit with gates of G', which is always possible since, for any function g ∈G,
the function defined on φ d( Q) by g'( 1x ,…, dx ) = -1φ ( g( φ( 1x ) ,…,φ( dx ) ) ) is clearly a function ofd( Q') → Q', and thus there is a circuit of depth O( d log| Q'| ) and size O( dlog| Q'| 2 ) computing it.

Then, we can show by an easy induction that at each step the evaluation process described
by algorithm 2.1.1, each wire carries value φ( q) , if the corresponding wire in C carried q.
Conversely, we can do almost the same construction, with a somewhat more complicated
encoding, to solve the case where the alphabet of the new circuit is smaller:

Lemma 2.2.2 Let C be a circuit over alphabet Q and gates G, with N output gates 1C ,…, NC .
For any q∈Q, we write \left_angle q\right_angle an encoding of q by words of \right_angle 2log | Q| \right_ceiling { 0,1} . Then we can design a
circuit C', on alphabet { 0,1} , with gates in { ∧ ,∨ ,¬} , and N' = \right_angle 2log | Q| \right_ceiling ⋅N output gates i( iC') , such
that:

for any x ∈ nQ , and any 1≤ i ≤N, \left_angle iC ( x) \right_angle = q⋅iC '( \left_angle x\right_angle ) , …, q⋅i+q-1C '( \left_angle x\right_angle ) , with q = \right_angle 2log | Q| \right_ceiling .
there are two positive integer constants α and β, depending only on | Q| and G, such that
for all i ≤ N, d( iC ) ≤βd( C) and | iC | ≤α| C| .

Proof. Since { ∧ ,∨ ,¬} is complete for { 0,1} , as proved in proposition 2.1.1, each gate of G of arityd can be replaced by \right_angle log| Q| \right_ceiling circuits computing functions of d\right_angle log| Q| \right_ceiling { 0,1} → { 0,1} , which we can

choose of size α = O( dlog| Q| 2 ) and depth β = O( d log| Q| ) , again by Proposition 2.1.1.
A simple induction on the steps of Algorithm 2.1.1 shows that this new circuit computes

the same function as C.
Proposition 2.2.3 Let C be a circuit over alphabet Q and gate set G. For any other alphabet Q'
with at least two states, any gate set G' complete for Q', there is an integer c ≤ 1+ 2log | Q'| , a
one-to-one encoding function E : Q → Q c' and a circuit C', such that:

for any output vertex iC of C, \left_angle iC ( x) \right_angle = m⋅iC '( \left_angle x\right_angle ) , …, m⋅i+m-1C '( \left_angle x\right_angle ) , with m = \right_angle 2log | Q'| \right_ceiling .
there are two constants α and β, depending only on | Q| and | Q'| , such that | C'| ≤α| C| 
and d( C') ≤βd( C) .

Proof. If | Q'| ≥| Q| , then it is Lemma 2.2.1, with c =1. Else, we can transform C into a
boolean circuit with gates { ∧ ,∨ ,¬} , by Lemma 2.2.2, and then to a circuit over Q' by Lemma
2.2.1 again.

By the way, this proposition shows how a gate set can be complete for an alphabet: indeed,
in this proof, we have used the completeness of G' essentially for computing boolean circuits
and functions of 2log | Q| Q → Q. Since Proposition 2.1.1 shows that only three different gates are
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necessary to compute any boolean circuit, and that there are only a finite number of functions
of 2log | Q| Q → Q, this proves the following corollary:

Corollary 2.2.4 For each finite alphabet Q, there is a gate set of finite size complete for Q.

2.2.2 Computational problems about cellular automata

Defining a computational problem from cellular automata is quite easy. We will see in chapter
3 several ways of defining this, with different computational complexities. For the moment, let
us focus on the following problem:

Definition 2.2.1 Let F be a cellular automaton over state set FQ . The problem FPred : FQ * →
FQ is defined by:

FPred ( x) = F*( x) [ 1] 
Where F *( x) [ 1] means the first letter of word F *( x) , as defined in section 1.1.1.

We will see why this problem is p-complete later, along with a stronger construction. For the
moment, what interests us in this problem is the behavior of its circuit complexity with respect
to sub-automaton simulation and bulking, as defined in Definition 1.2.3. To define precisely
what a “higher complexity” means, we need the following relation, already defined in a first
version in [36], finally corrected by [37]:

Definition 2.2.2 Let f and g be two functions of ℕ → ℕ . We write that f \prec g if there are
non-constant affine functions (that is, of the form x ↦ ax+b for some constants a and b) α,β, γ, δ such that: α∘f∘β≤ γ∘g∘δ
It is not difficult to see that this relation is a pre-order relation, that is, reflexive and transitive.

Proposition 2.2.5 Let F be a cellular automaton. If FPred has a circuit family n( nC ) on some
alphabet Q and gate set G complete for Q, then for any bulking parametersm, t and z, there is
a circuit family n( C n' ) computing \left_angle m,t,z\right_angle FPred , such that:

d( C n' ) \prec d( nC ) and d( nC ) \prec d( C n' ) 
| C n' | \prec | C n' | and | nC | \prec | C n' | 

Where \prec is the relation of Definition 2.2.2.
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Proof. We prove this by showing that each ingredient of the simulation preserves the com-
plexity. Since the alphabet is changed several times during this proof (and the gate set with
it), as stated by Proposition 2.2.3, we need to be careful about alphabet problems. However, G
is complete for Q, this is not a huge problem:

First, if there is a circuit family n( nC ) for FPred , then we can transform it into a circuit
family for \left_angle m,0,0\right_angle FPred by simply taking, for each n, m copies of m\right_angle n/m\right_ceiling C , with their output
vertices renumbered. The output of this circuit is thus an element of

m( nCQ ) , which is
exactly what we need.

Conversely, if there is a circuit family n( nC ) for m,0,0FPred , then we can easily transform
it into a circuit family for FPred : for each input size n, we consider \left_floor n/m\right_floor C , and add a
circuit C' to simulate the evolution of F for the nmodm remaining steps, from the value
of \left_angle m,0,0\right_angle FPred computed by \left_floor n/m\right_floor C . This can clearly be done by a circuit of size and depth
depending only on m and | Q| , by Proposition 2.2.3.
Now, if we have a circuit family n( nC ) to compute FPred , then \left_angle 0,t,0\right_angle FPred is clearly computed
by family n( n⋅tC ) . However, the converse needs a more complicated circuitry, since we need
to compute the evolution of F even on configurations of size n such that ( n-1) is not a
multiple of t.

In order to compute the evolution of F for configurations of size n, we need to iterateF 0t ( n) = 2rn-1 times, where r is F's radius. Thus, if we have a circuit family to compute
\left_angle 0,t,0\right_angle FPred , we can simply copy it 2r⋅( 0t ( n) modt) +1 times, to compute the result of t⋅\left_floor t0t ( n) \right_floor 

iterations of F. Then, we can simply connect the O( 2r⋅( 0t ( n) modt) +1) output vertices of
the resulting circuit to another circuit iterating F for the 0t ( n) modt remaining iterations.
This is again possible with a circuit of depth and size depending only on t and | Q| , by
Proposition 2.2.3.
As for the composition with the shift, this can be done easily by adding 2\left_floor rn-1\right_floor ignored inputs
to the circuit of size n, with r the radius of F. This is because the composition of F with
the shift is a cellular automaton of radius r+1, where the r -1 left cells are ignored by the
local rule.

Conversely, to compute FPred with circuits for σ∘FPred , we can simply, for each input
size, feed constants states to the ignored inputs. This is still a valid circuit, and the value
of the constants does not matter.

Proposition 2.2.6 If F and G are two cellular automata such that F \sqsubseteq G, and there is a
circuit family n( nC ) , with alphabet Q and gates set G complete for Q, computing GPred , then
there is a circuit family n( C n' ) computing FPred , such that for all n, d( C n' ) ∈O( d( nC ) ) , and| C n' | ∈O( | nC | ) .
Proof. For each n, we only need to add a circuit of constant depth and size to compute φ for
each input, then -1φ for each output vertex of nC , if φ is the one-to-one application induced by\sqsubseteq . This can be done, by completeness of G and Proposition 2.2.3.
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Altogether, we have proved that the circuit size and depth of predicting cellular automata was
conserved by simulation. That is, anticipating on the terminology of chapter 4, that for any
non-decreasing function f : ℕ → ℕ , the set of cellular automata F such that there is a circuit
family of depth in O( f) computing FPred is an ideal of the bulking pre-order.

2.3 Monotonic cellular automata

Monotonicity has long been a subject of interest, both in dynamical systems and complexity
theory. Several complex processes are amenable to formal analysis thanks to their being mono-
tonic. This is the case for instance, of many biochemical processes such as gene activation
networks, or of the “easy” cases of Ising model dynamics, such as bootstrap percolation.

In complexity theory, the importance of monotonic computations is even higher, as the
most important open problem of the theory, that is, complexity lower bounds, becomes feasible
for monotonic functions. The following result, proved by Raz and Widgerson in [38], lower
bounds the depth of monotonic circuits that would be needed to decide if a graph ( V,E) has a
perfect matching, which is a decomposition of V into a set of disjoint pairs ( 0v , 1v ) of E.
Theorem 2.3.1 (from [38]) Any monotonic circuit computing the perfect matching function onn-vertex graphs requires Ω( n) depth.
Here “monotonic circuit” means a boolean circuit with all its gates monotonic, with the fol-
lowing definition for a monotonic function:

Definition 2.3.1 Let d be an integer, Q a finite alphabet with a partial order relation ≤. A
monotonic function f : dQ → Q is a function such that:

∀ 1x , …, dx , 1y , …, dy , 1y ≥ 1x , …, dy ≥ dx ⇒ f( 1y ,…, dy ) ≥ f( 1x ,…, dx ) 
It is an easy exercise to show that the functions computable with monotonic circuits are exactly
the monotonic functions. In the boolean binary case, a monotonic circuit is a circuit whose
gates are in { ∧ ,∨ } . To avoid any kind of confusion, this is the right place to state Allgood's
second principle (the first one is to be found in [34]):

Allgood's second principle Let C be a circuit of size n. By applying De Morgan's laws at each
gate of C that are followed by a ¬ gate, Allgood thinks he gets an equivalent circuit of size n
where the negations only appear at the inputs.

Allgood's wrong. To see this, consider the following circuit:
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Figure 2.2 - Allgood's construction

∧ ¬

To perform his transformation, Allgood would have to duplicate the ∧ gate, and to perform
the same operation again at each node of each level of the formula. Although the depth and the
computed function really do not change, the size of his circuits, that he once thought in O( n) ,
would rather be of the order of n2 !

A more reasonable way of simulating a non-monotonic circuit with a monotonic one
involves duplication of the inputs:

Algorithm 2.3.1 Each wire is represented by two wires ( a,b) . The ∧ gates are transformed into
two gates ( a ∧ a', b ∨ b') , the ∨ into ( a ∨ a', b ∧ b') , and the negations by ( b,a) . If each input
bit ix is transformed into ( ix , ¬ ix ) , one can check that Algorithm 2.1.1 computes at each step
the same values as before, along with the negation of each one.

2.3.1 Planarity

A possible solution, to avoid the solution of Algorithm 2.3.1, is to restrict the form of the
underlying graph to a graph where these simulations of non-monotonic gates by wire crossing
are impossible: a planar graph. The following result shows that monotonic circuits with a planar
underlying graph have an easier circuit value problem:

Theorem 2.3.2 (from [39]) Any boolean monotonic planar circuit of polynomial size computes
the same function as a circuit of polynomial size and polylogarithmic depth.

Now, what does this mean for our model of parallel computing, cellular automata? If we
consider cellular automata of arbitrary radius, the same kind of cheating is possible: indeed,
the construction of Algorithm crucially used the fact that in any order on Q, for any 0q , 1q , 2q ,
3q ∈Q, whenever 0q < 1q and 2q < 3q , the pairs ( 0q , 3q ) and ( 1q , 2q ) are incomparable.

We can generalize this to the following lemma:

Lemma 2.3.3 Let Q be a finite set, totally ordered by <, and f : nQ → Q be any function. If
there are m incomparable n-uples 1u ,…, mu of nQ , then there is a monotonic function g such
that for each i, g( iu ) = f( iu ) .
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Proof. Simply set g( iu ) = f( iu ) for each i, this does not contradict the monotonicity of g,
since the ( iu ) are incomparable. Then for each i, and all n-uple x > iu , we set g( x) = maxQ.
Similarly, for all x < iu , we set g( x) = minQ. This is possible because there is no n-uple x such
that iu < x < ju , since the ( iu ) are incomparable.

And then use it to prove that monotonic local rules are as powerful as any other rule, as long as
their radius is not too restricted:

Proposition 2.3.4 Let F be a cellular automaton of radius one with alphabetQ. There is a cellular
automaton G, with alphabet { 0,1} , and a monotonic local rule, such that F \sqsubseteq \preceq G.

Proof. Let Q= { 0q ,…, n-1q } , with 0q < 1q < …< n-1q . There are n different blocks of lengthn+3 of the form iu = i+1110 n-i10 (for 0 ≤ i < n), and they are pairwise incomparable. We can
thus encode the states of Q by n = | Q| blocks of this form. To encode F of radius one, we needG to have radius 2n+5 (so that each cell “sees” the whole encoding of the neighborhood). The
idea is to preserve the sub-blocks of the form 110. To do this, we set:

∀a∈ 2n+3{ 0,1} , b ∈ 2n+5{ 0,1} , G( a110b) = 0
∀a∈ 2n+4{ 0,1} , b ∈ 2n+4{ 0,1} , G( a110b) =1
∀a∈ 2n+5{ 0,1} , b ∈ 2n+3{ 0,1} , G( a110b) =1

For any other input encoding the neighborhood ( a,b,c) ∈ 3Q , G computes the encoding ofF( abc) . If a is encoded by block iu , b by ju , c by ku and F( abc) by lu for some i , j,k ,l, then we
set, for any x ∈ n-l-1{ 0,1} and any y∈ l+2{ 0,1} :

G( x11 i+10 n-i0 11 j+10 n-j0 11 k+10 n-i0 y) =1
In any other input x ∈ 4n+11{ 0,1} , falling in neither of the two cases, we set G( x) = 0. Finally,

by Lemma 2.3.3, we can complete the definition of G so that it remains monotonic. It is clear
that F \sqsubseteq \preceq G, since this proof essentially shows that F \sqsubseteq \left_angle n+3,1,0\right_angle G .

Corollary 2.3.5 There is an intrinsically universal cellular automaton with a monotonic local
rule.

2.3.2 The dynamics of monotonic automata

This notion of monotonicity mirrors the notion in circuits, and the simulation techniques from
circuits easily generalize to this context, as Proposition 2.3.4 shows. Is is thus natural to ask
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what the dynamics of cellular automata with a monotonic local function, and a restricted radius,
would become. The natural example to start with is the case of automata depending only of
two neighbors:

Definition 2.3.2 A planar monotonic cellular automaton is a cellular automaton with neigh-
borhood { 0,1} , such that there is an order relation on its alphabet making its local function
monotonic.

The first result we are going to show gives an example both of what kind of methods may be
used to analyze monotonic planar cellular automata, and of the possible behaviors of these
cellular automata.

Proposition 2.3.6 There are only two surjective planar monotonic cellular automata: Id andσ.
Proof. A convenient method to study planar monotonic cellular automata is the following
representation of the lattice of 2Q ordered by <:) 0,0( 

) 1,0( 
) 2,0( 

) 3,0( 
) 0,1( 

) 1,1( 
) 2,1( 

) 3,1( 
) 0,2( 

) 1,2( 
) 2,2( 

) 3,2( 
) 0,3( 

) 1,3( 
) 2,3( 

) 3,3( 
Figure 2.3 - The lattice of ( 2Q,<) 

A planar monotonic rule affects a value to each vertex of the lattice, such that the sequence
of values induced by any path is non-decreasing. Let us call 0 the minimal state, n = | Q| the
maximal one, and we must prove that one of the following two cases holds:

For each q∈Q, q appears on each vertex of line ( q,0) ,…,( q,n-1) .
For each q∈Q, q appears on each vertex of column ( 0,q) ,…,( n-1,q) .

State 0 cannot appear at both ( 0,1) and ( 1,0) , because a configuration x with only zeros andx' with only zeros except at one position where it has a one, would have the same image, and
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this would contradict the Moore-Myhill theorem (Theorem 1.3.1). Thus, since all the paths in the
lattice must be non-decreasing, 0 can appear only on the first line, or on the first column of the
diagram (that is, on one of the two paths ( 0,0) ,…,( 0,n-1) and ( 0,0) ,…,( n-1,0) ). By the same
argument, n-1 must appear on the last line or last column. Moreover, since 0 and n-1 cannot
appear on the same vertex, either they appear on the first and the last line, or on the first and
the last column. Without loss of generality, let us assume, like on the following figure, that
they both appear on a line. ) 0,0( 

) 1,0( 
) 2,0( 

) 3,0( 
) 0,1( 

) 1,1( 
) 2,1( 

) 3,1( 
) 0,2( 

) 1,2( 
) 2,2( 

) 3,2( 
) 0,3( 

) 1,3( 
) 2,3( 

) 3,3( 
Figure 2.4 - The lattice of ( 2Q,<) 

Now, since F is onto, for any q∈ { 1,…,n-2} , the two letters word 0q must have an
antecedent by F. Therefore, since the only antecedents for 0 end with state 0 itself, an antecedent
of 0q must be of the form 0q 0 1q , with 0q , 1q ∈Q, and thus, the cardinal of { F( 0 1q ) | 1q ∈Q} 
must be at least q-2. This shows that all the vertices of column ( 0,0) ,…,( 0,n-1) must have
different values.

The same argument applies to column ( n-1,0) ,…,( n-1,n-1) . Since the paths in the lattice
are all non-decreasing, for each q∈Q, all the states between ( 0,q) and ( n-1,q) must be equal,
and this completes the proof.

This proposition also holds for the more general case of monotonic cellular automata with
arbitrary radius. The main difference is that the lattice is much more complicated and its
drawing is not of much help. However, we can generalize our arguments:

Proposition 2.3.7 Let F be a surjective monotonic cellular automata of radius r. Then F ∈{ -rσ, -r+1σ, …, rσ } .
Proof. Let again number the states from 0 through n-1. Then:
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By the same arguments as in the proof of proposition 2.3.6, at least one of the configurations
with only one 1, that is, F( 2r10 ) ,F( 2r-1010 ) ,…,F( 2r0 1) , say the ith one, must be non-zero.
This means that all the antecedents of 0 must be of the form 0q … 2rq , with iq ≠ 0, by mono-
tonicity of F.

We now need a way to place the same kind of constraints on antecedents of 0 by F, that we
placed with the antecedents of 0q in the proof of proposition 2.3.6:

Consider the antecedents by F of the configurations of the form i-10 q 2r-i0 , for all q∈Q. Since all the antecedents of 0 must have a 0 at the ith position, this means that the-1F ( { i-10 q 2r-i0 } ) (for q∈Q) are all of the form r* i0 0q 2r-i0 r* , with * meaning “any state of Q”.
Thus, the { F( i-10 002r-iq | 0q ∈Q} are all different, and, since there are | Q| of them.
Again, the same argument applies to the configurations of the form i-1( n-1) q 2r-i( n-1) : all
the images of these configurations (for all q∈Q) are different.

Altogether, we have proved that F( i-10 q 2r-i0 ) = F( i-1( n-1) q 2r-i( n-1) ) = q. Thus, for any x between
these two configurations (that is, a x such that x[ i] = q), F( x) = q.
The proof of Theorem 2.3.2 proceeds by enumerating the gates, from left to right in a planar
embedding of the circuit's underlying graph, and considering “blocks” of consecutive 1s in this
enumeration. A key argument of the proof is that a block can never split. Unfortunately, for
multi-valued logic, this argument does not work. In section , we give conjectures on why is it so.
However, an equivalent notion can still be found:

Definition 2.3.3 Let Q be a finite set with a total order relation ≤. A local maximum in a
configuration x ∈ ZQ is a position i in x such that x[ i -1] ≤x[ i] ≥ x[ i+1] , and x[ i -1] ≠ x[ i] orx[ i] ≠ x[ i+1] (or both).

A local minimum is the same, with the order relation reversed.

This definition allows us to state the following lemma:

Lemma 2.3.8 Let F be a planar monotonic cellular automaton. If there is a finite number of
local extrema in some configuration x for F, then there cannot be more in F( x) .

Moreover, if there is a leftmost extremum in x, and it is a local maximum (respectively
a local minimum), then the left extremum in F( x) is also a local maximum (respectively a
local minimum).

Proof. There is no great intuition behind this proof. We just consider all the cases for the
orders between the states of a configurations, compute the relations on the states of its image
induced by the monotonicity of F, and check that it works.
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First consider the case of an isolated local maximum. Let itx be the cell at position i aftert iteration of the rule. If we assume that, at time t, i-2tx ≤ i-1tx ≤ itx ≥ i+1tx ≥ i+2tx , then at timet+1:
Either i-2t+1x ≤ i-1t+1x ≤ it+1x ≥ i+1t+1x or i-2t+1x ≤ i-1t+1x ≥ it+1x ≥ i+1t+1x

Because the pairs ( i-1tx , itx ) and ( itx , i+1tx ) are incomparable or equal, but since ≥ is a total order
relation, their images under F's local rule must be comparable.

Assume now that the local extrema are not isolated. In this case, we split the configura-
tion at points where two consecutive relations between states are equal: either a ≤ b ≤ c, ora ≥b≥ c. Between these zones, the relations are alternated, and each state is either a local
maximum, or a local minimum.

Let i be a position such that itx ≤ i+1tx ≤ i+2tx > i+3tx (a symmetric argument holds for itx ≥
i+1tx ≥ i+2tx ). Then we already know that it+1x ≤ i+1t+1x . Know let j be the first position greater thani such that:
1. Either jtx ≤ j+1tx ≤ j+2tx .
2. Or jtx ≥ j+1tx ≥ j+2tx .
But in either case, since i+1tx is not a local extremum at step t, the relations between two
consecutive states between position i+1 and j are undetermined. But this undetermined
portion has only one more cell, and since this changes the parity of its length, there cannot
be more alternations, and hence, no more local extrema.

Moreover, if there is an alternation after position i, then it must be a local maximum
(a local minimum in the symmetric argument). Therefore, the leftmost extremum remains
a maximum after one step if it was a maximum, and a minimum if it was a minimum.

This allows us to define a notion of “energy” in these automata. The problem is that such a defi-
nition, counting the local extrema, would be obviously decreasing on finite configurations (and
thus Lemma 2.3.8 would be useless), and infinite on non-trivial infinite configurations. Consid-
ering periodic configurations solves this problem:

Definition 2.3.4 Let Q be a finite set, and x a p-periodic configuration of ZQ , for some integerp. We call the energy of x, and we write E( x) , the following quantity:

E( x) = p| { i ∈ { 0,…,p-1} | i is a local extremum} | 
In words, the energy of a configuration is the number of local extrema in a period, divided by
the length of the period.

Lemma 2.3.9 Let F be a monotonic planar cellular automaton over alphabet Q, and x ∈ ZQ .
Then E( F( x) ) ≤ E( x) .
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Proof. This is an easy corollary of Lemma 2.3.8.

This does not yet allow to conclude, but at least allows us to suspect that these cellular automata
do not have a great simulation power:

Conjecture 2.3.1 There is no monotonic planar intrinsically universal cellular automaton. For
example, no monotonic planar cellular automaton can simulate the cartesian product of σ
and -1σ .

By the way, the proofs that a monotonic planar circuit of polynomial size is equivalent to a
circuit of polylogarithmic depth (see [39] for instance) do not apply when the alphabet is not
boolean. To our knowledge, this problem has not been solved yet:

Open problem 2.3.2 Let C be a monotonic planar circuit of polynomial size on some alphabetQ of cardinality at least 3. Is there an circuit computing the same function in polylogarithmic
depth? In logarithmic depth?

2.4 Bounds on the circuit complexity of automata

In this section, we present several research directions showing how to approach complexity
questions, and classical complexity classes, with cellular automata. This idea is still at the stage
of a research plan, as even the basic results of complexity theory, as seen in the last section
about monotonicity, are yet to be adapted. However, several clues show that this may be a per-
tinent approach: as we will see, the circuit families computing cellular automata are naturally
uniform (see Definition 2.1.3), and the objects may be studied from a topological point of view.
Moreover, we will see in chapters 3 and 4 several ways to lower bound the “simulation power” of
cellular automata by elegant arguments.

This section is focused on the simplest class of nc circuits, namely, 0nc , the uniform
families of circuits of constant depth. The cellular automata that can be predicted by circuits of
these families obviously have a constant number of inputs, at each step. The converse also holds:

Definition 2.4.1 Let F by a cellular automaton with alphabet Q and radius r. A dependency of F
at step t is a position -rt ≤ i ≤ rt such that there is a configuration x ∈ 2rt+1Q and two statesq,q' ∈Q, such that: tF ( -rtx … i-1x q i+1x … rtx ) ≠ tF ( -rtx … i-1x q' i+1x … rtx ) 
Moreover, we call tD ( F) the set of dependencies of F at step t, and we call a witness of a positioni, a configuration x of 2rt+1Q such that there are q and q' such that tF ( -rtx … i-1x q i+1x … rtx ) ≠tF ( -rtx … i-1x q' i+1x … rtx ) .
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Our first result shows that it is undecidable whether a given cellular automaton has a bounded
number of dependencies:

Proposition 2.4.1 Let F be a cellular automaton and m an integer. The problem of deciding
whether | tD ( F) | ≤m for all t is undecidable.
Proof. If it were decidable, we could use an algorithm for it to decide the nilpotency problem,
which was shown undecidable by Kari [40]. To show this, from any cellular automaton G, we
construct a cellular automaton depending on at most m cells if and only if G is nilpotent.

Let G, be a cellular automaton with alphabet Q, radius r. Take some q∈Q such thatg( 2r+1q ) = q (if there is no such q, then G is not nilpotent). We construct a cellular automatonF by adding another layer to G, with alphabet { 0,1} , radius r, whose behavior is the following:
if all the neighbors of a cell, on the G component, are in state q, then become 0.
else become 1.

If there is some 0t such that ∀ t≥ 0t , ∀x, tG ( x) = q, then for any t ≥ 0t , tD ( F) = ∅. Else, there
are configurations where F computes the “or” of all the new layer. To see this, let 0t be any
integer, and x be such that 0tG ( x) ≠ q. Since g( mq ) = q, there must be, at each step t between 0
and 0t , a subword of the tF ( x) with the qs at most r cells from each other. Let us take a maximal
such subword. If its size is, at some step 1t , larger than m, then the new layer is computing the
“or” of at leastm+1 cells, and 0t - 1tF depends on more thanm cells. Else, we can take a maximal
subword, and duplicate it several times with exactly r+1 cells in state q between the copies. In
this case, there can be no collision between the copies, and the new layer is computing the “or”
of the whole configuration.

Now, our interest for this class of cellular automata with a bounded number of dependencies
comes from the following result, linking a classical complexity class, 0nc , with these cellular
automata:

Proposition 2.4.2 Let F be a cellular automaton of radius r. Then FPred has a family of circuits
in 0nc if and only if there is an integer m such that for all t, | tD ( F) | ≤m.

Proof. As we said, the ⇒ direction is obvious. Now, if for all t, | tD ( F) | ≤m, then we only need
to construct an algorithm generating a family, and using only a logarithmic amount of space in
the size of the input.

We prove, by induction on the size of the configurations, that there is an algorithm,
running in logarithmic space, and computing, on input t written in unary, a circuit for FPred
on configurations of size 2rt+1, where the (at most m) inputs are labeled by their position on
the configuration.
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For configurations of size 2r+1, we can enumerate all the functions of 2r+1Q → Q, and
take the one that corresponds to F's local rule. We just have to check this, for each function,
on all the configurations of size 2r+1.
Assume we have a procedure working in logarithmic space to find a circuit tC for size 2rt+1. Then for configurations of size 2rt+2r+1, we can build a representation of a circuit C
with at most m+2r+1 inputs, computing the composition of tC and F's local rule.

Then, we enumerate again all circuits with m inputs, and verify each time, on all
the parts of the configuration t+1F might depend on (that is, all the words of size 2r+1 around the positions of tC 's inputs), if the enumerated circuit computes the correct
function. This involves circuit evaluation, but since the circuits are all of constant size,
with at most m integers represented in binary, this evaluation can clearly be done in
logarithmic space.

Once the correct circuit has been found, we use the logarithmic work space to compute
the new positions of the inputs and label the input nodes. Since t+1F is a cellular automaton
and depends on at most m cells, there must be a circuit with m inputs computing it, and
this circuit is equivalent to the composition of tF with F's local rule.

Now, our conjecture about those automata with a constant number of dependencies is the
following:

Conjecture 2.4.1 Let F be a cellular automaton. If there is an integer m, such that for all t,| tD ( F) | ≤m, then the dependencies are not too far from lines in the space time diagram. More
precisely, there are at most 2m real constants 1λ ,…, mλ , 1ϵ ,…, mϵ , such that:

∀t, tD ( F) ⊆ i⋃ { iλ t- iϵ ,…, iλ t+ iϵ } 
It is quite easy to see why this conjecture works for m = 0. For m =1, this not really difficult
either:

Proposition 2.4.3 Let F be a cellular automaton such that for all t, | tD ( F) | ≤1. Then Conjecture
2.4.1 is true for F.
Proof. Let Q be F's alphabet, and r its radius. For x ∈ 2r+1Q , there is an index -r ≤ i ≤ r such
that F( x) = g( x[ i] ) . Hence, tF = tg ( x[ i⋅t] ) 
In the case of m = 2, we can do almost the same:

Proposition 2.4.4 Let F be a cellular automaton such that for all t, | tD ( F) | ≤ 2. Then Conjecture
2.4.1 is true for F.
Proof. Let us call ti and tj the two dependencies of F at time t. There are two cases:
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Either the two dependencies can be arbitrary far from each other. In this case, for all N,
there is a time 0τ at which the two dependencies areN cells from each other. We will choose
a useful value forN later. For now, for all t, let ti be the position of F's leftmost dependency
at time t, and tj be the position of its other dependency.

By hypothesis, for all t, there is a function tg : 2Q → Q, such that for all x, tF ( x) =
tg ( x[ ti ] ,x[ tj ] ) . Since there are 2| Q| | Q| functions of 2Q → Q, by the pigeonholes principle,

between times 0τ and 0τ + 2| Q| | Q| +1, at least two must be equal. Thus, let 0t and 1t two inte-
gers such that 0τ ≤ 0t < 1t ≤ 0τ + 2| Q| | Q| +1.

We claim that, for 2t = 1t + ( 1t - 0t ) :
2tg = 1tg
2ti = 1ti + ( 1ti - 0ti ) and 2tj = 1tj + ( 1tj - 0tj ) 

Indeed, for all x ∈ 2r 2t +1Q :

2tF ( x) = 1tg ( tδF ( x[ 1i - r tδ ] …x[ 1i + r tδ ] ) , tδF ( x[ 1j - r tδ ] …x[ 1j + r tδ ] ) ) 
2tF ( x) = 0tg ( tδF ( x[ 0i - r tδ ] …x[ 0i + r tδ ] ) , tδF ( x[ 0j - r tδ ] …x[ 0j + r tδ ] ) ) 

Hence, since we have assumed that 1i and 1j were far away from each other (we should
choose N> 4r 2| Q| | Q| ), this means that 2i - 1i = 1i - 0i , and, similarly, 2j - 1j = 1j - 0j .
Or there is some constant d such that for all t, | ti - tj | ≤d, and in this case, we use a similar
argument on the block of size d between ti and tj .

Indeed, for each t, there is a function tg : dQ → Q and an index ti such that for allx ∈ 2rt+1Q , tF ( x) = tg ( x[ ti ] ,…,x[ ti +d-1] ) . Again, since there is a finite number of such
functions, in the

d| Q| | Q| first elements of sequence t( tg ) , at least two of them must be equal.
By the same argument, we conclude that the sequence t( ti ) is ultimately periodic.
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3 Communication complexity and intrinsic universality

Many processes in interacting systems, whether computational, social, biological... may be
viewed as series of communication between the parts of the system. This is the case, for instance,
in economics: economists, such as Hayek [41] or Stiglitz [42], sometimes think of their systems
as games of communications between their actors, and prove results with hypothesis such as
the communication of information among the “actors”. This is the case, for instance, in social
networks, that are actually very few things more than communication networks. This was also
the case, for instance, in section 2.3, where adding an hypothesis on the locality of communica-
tions changed drastically our computational power.

The formalism developed by Yao in 1979 (see [12]), in order to study the communications
inside a system, proved really pertinent in many fields of complexity theory. In this model, a
system must compute some function of an input distributed between its parts (often called
players in the sequel). Since each player knows only his part of the input, they need to commu-
nicate in order to compute the function. The communication complexity of the function is then the
total quantity of information that needs to be communicated between the players to compute
the function, without any assumption on their computational power.

3.1 Computation as transmission of information

In his seminal paper, Yao introduced this model with two players, giving to each of them
arbitrary computational power.

3.1.1 Definitions and first properties

Let X and Y be two finite sets, and φ : X×Y → { 0,1} a decision problem on space X×Y. Two
players, Alice and Bob, need to compute φ for some input ( x,y) ∈ X×Y. The problem is that
Alice knows only x, and Bob only y. In order to perform this task, they may thus need to
communicate using a protocol, chosen beforehand, and depending only on φ. This protocol must
specify, at each stage, whether the protocol is over, and the result has been found, or else, who
speaks, what he or she says, as a function of his or her input, and of the previous stages of the
protocol, as this is the only information available to the players.

In order to measure the amount of communication needed to compute φ, we follow a
more formal definition, and represent the protocols as binary trees, like the one on figure 3.1.
In these “protocol trees”, each internal node v is labeled by either a function va : X → { l ,r} ,
or a function vb : Y → { l ,r} , and each leaf is labeled by either 0 or 1. Finally, we say that the
protocol computes function φ correctly if for all ( x,y) ∈ X×Y, the leaf reached from the root by
turning left at each node v, if va ( x) = l (or vb ( y) = l), and right else, is labeled by φ( x,y) .

For the players, this means that each node v labeled by an va corresponds to a round
where Alice speaks, and each node labeled by vb corresponds to one where Bob speaks. At each
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node, the player who speaks may say only one bit, but he is allowed to speak several times
consecutively. Now what interests us in this formalism, is the number of communicated bits in
the worst case, that is, the maximum length of a path from the root to a leaf, or the tree height:

Definition 3.1.1 (from [43]) For a function φ : X×Y → { 0,1} , the (deterministic) communication
complexity of φ, also called its cost and written D( φ) , is the minimum over all protocols P com-
puting φ, of the height of P.

There is a very simple protocol, that works for any function: Bob sends all of his input to Alice,
she computes and outputs the result alone, and we are done. But in many cases, we can be more
clever than this. For instance, to compute the sum of all the bits in the input, Alice and Bob
may only communicate O( logn) bits: Alice may sum all the bits in her input, send the result
to Bob, and then Bob adds this sum the sums of the bits in his input, and outputs the answer.

In many cases though, there is no better protocol than the trivial one. To prove such lower
bounds, Yao considered the matrix φM of function φ, with its rows indexed by X, and its
columns indexed by Y, and defined by φM ( i , j) = φ( i , j) , and proved the following theorem:

Theorem 3.1.1 (from [43]) Any deterministic protocol of cost c, computing function φ, induces
a partition of φM into c2 monochromatic rectangles, that is, sets A×B such that A⊆ X andB⊆ Y.
Proof. We prove by induction on the height of the protocol tree that for any node v, the set vR
of inputs that reach v is a rectangle:

At the root, this is clearly the case since rR = X×Y.
Let vR = vA × vB be the rectangle corresponding to some internal node v, labeled by va .
Then the inputs reaching lv and rv , the two sons of v, are respectively rvR = ( vA ∩ v-1a ( { l} ) ) ×
vB and lvR = ( vR ∩ v-1a ( { r} ) ) × vB , which are again rectangles.

Thanks to this theorem, it becomes possible to lower bound the communication complexity of a
given function. For instance, consider the equality function, in which Alice and Bob each receive
an n-bit string, and they must decide whether these strings are actually the same. In the sequel,
we will often call this problem EQ. The matrix of this function is thus the identity matrix.
Proving a lower bound on the communication complexity of a function requires finding a lower
bound on the number of monochromatic rectangles in its matrix. To show this, we introduce
the following definition of fooling sets. The idea is that no two elements of a fooling set can be
in the same monochromatic rectangle:

Definition 3.1.2 (from [43] and [44]) A fooling set S ⊆ X×Y for a function φ is a set of inputs forφ such that for any two pairs ( 0x , 0y ) and ( 1x , 1y ) in S, either ( 0x , 1y ) or ( 1x , 0y ) is not in S.
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Consider again the example of the Eq problem, whose matrix is the identity. The set S ={ ( x,x) | x ∈ n{ 0,1} } is a fooling set of size n2 , since for any two different elements ( x,x) and ( y,y) 
of S, both ( x,y) and ( y,x) are colored 0, while ( x,x) and ( y,y) are colored 1 in Eq's matrix.

Finally, we mention another way of proving lower-bounds on the communication com-
plexity of a function:

Theorem 3.1.2 Let φ a function of X×Y → Z. Then 2log ( rank fM ) ≤D( f) , when the rank is
taken over the field of reals.

Proof. Let R be a monochromatic rectangle in matrix φM , then we define the matrix RM as

RM ( i , j) =1 if ( i , j) ∈ R, and 0 else. For a partition of φM into monochromatic rectangles

i( iR ) , φM = i∑ iRM . Since rank( φM ) ≤ i∑ rank( iRM ) , and the iRM are all of rank 1, the
result follows.

However, it is not known whether this bound is tight or not. This is called the “logrank
conjecture”:

Figure 3.1 - A protocol tree, along with the matrix of the computed function

0y 1y 2y 3y
0x 0 0 0 1
1x 0 0 0 1
2x 0 1 1 1
3x 0 0 0 0

1a ( 0x ) = l
1a ( 1x ) = l
1a ( 2x ) = r
1a ( 3x ) = r

2b ( 0y ) = l
2b ( 1y ) = l
2b ( 2y ) = l
2b ( 3y ) = r

3b ( 0y ) = r
3b ( 1y ) = l
3b ( 2y ) = l
3b ( 3y ) = l

4a ( 0x ) = l
4a ( 1x ) = l
4a ( 2x ) = l
4a ( 3x ) = r

0 1 0

1 0

Conjecture 3.1.1 For any function φ : X×Y → Z, D( φ) ∈O( 2log ( rank φM ) ) .
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3.1.2 Relations with classical complexity

The idea of communication complexity initially originated from the study of parallel com-
puting. But as we said in the introduction of this chapter, many processes, in any computa-
tional task, can be viewed as a protocol for communicating different parts of an input. In
fact, the idea had already been present, in sequential computing, before. The most notable
occurrence, to our knowledge, is to be found in the proof of the following theorem, by Alan
Cobham:

Theorem 3.1.3 (from [3]) The set pal of palindromes on an alphabet Σ requires Ω( 2n ) time on a
Turing machine with one tape and one head.

The idea of this theorem is to draw a line between two halves of the used space, and to watch
the sequence of states the machine is in when the head crosses this line. These sequences are
called crossing sequences. This idea has much to do with communication complexity, and has been
generalized by Juraj Hromkovič and Georg Schnitger to any Turing machine. In the following
theorem, the input is split in the middle between Alice and Bob: Alice gets the left An = \left_floor n/2\right_floor 
bits, and Bob gets the right Bn = \right_angle n/2\right_ceiling bits, of the input. The communication problem is now
well defined, with function L,nφ : An{ 0,1} × Bn{ 0,1} → { 0,1} defined by L,nφ ( x,y) = L,nχ ( xy) , the
characteristic function of L.

Theorem 3.1.4 (from [45]) Let L⊆ { 0,1} . For any Turing machine M with one tape and one
head recognizing L, let MT ( n) be its running time on inputs of size n. We have:

MT ( n) ∈ Ω( D 2( L) ) 
As a natural model of parallel computing, boolean circuits have even more to do with commu-
nication complexity. Indeed, the following two results show how a gate in a circuit, or in a
formula, can be seen as a communication step between two sub-circuits.

Proposition 3.1.5 For any function φ : n{ 0,1} → { 0,1} , any input splitting σ, and any binary
circuit φC computing φ, we have: | φC | ∈ Ω( D( φ∘σ) ) 
Proof. The proof is done by constructing a protocol computing φ, with cost | φC | , if φC is a
circuit for φ. This is done by coloring all the gates in the circuit by either A or B, depending
on which players knows the output of the gate. The players then follow the circuit from the
leaves to the root, using the following procedure:

The value of each leaf, that is, of each node of level 0, is known either by Alice or by Bob,
depending the repartition of the inputs.
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Then, assume we have a coloring of all the gates at level l. Then we can color each gate of
level l+1 either byA if both of its inputs have colorA, byB if both of its inputs have colorB. If the colors differ, either Alice communicates the value of the gate's input she knows,
and the gate gets colored in B, or Bob does it, and the gate gets colored in A.

Unfortunately, this technique does not allow to prove lower bounds on circuit size larger than n
for inputs of size n, which, as we have seen in section 2.1.1, is not much better than proving that
the computed function depends on all its input. However, what is notable in this proposition
is that we did not need to make any hypothesis on the particular gate set used by the circuit.

3.1.3 Splitting the input

The framework of communication we have introduced only considers functions working on
Cartesian products of two sets. Studying traditional computational problems within it requires
to decide how to split the input between the players. Theorem 3.1.4, for instance, required that
the input be split in the middle into two contiguous parts of equal length, with Alice getting then/2 first bits, and Bob the n/2 last ones. In proposition 3.1.5, however, the splitting was freer,
but since we were proving a lower bound, the sensible choice was the one maximizing the com-
munication complexity.

There is a discussion of the topic in chapter 7 of [43], where the propositions of splitting are
either the worst partition over all sets, as in proposition 3.1.5, or the one minimizing the com-
munication complexity, with the additional constraint that the sets be of equal size. In our case,
since most of the systems we are going to study in this chapter are cellular automata, which areσ-commuting functions, the natural way of splitting the input is into a left and a right part,
choosing the size of these so as to maximize the communication complexity. Indeed, the parts
need to be contiguous in order for the complexity to be compatible with the simulations we
have defined in 1.2. Moreover, we need to allow to cut the configuration at any position, since it
would be easy, by simply applying shifts, to transform any complex automaton into a trivial one.
We may thus define, for alphabetQ, any integer n, and i ≤ n, the i-concatenation function iC :iQ× n-iQ → nQ . We can now properly define what we mean by the communication complexity
of a computational problem:

Definition 3.1.3 Let nφ an application of nQ → Z. The communication complexity of φ,
hereafter denoted as cc( nφ ) , is defined by:

cc( nφ ) = i≤nmax D( nφ ∘ iC ) 
On some problems, this question is non-trivial. For instance, we will see in section 3.3.1 the
example of a cellular automaton with two distinct maxima in its communication complexity.
Before that, the following lemma will be quite useful in the understanding of the proofs below:
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Lemma 3.1.6 Let L be a rational language. Then cc( Lχ ) ∈O( 1) .
Proof. Since there is a finite automaton recognizing L, then for any splitting of the input,
Alice begins to run the automaton on the left part of the input, she transmits her last state
to Bob, who resumes the recognizing and answers.

3.2 Communication complexity of cellular automata

The concepts of universality is a fundamental idea in the theory of computing, almost since
the beginning of this theory. Its latest extension is the concept of completeness in complexity
theory. However, proving lower bounds and necessary conditions for complexity is usually a
hard task. In this chapter, we generalize the approach started in [14] and [18], to prove necessary
conditions for intrinsic universality, using communication complexity. This also allows us to
develop another point of view on the concepts of bulking (see [9] and [10]). The idea is the same
as completeness for complexity classes: if we study a particular dynamical aspect of a cellular
automatonA, then this dynamical aspect must be at least as hard to analyze as the same aspect
on the cellular automata we claim A simulates.

The difference with classical complexity theory is that our objects of study are now, almost
by definition, dynamical systems, and thus we may use results of this field of mathematics to
help our understanding of these objects. Another difference is that the experimental approach
has been present in dynamical systems almost since the beginning, and communication com-
plexity also opens the way to a rich playground of experimentation.

3.2.1 Communication problems

Cellular automata have always been studied under a variety of points of view and questions,
whether dynamical, topological, or computational. As observed by [18], some of these properties
are “compatible” with the simulations we defined in section 1.2, which means that if property P
is easy to decide on automatonA, then it must also be easy to decide on automatonB\preceq A. In
this section, we are going to define what a “property” means in terms of communication prob-
lems, and show some properties that are compatible with our notions of simulation:

Definition 3.2.1 LetA be the set of all cellular automata. A problem onA is a family of functions

F∈A( FP ) indexed by A.

3.2.1.1 The prediction problem

We have already seen a communication problem in chapter 2, under the name Pred. Let us
recall its definition: This problem is quite natural: it is the problem of predicting the future of a
given configuration for the rule under consideration.
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Definition 3.2.2 Let F be a cellular automaton over state set FQ . The problem FPred is
defined by: ∀ x∈ FQ *, FPred ( x) = F*( x) [ 1] 

Where F *( x) [ 1] means the first letter of word F *( x) , as defined in section 1.1.1.

As explained in section 3.1.3, it is easy to convert this decision problem into a communication
problem iφ : iQ× n-iQ , where iφ ( x,y) = FPred ( xy) . We can then define the communication
complexity of FPred as cc( FPred ) = 0≤i<nmax D( iφ ) .

There are classes of cellular automata for which this problem is easy, as proved in [36]. For
instance, the class of linear automata (see definition 1.3.6). This class has been often deemed
“chaotic” for its topological properties. To our knowledge, the approach closest to ours is to be
found in a paper by Chris Moore [26], where the author constructs smart algebraic formulas
to predict cellular automata with several distinct algebraic structures. Our approach allows for
much simpler proofs with less hypotheses:

Proposition 3.2.1 Let F be a rule on an alphabet FQ with a particular state 0, ⊕ an operator on

FQ , such that ∀a∈ FQ , 0+a = a+0 = a, and F( a⊕b) = F( a) ⊕F( b) . Then:
cc( FPred ) ∈O( 1) 

Proof. For any a ∈ FiQ , any b ∈ Fn-iQ . It is enough for Alice to compute FPred ( a0…0) , for Bob to
compute FPred ( 0…0b) , and then withinO( 1) bits of communication, to compute the final result

FPred ( a0…0) ⊕ FPred ( 0…0b) .
If F is equicontinuous, this problem is also easy. Indeed, if F is equicontinuous, it has only a
constant number of dependencies, as shown by Sablik in [46], and thus Alice and Bob only need
to communicate a constant number of cells to compute the result.

3.2.1.2 The temporal invasion problem

Problem TInv is the problem of deciding whether, in a periodic configuration up , changing a
finite portion of the configuration from its original value to x affects the long-term behavior
of the automaton, that is, if the configuration will be forever different from the original one.

Definition 3.2.3 Let Q an alphabet, and u a finite word of Q* of length n. We denote by up the
configuration defined by ∀ i∈Z, up [ i] = u[ imodn] 

We denote by up ( x) the configuration define by up ( x) [ i] = x if 0 ≤ i <| x| , and up ( x) [ i] =
up [ i] else.
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Definition 3.2.4 Let F be a cellular automaton over state set FQ , and u some word of Q*. The
problem F,uTInv is defined by:

FTInv ( x) = 1 if and only if ∀ t∈ℕ , tF ( up ( x) ) ≠ tF ( up ) 
In the corresponding communication problem, the input is only x, since u, and thus up , are
known by both players. From theorem 1.3.1, we can already state the following result:

Proposition 3.2.2 Let F be a surjective cellular automaton over state set Q. Then:

∀u∈Q*, cc( F,uTInv ) ∈ O( 1) 
Proof. From theorem 1.3.1, since up and up ( x) differ only on a finite number of positions, then
for all t, if tF ( up ) ≠ tF ( up ( x) ) then t+1F ( up ) ≠ t+1F ( up ( x) ) . Thus it is enough for Alice and Bob
to check if their part of the configuration differs from the corresponding positions in up , and
this information can be communicated within only one bit of information.

3.2.1.3 The spatial invasion problem

In the previous problem, the differences may stay or not in the configuration. However, this
does not say anything about the shape of the changed zone. For instance, it may be the case, as
in the shift automaton, that the changed zone stay the same forever. Or, as when the automaton
has a spreading state, for instance, that the entire configuration be invaded. This is exactly the
question we ask in problem SInv: for a given word u, does the width of the zone changed
between tF ( up ) and tF ( up ( x) ) extend infinitely as t grows ?

The formal definition of the “width” of a zone is as follows:

Definition 3.2.5 Let F be a cellular automaton over state set Q, and u a finite word of Q*.
We denote by lδ ( t) (respectively rδ ( t) ) the leftmost (respectively rightmost) difference betweentF ( up ( x) ) and tF ( up ) , that is:

lδ ( t) = min{ i | tF ( up ( x) ) [ i] ≠ tF ( up ) [ i] } 
rδ ( t) = max{ i | tF ( up ( x) ) [ i] ≠ tF ( up ) [ i] } 

Then:

F,uSInv ( x) =1 if and only if t →∞lim | rδ - lδ | = ∞
Again, there is a class of cellular automata for which this problem is easy: the class of positively
expansive cellular automata:
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Proposition 3.2.3 Let F be a positively expansive cellular automaton over alphabet Q, then for
any u ∈Q*, there is a protocol in O( 1) communicated bits for F,uSInv .

Proof. According to a classical result by P. Kůrka in [47], there is a positive constant α such
that lδ ( t) ≤ -αt and rδ ( t) ≥αt. Therefore, Alice and Bob only have to check that up ( x) ≠
up , which can be done with one bit of communication, since each player can check his own

configuration separately.
For equicontinuous cellular automata, this problem is not hard either:

Proposition 3.2.4 Let F be an equicontinuous cellular automaton. Then for all u ∈ FQ ,D( FuSInv ) ∈O( 1) 
Proof. This is almost the definition of equicontinuity.

3.2.1.4 The cycle-length problem

In this last problem, we consider spatially periodic configurations. It is easy to see that the
sequence c, F( c) , 2F ( c) ... becomes periodic after at most n| Q| steps, if Q is the alphabet of
cellular automaton F, and n the length of the spatial period of configuration c. This problem
is the problem of deciding, for a given uniform bound k on the period length, if the length of
the period, on the input configuration, exceeds k. Formally:

Definition 3.2.6 Let F a cellular automaton, operating on alphabet Q, and c a periodic config-
uration, for F. The length of the period of F on c is:

λ( F,c) = min{ p | ∃ 0t , ∀ t≥ 0t , t+pF ( c) = tF ( c) } 
Definition 3.2.7 Let F be a cellular automaton, and k an integer. Problem FkCycle is defined
by:

FkCycle ( c) =1 if and only if λ( F,c) ≥k
Again, there is a natural class of cellular automata for which this problem is simple, the reversible
ones. Here is why:

Proposition 3.2.5 Let F be a reversible cellular automaton, and k an integer. Then there is a
protocol for FkCycle in O( 1) communicated bits.

Proof. Since F is reversible, and ultimately periodic on configuration c, it is in fact periodic. To
see this, let p = λ( F,c) , and 0t the smallest integer such that 0tF ( c) = 0t +pF ( c) . Assume that 0t >
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0. Then, 0t -1F ( c) ≠ 0t -1+pF by minimality of 0t , but F( 0t -1F ( c) ) = F( 0t -1+pF ) , which contradicts the
fact that F is reversible.

Let us call r the radius of F. Thus, if the players send to each other the left kr cells, and the
right kr cells of their respective configuration, they can compute the evolution of the automaton
for k steps, and check at each step if they have already seen the configuration.

3.2.2 Necessary conditions for universality

Now, our method is the following: for each problem P that we have defined in section 3.2.1,
we are going to show that if A \preceq B, then cc( AP ) \prec cc( BP ) (with \prec the relation defined in
Definition 2.2.2). Then, constructing a cellular automaton hard for problem P (that is, with its
communication complexity in Ω( n) ) will be enough to show that for a cellular automaton A to
be universal, it must verify cc( AP ) ∉ o( n) . This is because if some function f : Z → Z is inΩ( n) , and g : Z → Z is such that f \prec g, then g ∉ o( n) .
3.2.2.1 Compatibility with simulations

For problem Pred, we have the following:

Proposition 3.2.6 If F \preceq G, then cc( FPred ) \prec cc( GPred ) .
Proof. We consider each of the ingredients involved in relation \preceq :

Sub-automaton: if F \sqsubseteq G, then each valid protocol to compute GPred is also a valid
protocol to compute FPred , because this relation only involves a local renaming of the
states by Alice and Bob.
Iteration of the rule: We have cc( tFPred ) ∈ θ( cc( FPred ) ) , since we can use a protocolP for tFPred to solve FPred . If F has radius r, then tF is an automaton of radius rt. This
means that on a configuration x, Alice and Bob can use P, at most rt times, to predict
the \left_floor | x| /( rt) \right_floor F ( x) , that has at most rt cells, and then output the answer by computing the
remaining iterations on this result.

The other direction is simpler, as Alice and Bob can simply apply the same protocol.
However, tF has radius rt; therefore, if the size of the input is not a multiple of t, Alice and
Bob may compute too many iterations of the rule. The solution is to forget the | x| mod( rt) 
rightmost states of the configuration, and then apply the protocol for FPred .
Packing: Let F be a cellular automaton, and n be fixed. We can solve \left_angle m,1,0\right_angle FPred using a
protocol for FPred : indeed, what a protocol for \left_angle m,1,0\right_angle FPred computes is the value of a block ofm cells, thus applying m times a protocol for FPred yields the result. Therefore:

cc( \left_angle m,1,0\right_angle FPred ) ( n) ≤mcc( FPred ) ( n) 
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To see why the converse holds, we need to build a protocol for FPred from a pro-
tocol for \left_angle m,1,0\right_angle FPred . The problem is that in an arbitrary splitting of the input for F, Alice
and Bob may not know the central block of m cells. But at most m states need to be
communicated, before applying the protocol for \left_angle m,1,0\right_angle FPred , for Alice and Bob to know
this block.

cc( FPred ) ( n) ≤ cc( \left_angle m,1,0\right_angle FPred ) ( \right_angle n/m\right_ceiling ) +m log( | FQ | ) +O( 1) 
Shift: This operation only affects the splitting of the input, and the radius of the rule. Since
we consider the worst-case splitting in both F and G, this operation does not change the
communication complexity of Pred: a protocol for size n for \left_angle 1,1,0\right_angle F will work for size n+2z
for \left_angle 1,1,z\right_angle F .

Now, for problem TInv, the same result also holds:

Proposition 3.2.7 If F \preceq G, and Fu ∈ FQ *, then there exists Gu ∈ GQ * such that cc( F FuTInv ) \prec 
cc( G GuTInv ) .
Proof. First, thanks to the properties of simulation \preceq , if c is a periodic configuration of FQ ,
then there is a corresponding periodic configuration of GQ on which G simulates the behavior
of F.

Packings: By the same arguments as in proposition 3.2.6, for any m,t, z, then for word

Fu , defined as the concatenation of m times word Fu , \left_angle m,t,z\right_angle F FuTInv if and only if F FuTInv .
Hence, the two problems have the same communication complexity, up to a constant
term to compute the packed input from the unpacked one (as in the proof of proposition
3.2.6).
Sub-automaton: If F \sqsubseteq G, if we have a protocol for any u ∈ GQ , we can use it to decide for

FvInv , for all v ∈ GQ . Here is how: in the first step of the protocol, Alice and Bob both convert
their respective configuration into a configuration of GQ . This conversion gives a unique
result, and requires no communication. Then, they use the protocol for G to decide the
result. Since relation \preceq corresponds to a one-to-one map from configurations of GQ to the
configurations of GQ , the invasion happens in F if and only if it happens in the corresponding
configuration of G, so this protocol computes the correct result.

We can again prove the same result for SInv:

Proposition 3.2.8 If F \preceq G, and Fu ∈ FQ *, then there exists Gu ∈ GQ * such that cc( F FuSInv ) \prec 
cc( G GuSInv ) .
Proof. For the same reasons as in proposition 3.2.7, if c is a periodic configuration of FQ , then
the corresponding configuration of GQ for \sqsubseteq is also periodic, so that

Packings: By the same arguments as in proposition 3.2.7, for any u ∈ FQ , \left_angle m,t,z\right_angle F FuSInv if and
only if F FuSInv , and therefore, cc( \left_angle m,t,z\right_angle F FuSInv ) = cc( F FuSInv ) .
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Sub-automaton: By the exact same argument as in proposition 3.2.7, since if F \sqsubseteq G, the
sub-automaton relation induces a one-to-one mapφ from configurations for F to configura-
tions for G. Thus, the two functions lδ and rδ are exactly the same in F and in the restriction
of G to the configurations of φ( FQZ ) , and the method we used in proposition 3.2.7 to get a
protocol for FuSInv from a protocol for GvSInv is still usable here.

Finally, for our problem Cycle, this result also holds:

Proposition 3.2.9 If F \preceq G then cc( FkCycle ) \prec cc( Gk'Cycle ) .
Proof. The effect of rescaling transformations on cyclic orbits of periodic configurations is to
change the spatial period length, as well as the temporal cycle length. More precisely:

If F \sqsubseteq G then for any k, cc( FkCycle ) \prec cc( GkCycle ) .
For any k,

cc( FkCycle ) \prec cc( \left_angle m,1,0\right_angle FkCycle ) and cc( \left_angle m,1,0\right_angle FkCycle ) \prec cc( FkCycle ) 
For any t and any k:

cc( \left_angle 1,t,0\right_angle FkCycle ) \prec cc( FktCycle ) 
For any t and any k such that kmodt = 0:

cc( FkCycle ) \prec cc( \left_angle 1,t,0\right_angle Fk/tCycle ) 
Altogether, this proves the proposition

3.2.2.2 Hardness and orthogonality of the basic problems

A natural question that can be asked about these definitions is why we need more than one
problem. As noted in section 3.2.1, each problem makes a different class of cellular automata
easy. To formalize this notion, we need to prove, for each couple of basic problems, the existence
of a cellular automaton hard for one problem, and easy for the other one. “Hard” here means
with maximal communication complexity, while “easy” means in O( 1) .

We first construct a cellular automaton Φ easy for Pred, (that is, with its communication
complexity in O( 1) ), and hard for all the other problems (that is, in Ω( n) ).

The idea of the construction is to embed an equality test (more precisely, a palindrome
test) launching signals that invade the configuration if the test fails, while keeping the Pred
problem easy. Deciding if a word is a palindrome is the same as deciding if the two players
have the same configuration, which, according to the example we gave for definition 3.1.2,
requires Ω( n) bits of communication.

To do this, we will use two components, one with signals moving quickly out of the way, and
the other one with tests, launching the signals on the other component while staying unaltered:
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1. The first layer has alphabet 1Γ = { 0,1,0,1,⊤, 1∅ , 1K } . The x shift to the left, and the x to the
right. The 1K state is spreading, and if there is no 1K in its neighborhood, the ⊤ state
stays unaltered.

2. The second layer is an automaton on alphabet 2Γ = { s, 2∅ ,→,←, 2K } , where the → and ←
shift to the right and to the left, respectively, 2K is spreading, and 2∅ is quiescent. Also, states represents a “seed” for the signals, meaning that when it appears, it disappears on the
next step, launching a ← on its left, and a → on its right. Moreover, → and ← signals can
cross: if a cell has a → on its left, and a ← on its right, it becomes an s.

We need to add a few rules to make sure that degenerate configurations are simple for both
problems, and this is the purpose of states 1K and 2K : if one of them appears on a layer, then it
makes the other one appear, and they propagate on the whole configuration, erasing everything.
This happens:

When a x state appears on the left of a x, on the first component.
Or when a x appears in the same cell as a ← (or a x in the same cell as a →). This ensures
that signals → and ←, on the second component, can never cross.

Finally, in order to perform an equality test, we add the rule that if a⊤ state has a a on its left, ab on its right, where a ≠ b, then an s appears on the next step on the second layer.

Proposition 3.2.10 Automaton Φ is such that:
1. cc( ΦPred ) ∈O( 1) .
2. there is a word u ∈ ΦQ such that cc( ΦuSInv ) ∈ Ω( n) and cc( ΦuTInv ) ∈ Ω( n) .
3. For all integers k, cc( ΦkCycle ) ∈ Ω( n) .

0 1 0 0100 1⊤

⊤s⊤⊤
⊤ →←

Figure 3.2 - Rule Φ
Proof.
1. A protocol for ΦPred needs to predict the value of both layers. First, if the configuration is

not well-formed, that is, a left part with only x states, and a right part with only x states,
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separated by a ⊤ if both parts are not empty, then a 1K and a 2K state will appear, and thus
the result will be state ( 1K , 2K ) . This can be checked locally by Alice and Bob, and transmitted
within a constant number of communicated bits; indeed, these configuration is easily
described by a regular expression, and Lemma 3.1.6. Else:

On the first layer, the result will always be the result of a shift, or, in the case where the
central cell is a⊤, also a⊤. This can be easily checked within constant communication.
On the second layer, there are four (possibly overlapping) possibilities:

If the leftmost state of Alice's differs from the rightmost state of Bob's, and the
central cell is a⊤ state, then the result is⊤ on the first component, and an s on the
second one.
If the central cell is not a ⊤, but there is a ⊤ somewhere else in the configuration,
and the corresponding word is not a palindrome, the top state is a →.
If the initial configuration contains an s or a→ in its leftmost cell, and an s or a←
in its rightmost cell, an s is generated at the top of the triangle. If only one side has
an s or an arrow, then an arrow arrives at the top.
In all other cases, the result is a 2∅ .

All of these cases can be checked by Alice and Bob using only local information, thus the
amount of communication needed is constant.

2. To show that Φ is hard for SInv and TInv, it is enough to find a word u and a fooling set
for ΦuSInv and ΦuTInv of size S with log| S| ∈ Ω( n) :

S = { ( 1x , 2∅ ) …( nx , 2∅ ) ⊤( nx , 2∅ ) …( 1x , 2∅ ) | ∀i , ix ∈ { 0,1} } 
3. If the initial configuration is incorrect, then the period is 1. Else, if the configuration has no⊤ state, then the dynamics is either a shift (if there are signals), or the identity. In all these

cases, this condition can be checked within O( 1) bits of communication.
Finally, if the configuration is well-formed, and there is a ⊤ state, the same fooling

set as in case 2 can be used.

Now, we are going to construct a cellular automaton Χ easy for Cycle, and hard for TInv
and SInv:

Proposition 3.2.11 There is a cellular automaton Χ, and a word u such that:
1. cc( ΧuTInv ) ∈ Ω( n) , cc( ΧuSInv ) ∈ Ω( n) and cc( ΧPred ) ∈ Ω( n) .
2. For all k, cc( ΧkCycle ) ∈O( 1) .
Proof. The idea is to reuse the construction of Φ, by simply adding the following two rules:

On the second component, when two signals should cross, they disappear instead. Formally,
when a cell sees two signals in colliding directions in its neighborhood, it becomes a 2∅
state. Thus, no signals in opposite directions can coexist for more than n steps, and all
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configurations that are not shifts are of period 1. This can still be checked, by the same
argument, in O( 1) bits of communication.
On the first component, we add a state⊥, such that when a test fails, it sends signals on the
second component, but also transforms⊤ into⊥. These⊥ states have the same behavior as⊤s, except that they do not launch signals on test failures, and they can never return to state⊤. This makes the Pred problem also difficult, since it amounts to the problem of deciding
whether a test has ever failed.

Now that we know how to make cellular automata that have their Pred and Cycle problems
hard, we can easily trivialize their SInv and TInv problems:

Proposition 3.2.12 There is a cellular automaton Ψ, and a word u such that:
1. for all k, cc( ΨkCycle ) ∈ Ω( n) .
2. cc( ΨPred ) ∈ Ω( n) .
3. cc( ΨuSInv ) ∈O( 1) .
4. cc( ΨuTInv ) ∈O( 1) .
Proof. We need to make two modifications from Φ:

The first one is to add two states to the second component, ⇀ and ↼, that are launched
each times the equality test perform by ⊤ succeeds (that is, when state s does not appear).
This makes SInv and TInv trivial, while keeping the kCycle problem hard for all k.
The other modification is the same as in proposition 3.2.11. We add a state ⊥ to the first
component, that launches only ⇀ and ↼ signals, whatever the result of the test.

This makes the SInv and TInv problems trivial, because they now amount to decide whether
the configuration has a ⊤ or ⊥ state initially, and whether they will ever launch spreading
states. The other two problems are shown to be in Ω( n) with the same fooling set as in
proposition 3.2.10.

The last two automata we need to complete our proof of mutual “orthogonality” are examples
for SInv and TInv:

Proposition 3.2.13 There is a cellular automaton Υ such that:
1. ∃u, ΥuSInv ∈ Ω( n) 
2. ∀u, ΥuTInv ∈ O( 1) 
Proof. We use again essentially the same construction as for Ψ, in the proof of proposition
3.2.12, but this time, instead of launching signals ⇀ and ↼, we launch only one type of signals,
but on the left side only when the test succeeds, and on both sides else. With the same argument
as in the proof of that proposition, it easy to see that this automaton has communication
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complexity in O( 1) for TInv, because even if no spreading state is raised, either the automaton
is a shift, or there is a ⊤ state, launching signals at each step.

The same fooling set as for the proof of proposition 3.2.10 can be used once more here. On
these configurations, signals are launched on both sides if and only if at least one test fails.
Else, the configuration is never invaded.

Proposition 3.2.14 There is a cellular automaton Υ' such that:
1. ∃u, Υ'uTInv ∈ Ω( n) 
2. ∀u, Υ'uSInv ∈ O( 1) 
Proof. We only need one component, similar to the first component of Φ, with an alphabetΓ = { 0,1,0,1,⊤,⊥,∅} . The x shift to the left, and the x to the right. The idea is that ∅ is almost
spreading, i.e. it spreads to any other state, except ⊤ and ⊥.

This way, no invasion can ever occur. A fooling set for this problem, with word u = ∅, is for
instance { 1x … nx ⊤ nx … 1x } .
3.2.2.3 Necessary conditions for universality

As a consequence of all the propositions of section 3.2.2.2, we get the following theorem:

Theorem 3.2.15 Let F be an intrinsically universal cellular automaton. Then:

cc( FPred ) ∉ o( n) 
∀k, cc( FkCycle ) ∉ o( n) 

∃ u∈ FQ *, cc( FuSInv ) ∉ o( n) 
∃ u∈ FQ *, cc( FuTInv ) ∉ o( n) 

And none of these conditions is implied by any logical combination of the other ones.

Proof. This is because of the properties of relation \prec : if f \prec g, and f ∈ Ω( n) , then g ∉ o( f) .
Choosing communication problems to study intrinsic universality is a hard question. The first
problem to be studied under this approach was the Pred problem, in [14]. The approach was
later generalized by [36] and [48]. Another attempt was made in [49], but quite unrelated to
simulations, and thus to intrinsic universality. As noted in section 3.2.2.2, another concern,
in the choice of communication problems, is the utility of the new problem as a tool to prove
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non-universality. This is why we proved results of what we called “orthogonality”, in order to
verify that our four problems are really useful to our approach.

Surprisingly though, the logical combination of two orthogonal problems P and Q can
sometimes make up a new problem R, orthogonal to P and Q. We first proved this result,
in [48] with Raimundo Briceño, and we restate this result here. The example problem is the
following one:

Definition 3.2.8 Let F be a cellular automaton, and u a word over its alphabet. The problem

FuCInv is defined by:

FuCInv = FuTInv ∧ ¬ FuSInv

Proposition 3.2.16 There is a cellular automaton F, and a word u over the alphabet of F,
such that:

cc( FuCInv ) ∈ Ω( n) 
Proof. This is a simple corollary of proposition 3.2.13. Indeed, if FuCInv was simple (not inΩ( n) )
for all automata and all u, we could use a protocol not inΩ( n) for FuTInv to construct a protocol
not in Ω( n) for FuSInv , for all F and all u, and thus in particular for automaton Υ described in
proposition 3.2.13. This is because FuSInv = FuTInv ∧ ¬ FuCInv .

This method of proof can be further applied to prove, not constructively, that the three problems
SInv, TInv and CInv must be orthogonal, since any problem is a logical combination of the
other two:

Proposition 3.2.17 For any two problems P and Q among { SInv,TInv,CInv} , there is a cellular
automaton F such that:∃u, cc( FuP ) ∈ Ω( n) 

∀u, cc( FuQ ) ∈ O( 1) 
This definition also gives an interesting connection with a famous open problem called the
direct sum problem in [43]. In this problem, the players are requested to solve two unrelated
communication problems on two distinct inputs. That is, Alice receives two inputs fx and gx ,
Bob receives fy and gy , and they need to compute ( f,g) . The question is whether it would be
possible to find unrelated functions f and g for which a protocol for ( f,g) would use less
communication than the sum of the complexities of the best protocols for f and for g.
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Open problem 3.2.1 Let f : X×Y → Z and g : X'×Y ' → Z' be two independent functions. Also,
let h : ( X×X') ×( Y×Y ') → ( Z×Z') be the cartesian product of f and g, that is, h( ( x,x') ,( y,y') ) =( f( x,x') ,g( y,y') ) .

Is it possible that D( h) <D( f) +D( g) ?
3.3 Examples

In this section, we show examples constructions of the use of communication complexity with
cellular automata.

3.3.1 An example of non-trivial input splitting

Finally, let us conclude the presentation of this problem with the example of an input splitting
problem with two maxima:

Proposition 3.3.1 There is a cellular automaton F and two indexes i < j such that cc( FPred ) =D( FPred ∘ iC ) =D( FPred ∘ jC ) , and for any i < k < j, D( FPred ∘ kC ) < cc( FPred ) 
Proof. The first cellular automaton we build achieves only one maximum, but it demon-
strates the idea of the “guidance” system that we use in the final construction. Let Q={ a,b, a⊤ , b⊤ ,⊥,1, 2,K} , and F the automaton with alphabet Q, defined by:

F( 1, 2,x) = x,F( 2,x,1) =1,F( x,1, 2) = 2
F( x,y, z) = x when y∈ { a,b} and z ∈ { a,b} 

F( x,T,y) = xT ,F( xT ,y,x) = T
F( x,y, z) =K otherwise
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⊥⊥' 2 AA ⊥ 1 2 AA ⊥' 2 B 1 2 AA B ⊥ 1 2 B 1 2 AA B B⊤ 2 A 1 2 B 1 2 AA B B ⊤ 1 2 A 1 2 B 1 2 AA B B A⊤ 2 A 1 2 A 1 2 B 1 2 AA B B A ⊤ 1 2 A 1 2 A 1 2 B 1 2 AA B B A B⊤ 2 B 1 2 A 1 2 A 1 2 B 1 2 AA B B A B ⊤ 1 2 B 1 2 A 1 2 A 1 2 B 1 2 A
Figure 3.3

Now, let us build a symmetric version of this automaton. The easiest way to do this would
be to consider a cartesian product of F an a “reverted” version F. However, this would not prove
anything, as the communication complexity would stay high between the two maxima. Our
construction must thus ensure that we can only solve one of the two versions of the problem:
either the one with the ⊤s shifting rightwise, or leftwise. To achieve this, we use more or less
the same guidance system as before, although with two more states to make it reversible.
All the transitions “types” (modulo A/B symmetry) not yielding K appear on figures 3.4 and
3.5.

⊥⊥' 4 AA ⊥ 3 4 AA 2 ⊥ 2 3 4 AA 2 1 ⊥ 1 2 3 4 AA 2 1 ⊥' 4 B 1 2 3 4 AA 2 1 B ⊥ 3 4 B 1 2 3 4 AA 2 1 B 2 ⊥ 2 3 4 B 1 2 3 4 AA 2 1 B 2 1 ⊥ 1 2 3 4 B 1 2 3 4 AA 2 1 B 2 1 B⊤ 4 A 1 2 3 4 B 1 2 3 4 AA 2 1 B 2 1 B ⊤ 3 4 A 1 2 3 4 B 1 2 3 4 AA 2 1 B 2 1 B 2 ⊤ 2 3 4 A 1 2 3 4 B 1 2 3 4 AA 2 1 B 2 1 B 2 1 ⊤ 1 2 3 4 A 1 2 3 4 B 1 2 3 4 A
Figure 3.4

Now, the interesting part of this rule is that, contrarily to the one on figure 3.3, we can make
it symmetric. Moreover, the two sets of configurations, those with the ⊤s shifting to the right,
and those with the ⊤s shifting to the left, and where K never appears, are disjoint. If we try to
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make the two sides progress at the same speed, then a K appears, erasing all the configuration.
The analysis of the communication complexity is simple: if no K appears, then there must be at
most one of { ⊤, A⊤ , B⊤ ,⊥} (let us call them the test states from now on), at any step. If it is
not at position 3( n-1) /8 or 5( n-1) /8, for a configuration of size n, then the dynamics is
essentially a shift, and either Alice or Bob can predict it with no more communications. Else,
the problem of predicting whether the final state will be in { ⊤, A⊤ , B⊤ } , or in { ⊥,⊥'} amounts
to computing an instance of Eq on alphabet { A,B} , and has thus communication complexityΩ( n) .

Since we can describe all the sets of configurations by regular expressions, knowing in
which case we are can be done in O( 1) bits of communication by Lemma 3.1.6.

⊥A 4 ⊥'A 4 3 ⊥ AA 4 3 2 ⊥ 2 AA 4 3 2 1 ⊥ 1 2 AA 4 3 2 1 B 4 ⊥' 1 2 AA 4 3 2 1 B 4 3 ⊥ B 1 2 AA 4 3 2 1 B 4 3 2 ⊥ 2 B 1 2 AA 4 3 2 1 B 4 3 2 1 ⊥ 1 2 B 1 2 AA 4 3 2 1 B 4 3 2 1 B 4 A⊤ 1 2 B 1 2 AA 4 3 2 1 B 4 3 2 1 B 4 3 ⊤ A 1 2 B 1 2 AA 4 3 2 1 B 4 3 2 1 B 4 3 2 ⊤ 2 A 1 2 B 1 2 AA 4 3 2 1 B 4 3 2 1 B 4 3 2 1 ⊤ 1 2 A 1 2 B 1 2 A
Figure 3.5

3.4 The classical complexity of our problems

We now show how our approach may allow for a finer analysis of cellular automata than
classical complexity, by constructing example automata with a quite low communication com-
plexity (and therefore non-universal), but a maximal classical complexity in their respective
classes.

3.4.1 Pred is p-complete

It is a well-known result that any intrinsically universal cellular automaton is p-complete
for Pred. In this section, we prove a somewhat stronger result, by constructing a cellular
automaton that, while remaining p-complete, has a communication complexity in O( 1/kn ) , withk arbitrarily large.
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Proposition 3.4.1 Let k be an integer, then there is a cellular automaton F such that the
language of configurations x on which FPred ( x) =1 is p-complete, and cc( FPred ) ∈O( 1/kn ) .
Proof. Let M be a Turing machine. We construct a cellular automaton F simulating M slowly
but still in polynomial time: it takes kn steps of F to simulate n steps of M. Choosing a
p-complete M in the first place yields the p-completeness of FPred .

First, it is easy to construct a cellular automaton simulationg M in real time. We encode
each symbol of the tape alphabet of the Turing machine by a state of the cellular automaton,
and add a “layer” for the head, with alphabet { →,←} ∪ MQ , if MQ was the set of states of the
Turing machine. The rules are easy to infer from the transitions of M, with the addition that
we need to add a spreading state, erasing all the configuration whenever a → is found next to
a ←, without a head cell between them.

We then add a new layer to slow down the simulation: it consists of a single particle,
moving left and right inside a marked region of the configuration. More precisely, it goes right
until it reaches the end of the marked region, then adds a marked cell at the end, starts to move
left to reach the other end, adds a marked cell, goes right again, etc. Also, to ensure that there
is always one particle, we use the same construction with states → and ←. Clearly, for any cell
in finite marked region, seeing n traversals of the particle takes Ω( 2n ) steps. Then, the idea
is to authorize the Turing head to move only when it sees the particle in its neighborhood.
This ensures that n steps of the Turing machine take 2n steps of the cellular automaton
to simulate.

We can iterate this construction by adding another layer with a second particle controlling
the moves of the first one, etc. Finally, after adding k particles, the automaton simulates M,
slowed down by a factor kn . We can thus give a protocol in O( 1/kn ) bits for FPred :

Either the configuration is improperly encoded (i.e. there is a → next to a ← on any of the
layers, or several heads), and then the automaton will generate a spreading state at some
point; Alice and Bob can simply answer that, and this is always easy for them to detect, no
matter how the splitting of the input is.
Or there is a layer without particle, or no initial “marked zone”, then nothing can happen.
Alice and Bob know the answer in constant time.
Or the configuration is well-formed, and then the result of FPred only depends on 2 1/kn
cells around the central cell. Alice can thus simply communicate these cells to Bob, who
outputs the answer.

This proposition poses a natural open problem: how simple can a p-complete cellular automaton
be ? Is the bound of proposition 3.4.1 tight ?

Open problem 3.4.1 Is there a p-complete cellular automaton F with cc( FPred ) ∈ o( 1/kn ) for
any integer k ? and in O( logn) ?
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3.4.2 The invasion problems are 10Π -complete

Proposition 3.4.2
1. For any cellular automaton F and any word u, FuSInv ∈ 10Π .
2. There is a cellular automaton F and a word u such that FuSInv is 10Π complete, and yet

cc( FuSInv ) ∈O( logn) 
Proof.
1. Let F and u as in the proposition, and consider problem FuSInv . For an input 1x … nx , we use

the notations lδ ( t) and rδ ( t) for the leftmost and rightmost differences at time t between
the orbit of up and the orbit of up ( 1x … nx ) (see definition 3.2.5).

We need to prove the following lemma:

Lemma 3.4.3 There is a recursive function β such that for any n, any input 1x … nx and anyΔ ≥ 0: ∃t, rδ ( t) - lδ ( t) ≥ Δ ⇔ ∃t, t ≤β( Δ) ∧ rδ ( t) - lδ ( t) ≥ Δ
Proof. First, the orbit of up is ultimately periodic: there are 0t and 0p such that for anyt ≥ 0t , it holds that tF ( up ) = t+ 0pF ( up ) . Given an input 1x … nx for the problem, let us writew( t) the word of length rδ ( t) - lδ ( t) starting at position lδ ( t) in configuration tF ( up ( 1x … nx ) ) .
Assume that | w( t) | is bounded, then it is ultimately periodic; let us call its period 1p . But
now, lδ ( t) mod| u| is also ultimately periodic, since the orbit of up is, and | w( t) | is bounded.
If we call its period 2p , then the system is ultimately ppcm( 0p , 1p , 2p ) -periodic.

But if we assume ∀t, | w( t) | ≤ Δ, simulating the evolution for | w( t) | | Q| | u| 0p steps is
enough to pass through all the possible states of the system before returning to a state
already seen.

Now, by this lemma, the predicate ∃ t ≤β( Δ) , rδ ( t) - lδ ( t) ≥ Δ is recursive, and thus this
point follows from the following characterization of SInv:

FuSInv = ∀Δ≥0, ∃ t ≤β( Δ) , rδ ( t) - lδ ( t) ≥ Δ
2. It is sufficient to simulate a two-counters machine, according to a classical result by Minsky

[50]. Here is how to do it: our alphabet is { A,M,B,0,∅} ×( Q∪ { →,←,∅,κ} ) , where κ is a
spreading state and ∅ is quiescent. We say that a portion of the configuration is valid when
it is of the form 0* +A M +B 0* on the first layer of the cartesian product, and +→ q +← on the
second one.

The dynamics of the automaton is as follows:
Whenever the configuration is invalid, which can clearly be checked within O( 1) bits
of communication (thanks to Lemma 3.1.6), a κ state is generated and spreads.
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Else, on each coding segment, the (necessarily unique) head goes repeatedly from one
end of the segment to the other end, and extends the segment at each pass by adding a→ on its left, a← on its right, and a 0 on the data layer. If the extension step is blocked
by another segment, then the state κ is generated and spreads.
Moreover, at each pass on the segment, the head executes one of the basic instruction of
the underlying two-counters machine:

Testing if a counter is empty, which, in can be done by checking if there is a 0 on the
right, or on the left of the M state.
Decrementing can be done by replacing the leftmost A, or the rightmost B, by
a 0.
Incrementing can be done by replacing a 0 by A on the left of the leftmost A, or a 0
by B on the right of the rightmost B.
The head can also stop.

Moreover, if any behavior of the head leads to an incoherence (decrementing an empty
counter, writing a B instead of an A...), state κ appears and erases all the configuration.

With this definition, and if u = ∅, the halting problem for the two-counters machine
encoded in F reduces to FuSInv :

FuSInv ( x) = 0 ⇔ M loops or halts

Therefore, by a suitable choice of the machine M simulated by F, we can make FuSInv

10Π -complete.
To conclude the proof, we show that cc( FuSInv ) ∈O( logn) . For a given input w, split

between Alice and Bob, the following protocol runs in O( logn) bits and determines FuSInv :
First, Alice and Bob can check locally whether the configuration is correct. If it is, then
they know there is only one head. Then Alice can send the state of the counters of her
rightmost segment encoding a machine, along with the number of ∅s between this
segment and Bob's part. If this part collides with Bob's leftmost simulated machine,
then the configuration is invaded by κs.y This can clearly be done in O( logn) bits of
communication.
If there are several heads, and they do not halt, then the heads extending the → and ←
on the second layer will collide, generating a κ, and thus invading the configuration.
If the configuration is invalid, or if one of the machines does not loop or halt for itself,
then the result is known in O( 1) bits.

We can use the same construction to prove that there is an F and a u for which FuTInv is

10Π -complete, while remaining of quite low communication complexity:

Proposition 3.4.4
1. For any cellular automaton F and any word u, FuTInv ∈ 10Π .
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2. There is a cellular automaton F and a word u such that FuTInv is 10Π -complete, and yet
cc( FuTInv ) ∈O( logn) 

Proof. This proof is relatively simpler than the proof of proposition 3.4.2.
1. First, for any cellular automaton F of radius r, and any word u, there is a simple 10Π formula

corresponding to this problem:

∀t, ∃ i ≤ rt, tF ( up ( x) ) [ i] ≠ tF ( up ) [ i] 
2. Now, we can use almost the same construction, also with u = ∅ with an additional “clean-

er” state, launched by the head upon halting, and replacing all the As and Bs, on both
sides of the head, by ∅ on both components, then stopping at the end of the parts of the
configuration used by the simulation of the machine.

This way, on any u not completely blank, if the input contains a head, a κ state
will appear, invading the configuration. If the input has no head, the dynamics is triv-
ial. Now, if all the two-counters machines simulated by the input halt, the configura-
tion will become all blank again after they have all halted. Else, it will continue to run
forever.

3.4.3 Cycle is pspace-complete

We show a somewhat weaker result for this problem, than for the three previous problems;
although there is an F an a k for which FkCycle is indeed pspace-complete, we do not know of an
automaton achieving this with cc( FkCycle ) ∈ o( n) :
Proposition 3.4.5
1. For any cellular automaton F and any k ≥1, FkCycle ∈ pspace
2. There is a cellular automaton F and a integer k such that FkCycle is pspace-complete.

Proof.
1. Let F and k ≥1 be fixed. The length of the cycle reached by iterating F on a periodic initial

configuration c can be determined in polynomial space with the algorithm described below.
Let n be the period of c. Starting from c, the cycle is reached in less than n| Q| , where Q isF's alphabet:
1. Compute 0c = nαF ( c) . This can be operated directly on the configuration, without recording

the intermediate steps.
2. Save a copy of configuration 0c (still of size n), and start to simulate the automaton

for k steps on the working copy. At each step, verify if the current configuration
is equal to 0c . If so, output 1 and exit. Else, at the end of the k steps, output 0
and exit.
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2. To show this, we embed a Turing machine M, deciding a pspace-complete problem, into a
cyclic configuration for a cellular automaton. M works in polynomial space, meaning
that there is a polynomial P ∈ ℕ [ X] such that for any x ∈ Γ *, it will never use more thanP( | x| ) cells.

This embedding is very similar to the Turing computations that we performed with
cellular automata in the proof of proposition 3.4.1, without the moving particle. Then, if
we make the accepting state spreading, the configuration will be erased completely upon
acception of the input by M, and the cycle length will be 0. Moreover, the accepting state
launches a particle, erasing everything behind itself, while rotating. This proves than on
valid configurations, FkCycle ( \left_angle x\right_angle ) =1 if and only if M accepts x, where \left_angle x\right_angle means “an
encoding of x into a configuration for the cellular automaton”.

Now, a polynomial time transducer can easily output a configuration of F. It first
outputs a translation of the initial configuration, and then P( | x| ) blank states.

3.5 Experimental theoretical computer science

A particularly interesting part of the study of cellular automata is the experiments it allows for.
In this section, we show we took advantage of the ease of enumerating and simulating entire
classes of cellular automata, to prove real theorems. This approach, to our knowledge, has not
been so widely used yet to prove things, but rather to produce images of space-time diagrams.

Moreover, many theoretical results about communication complexity are based on provable
properties of function matrices, but are not aware of a general study on concrete matrices
generated by complex functions. This situation is not extremely different in the Turing world,
but this ability has not been largely used yet; to our knowledge, one of the most notable
publications in this field has been [51].

The beginning of this research direction was also motivated by Neary and Woods' result
about the p-completeness of rule 110. The common belief before this result was that simulating
Turing machines with this rule could only be done with an exponential overhead. Since, as we
have shown in section 3.4.1, the prediction problem of a universal cellular automaton must
be p-complete, this new result could possibly mean that an elementary cellular automaton
is universal.

In this section, we have used experiments on the communication complexity of elementary
cellular automata to pre-classify them according to their one-way communication complexity.
This restriction is justified by the following theorem:

Theorem 3.5.1 Let P be a protocol computing a function f of X×Y → Z, in which all the nodes
are labeled by ia s (that is, only Alice speaks). Then the monochromatic rectangles P induces
on matrix f are of the form 0X ×{ y∈ Y | f( x,y) = z} , for some 0X ⊆ X and z ∈ Z.
Proof. This is shown with an even simpler induction than in the proof of theorem 3.1.1:
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For a protocol when there is no need for communication, it is obviously true.
With more communication rounds, the first bit Alice says induces a partition of her inputs
into two sets 0X , 1X ⊆ X. By induction hypothesis, the end of the protocol partitions each
of these two sets again, so that 0X gets partitioned into a family i( 0,iX ) , and 1X into a family

i( 1,iX ) . In the end, the union of these families defines a partition of X×Y into sets of the form

jX ×{ y∈ Y | f( x,y) = z} .
The basic way of using this theorem is the following: we compute the exact one-way communi-
cation complexity for small classes of cellular automata by counting, for each input size n,
the number of different lines in matrices of n2M ( 2Z ) . This restriction is obviously justified by
complexity constraints: we could have as well assumed the log-rank conjecture (open problem
3.1.2, but, while it is quite easy to devise an algorithm to count the number of different lines in
a matrix, in linear time, this is not the case for matrix rank algorithms (which are all at least
quadratic in n2 ).

3.5.1 The elementary cellular automata

In this section, we present a collection of protocols built with the following methodology:
we classified the cellular automata according to their complexity for problem Pred (our only
problem with a reasonable computation time). Then, we tried to build a small protocol for
those cellular automata with low complexity. For some of them, such as rule 94 or 218, the
complexity of Pred was high, but there were “walls” in the rule, which made their SInv
problem trivial.

Proposition 3.5.2 Rules 15, 51, 60, 90, 105, 108, 128, 136, 150, 160, 170 and 204 are linear, and thus
have a prediction protocol in O(1).

Proposition 3.5.3 Rule 76 has a protocol in O(1) for Pred.

Proof. On all configurations after one step, rule 76 behaves like rule 204, because the only dif-
ference is on 111, which has no antecedent. Therefore, Alice and Bob need to communicate one
bit to compute the first step, and then follow the protocol for rule 204.

Proposition 3.5.4 Rules 0, 1, 2, 4, 8, 10, 12, 19, 24, 34, 36, 38, 42, 46, 72, 76, 108, 127, 138, 200 have a
constant number of dependencies, and thus have a protocol in O(1) for Pred.

Proof.
Rule 0 is nilpotent.
Any configuration of the form n0001 000 is stable under 12F , and neither 1001 nor 101 have
antecedents by 1F , thus 1tF at most depends on the seven center cells.
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In rule 2, after one step, there can never be two 1s separated by less than two 0s. And, on
these configurations, rule 2 is a shift.
In rule 4, after one step, the 1s are all separated by at least one 0, and on these configura-
tions, the rule is the identity.
Rule 8 is nilpotent.
Rule 10 is a left shift on all the configurations with no three consecutive 1s. Fortunately,
these configurations never appear after one step.
For rule 12, the only configurations after one step have only isolated 1s, on which this rule is
the identity.
In rule 19, after two steps, there are no isolated 0s or 1s, and on these configurations, 192F is
the identity.
The only difference between rule 24 and the symmetric of rule 2 is on transition 011, which
has no antecedent. The same protocol (reverting the roles of Alice and Bob) can be used,
after simulating one step of the rule.
Rule 34 is a left shift on the configurations with no block of two consecutive 0s, and these
blocks do not have antecedents.
For rule 36, we find out by exhaustive search that the only stable pattern is 00100, and all
other patterns of length five become 0 after two steps.
For rule 38, another exhaustive search shows that on 38F ( Z{ 0,1} ) , 382F = 2σ .
For rule 42, after one step, there are no three consecutive 1s in the configuration, and the
rule is a left shift on these configurations.
Rule 46 is a left shift except on 010, which has no antecedent, and 111, whose antecedents
have 010s. Therefore, after two steps, this rule is actually a left shift.
In rule 72, for any a and b, 72F ( a0110b) = 0110. But 111 does not have antecedents by 72F ,
and 010 does not have antecedents by 722F . Therefore, the only configurations of 722F ( Z{ 0,1} ) 
are of the form ( { ( 0110) 0*, 0*} ) *.
Any block of three cells, except 111, is stable under rule 72. Therefore, this block disappears
after one step.
An exhaustive search on all the blocks of length 7 of rule 108 show that 1082F is the identity on

1082F ( Z{ 0,1} ) .
Rule 138 is a left shift, except on 101, which has no antecedent and thus disappears after
one iteration.
In rule 200, any 0 is stable (for any a and b, 200F ( a0b) = 0), and so are the blocks of at
least two 1s. Moreover, isolated 1s do not have antecedents. Therefore, the rule depends
only on the three central cells.

Proposition 3.5.5 Rule 5 has a protocol for SInv in O( 1) bits.
Proof. For any value of a and b, 5F ( a010b) = 010, and for any a,b,c,d, 52F ( ab000cd) ∈{ 000,010} . Therefore, for the configuration to be invaded, u should neither contain more than
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three consecutive 0s, nor less than two consecutive 1s. This is not possible after one iteration of
the rule since 5F ( 11011) = 000, and 5F ( 110011) = 0000.
Proposition 3.5.6 Rule 7 has a protocol for SInv in O( 1) bits.
Proof. First notice that for any values of w, x, y and z, 72F ( w11xyz) =11. Since 7F ( 0000) =11 and 7F ( 0001) =11, a periodic word u that would be invaded should have neither blocks of
more than two 0s, nor blocks of more than one 1. Thus, it should be described by the regular
expression ( { 0,00} 1) *. But since 7F ( 0010) =11, this leaves only one possibility : the pattern
should be 01*. Thus, any perturbation of size n stays at most n bits wide, and no invasion can
ever occur.

Proposition 3.5.7 Rule 13 and 29 have a protocol for SInv in O( 1) bits.
Proof. Let us remark that for any values of a and b, F( a01b) = 01, for both rules. Thus, if the
input is different from the periodic background, and it is to be invaded, then the background
has only 1s. But then the last cell that is different from the background in the input is a 0, and
this forms a wall. Thus, no invasion can ever occur.

Proposition 3.5.8 Rule 28 has a protocol for SInv in O( 1) bits.
Proof. First remark that since for any values of a and b, 28F ( a01b) = 01. Hence, any periodic
background that would be invaded should be uniform (i.e. only 0s or only 1s). But then the
left of the configuration is necessarily invaded, and the first 01 or 10 creates a wall.

Proposition 3.5.9 Rule 78 has a protocol for SInv in O( 1) bits.
Proof. It is not hard to see that the configurations where all the 0s are separated, and with
no three consecutive 1s are stable under this rule. Now, 111 has no antecedent by rule 78.
Thus on the configurations without this pattern, for any value of a and n ≥ 2, 78F ( a n10 1) =n-110 1. Then, it is not hard to check that on the configurations with no block of more than
one consecutive 0 or more than two consecutive 1, rule 78 is the identity.

Proposition 3.5.10 Rule 140 has a protocol for SInv in O( 1) bits.
Proof. For any values of a and b, 140F ( a0b) = 0.
Proposition 3.5.11 Rule 172 has a constant protocol for invasion
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Proof. For an invasion to occur, there should be no two consecutive 0s in the background, since
for any values of a and b, 178F ( a00b) = 00. Also remark that 010 has only two antecedents, and
they both contain a 00, and also that the only antecedents of 00 contain 00s.

So let us suppose that the background has no couple of 0s. Since no 010 can occur in the
configuration after one step of evolution, then either the input does not contain a couple of0s, and thus the rule behaves like a left shift – there is no invasion, or it has a couple of 0s
– and a discussion is needed. We consider the leftmost 00 appearing in the configuration. It is
clear that it forms a wall. We shall prove that it invades the configuration rightwise. We only
need to check that for all values of a, b and c such that abc0 does not contain a wall, we
have:

172F ( abc00) = ∗00
Proposition 3.5.12 Rule 32 has a protocol for SInv in O( 1) bits.
Proof. If u is not of the form ( 01) *, then 32F is uniformly 0 after n steps, with n the input
length. Else, if u = ( 01) *, and up ( x) ≠ up , then the configuration gets invaded with 0s.
Proposition 3.5.13 Rule 156 has a protocol for SInv in O(1).

Proof. First notice that if the period u is not uniform, then there are walls ( 01) around the
input x and then x does not invade up . Else, if u is uniform, then up is invaded, either to the left
if u ∈1*, or to the right if u ∈ 0*.
Proposition 3.5.14 There is a protocol in O( 1) for Pred and SInv for rule 27.

Proof. First notice that 2F ( ∗111∗∗∗) =111, and F( ∗000∗) =111. Thus, if the orbit of up con-
tains a block of three 1s or three 0s, then no invasion can occur. Else, an exhaustive exploration
of all configurations of size 6 shows that the only possible configurations that do not generate111 or 000 are described by the following regular expression :

A = ( 011+ 001) *
Moreover, it is easy to notice that this set of configurations is stable under F, and that 2F ( 1w 2w 3w 4w 5w ) =

5w for w any subword of a word in A. Thus, if up ( x) is still in A, no invasion can occur, since 2F
is a left shift. Else, up ( x) is not in A. In this case at least one block of three 1s occurs somewhere
in up ( x) , F( up ( x) ) or 2F ( up ( x) ) , propagating to the right of the configuration. There are two cases
:
1. Alice has the leftmost one (or Alice and Bob share it, which can be determined within con-

stant communication). In this case, since the rightmost wall shifts to the right at the same
speed than the leftmost one, Alice can simply assume that Bob has got any configuration :
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since the chunks after his rightmost wall only consist of periodic background pattern, only
shifting right, it does not change the result.

2. If Bob has it, and up ( x) ≠ up in Alice’s part, then Alice’s part is shifted to the left, and
Bob’s leftmost “wall” (blocks of 111) to the right. The background is always invaded here.
Else, Bob knows Alice’s configuration, since it is the same as in pu : he can still predict
everything.

Proposition 3.5.15 Rule 44 has a protocol for SInv in O( 1) bits.
Proof. First remark that ∀ a,b ∈ { 0,1} , 44F ( a00b) = 00: 00 is a “wall”. Thus, among the eight
possible groups of three states, 000, 001, 100 are walls. Now for the remaining blocks:∀ a ∈ { 0,1} , 44F ( 111a) = 00.∀ a,b ∈ { 0,1} , 44F ( 010ab) = 111, and thus yields a wall.
The only remaining blocks are W = { 011,101,110} . If the orbit of up has no wall, then up ∈{ 011} *. Else, no invasion is possible. Thus, we can simply remark that for all rotations of011 (i.e. all words w ∈W), we have: 442F ( w00) = 0. Since 00 is a wall, this means that anyx such that up ( x) ≠ up will invade the configuration, erasing all the left part of it, from the
wall on.

Since the condition up ( x) ≠ up can be checked locally, two bits of communication are
enough to decide 44FInv .

Proposition 3.5.16 Rules 23, 50, 77, 178 and 232 have a protocol for Pred in O( logn) bits.

Proof. They all leave stable either { 00,11} or { 01,10} , where a “stable” set S means that for anys ∈ S, there is an s' ∈ S such that for all 1w , 2w ∈ { 0,1} , F( 1w s 2w ) = s'.
In this case, since the part before the first block has to be either uniform or alternate

between 0s and 1s, a protocol for Pred can simply send the length of this part. Since no
information can pass through the stable subwords, this is enough to predict the evolution of
the configuration.

Proposition 3.5.17 Rules 40, 130, 162 and 168 have a protocol for SInv in O( 1) bits.
Proof. First notice that in all four rules, for any a,b ∈ { 0,1} , f( ab0) = 0. This if a word u has at
least one 0, then no word x can invade up . Else, the perturbation stays at most w+1 bits wide,
with w the distance between the leftmost 0 of x and its rightmost one.

The few next lemmas and definitions study the case of rule 94, which maybe our most compli-
cated example of an elementary cellular automaton simple for SInv. This proof was published in
[36]
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Definition 3.5.1 We call the configurations of rule 94 additive if their language is included
in ( +( 00) +( 11) ) *.
Now, for additive configurations, it is clear that the behavior of rule 94 is exactly the same as the
behavior of rule 90, which is bi-permutative. This is because of the following lemma:

Lemma 3.5.18 If x is an additive configuration, then so is 94F ( x) . Moreover, 94F is bipermutative
on these configurations.

Proof. This is because 94F ( 00 n( 11) 00) =11 n-1( 00) 11 and 94F ( 11 n( 00) 11) =11 n-1( 00) 11 for alln ≥1. But 94F only differs from rule 90 on transition 010, which never appears here; hence
the bipermutativity.

Lemma 3.5.19 If c is a non-additive configuration which does not contain 010, then 101 appears
after a finite time and it is a wall. More precisely, a wall appears after t+1 steps at the middle of
any occurrence of 1 2t+10 1 or 0 2t+31 0, for t ≥ 0.
Proof. 101 is a wall because for all a,b, 94F ( a101b) =101. Moreover, 94F ( 1 n0 1) =1 n-20 1 forn ≥ 2.
Lemma 3.5.20 The orbit of a configuration c contains a wall if and only if 94F ( c) is not additive.
Proof. From lemma 3.5.19, it is enough to show that if c is a configuration where 101 does not
appear, then 010 does not appear either in 94F ( c) . To see this, it is enough to check that any wordu such that 94F ( u) = 010 must contain 101.
We can now conclude by giving a protocol for SInv:

Proposition 3.5.21 For any u ∈ { 0,1} *, cc( 94uSInv ) ∈O( logn) .
Proof. If u is such that the orbit of up contains a wall, then invasion never occurs. Thus, for the
problem to be difficult, from lemma 3.5.20, 94F ( up ) must be additive. In this situation, two cases
are to be considered, depending on the input 1x … nx :

Either 94F ( up ( 1x … nx ) ) is also additive, and then, by lemma 3.5.18, the configuration is
invaded if and only if 94F ( up ) = 94F ( up ( 1x … nx ) ) . This can be decided with a finite number
of communications.
Or 94F ( up ( 1x … nx ) ) is not additive. Then it must contain 1 2t+10 1 or 0 2t+31 0 as a subword, for
some t ≥ 0, because, as in the proof of lemma , if the image of a configuration contains a010, then it must also contain 101. Consider the leftmost and the rightmost occurrences of
this kind of words. Since walls appear above the middle of these two occurrences after a
time equal to half their lengths (by lemma 3.5.19, the invasion does not depend on the
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contents of the part of the configuration between the two occurrences. It takesO( logn) bits
of communication for Alice to know the position of these two occurrences, and the exact
words present at their positions (of type 1 2t+10 1 and 0 2t+31 0). Moreover, as soon as Alice
knows this, she also knows that on the left of the leftmost occurrence, and on the right of
the rightmost occurrence, the configuration is additive. If there is no difference with up in
these additive parts, then there is no invasion. Else, then Alice has got enough information
to decide the problem alone. Deciding in which case we are can be done within constant
communication.

Proposition 3.5.22 There is a protocol in O( 1) for SInv for rule 104.

Proof. Let us first notice that rule 104 is symmetric, and that for any value of a and b,
104F ( a00b) = 00. Thus, we need to find the configurations on which this wall does not appear.
Looking at all the configurations of size 4, we find the following:
1. 0110: the only possible way to avoid walls is to have a 1 on each side of it, that is, 101101, but

then 1042F ( 101101) = 00.
2. 0101 and 1010
3. 1011 and 1101
4. 0111 and 1110
Thus, the only possible repetitions of 1s can be three 1s or one 1. Let us look at the word of
length four that can occur after 0111, without creating a wall. We first notice that this word
cannot begin with a 1 without creating a wall. Two possibilities are left:
1. 0111
2. 0101: this case creates a wall after three steps.
Since rule 104 is symmetric, this shows that the only configurations on which there is no 00 wall
are ( 01) * and ( 0111) *. Thus, only these configurations may be invaded. These two configurations
are each stable under rule 104. To see that they actually are when the configuration is finitely
changed, it is sufficient to simulate what happens by creating a wall at i ,i+1,i+2,i+3 for
some position i, because they are both 4-periodic, and the content of the configuration after the
wall does not matter.

Proposition 3.5.23 There is a protocol in O( logn) for Pred of rule 132.

Proof. For any a,b ∈ { 0,1} , f( a0b) = 0. Thus, Alice only needs to send the length of the longest
string of 1s she has from the center.

Proposition 3.5.24 There is a protocol in O( 1) for SInv for rule 152.

Proof. Let us first remark that no finite group of at least two 1s can be in the orbit of rule 152.
This comes from the three following subrules of rule 152:
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1. for a ∈ { 0,1} , f( a011) = 01
2. f( 111) =1
3. f( 110) = 0
Henceforth, if all the 1-blocks are finite (there is at least one 0 in the periodic pattern), then no
invasion can occur, since after a finite number of steps, the rule behaves like rule 32; that is, a
right shift.

Else, the periodic pattern has only 1s, thus any 0 in the input word invades the con-
figuration: towards its left because of subrule 3, and upright because of subrule 1. The fact
that Alice and Bob have only 1s in their respective inputs can be checked with only one bit
of communication.

Proposition 3.5.25 Rule 156 has a protocol in O( 1) for SInv.
Proof. Let us first notice that 01 is a wall in rule 156: for any a,b ∈ { 0,1} , 156F ( a01b) = 01. Thus,
the only case where invasion could occur would be when the background pattern has only 0s or
only 1s (else, a wall appears on both sides). If there are only 0s, the first 1 creates a wall, and
since 156f ( 100) =1, the right of the configuration get invaded by the last 1. Since f( 110) = 0, the
same happens when the background pattern has only 1s.
Proposition 3.5.26 Rule 184 has a protocol in O( logn) for Pred, and this protocol is optimal.

Proof. Let us see what happens to the blocks of two cells in rule 184. Let A = 00, B = 01,C =10 and D=11. Then, for all n ≥ 0:
184nF ( A n{ B,C} ) = A
184nF ( n{ B,C} D) =D

184nF ( AD) =B
184nF ( DA) =B

Thus, let ♯ AliceA be the number of A Alice has, ♯ AliceD her number of Ds, ♯ BobA the number
of A Bob has, and ♯ BobD his number of Ds.

Moreover, we say that position i is free if:

♯ D( 0w … iw ) ≥ ♯ A( 0w … iw ) 
♯ D( i+1w … nw ) ≥ ♯ A( i+1w … nw ) 
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Then, the following is a valid protocol for 184F :
Alice sends AN = max( 0, ♯ AliceA - ♯ AliceD ) to Bob.
If BN > AN , then Bob knows the answer (if he has a C particle in a free zone, the result isC, else it is B).
Else, if BN < AN , then Alice knows the answer: if she has a C particle in a free zone, then the
result is C, else it is B.

The following fooling set shows that this protocol is optimal:

S = { iA n-iB, n-iB iD | i ∈ { 1…n} } 
With a slight modification, the protocol we had for rule 184 can also predict rule 56:

Proposition 3.5.27 There is a protocol in O( 1) for 56FPred .

Proof. Using the same bulking parameters, there are only two differences:

F( DD) = A and F( BD) = C
But fortunately, none of these two problems have any antecedent, thus they disappear after

one step, which requires only two bits of communication to be simulated.

3.5.2 The last candidates to universality

In last section, we have shown simple protocols for a large number of elementary cellular
automata, and essentially problems Pred and SInv. The following elementary automata remain
without proof of simplicity nor of universality:

We do not know simple protocols for the following 33 automata: 3, 6, 9, 11, 14, 18, 22,
25, 26, 30, 33, 35, 37, 41, 43, 45, 54, 57, 58, 62, 73, 74, 106, 110, 122, 126, 134, 142, 146, 152, 154,
164, 204.

The main open problem of this section on experiments remains:

Open problem 3.5.1 Is there an intrinsically universal cellular automaton among the elementary
cellular automata ?

The smallest known intrinsically universal cellular automaton is the one of Ollinger and Richard
(see [19]), with radius one and four states. Our conjecture is that no elementary cellular automaton
is intrinsically universal. In chapter 4, we will see extensions of the experimental approach
presented here, that seem promising to the study of this conjecture.
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3.6 Two-dimensional extensions

In the beginning of this chapter, we did most of our definitions, problems and theorems in
the context of one-dimensional cellular automata. This degree of generality is far from being
satisfying, as many definitions, well understood in the one-dimensional case, lose their sense, or
become undecidable in two dimensions. We will see a few examples below. Therefore, as we will
see, the generalization of our problems to two dimensions is quite non-trivial.

The first thing that we will need to generalize is the way of cutting the inputs. In one
dimension, this was not quite a problem, since once we had defined that the cut should cut at
most one bulking block, there was not a large choice of cuts; the notion of border was obvious.
In two dimensions, this is one more thing we need to redefine:

Definition 3.6.1 Let S = 2{ 0…n-1} be a square of 2Z . A simple path is a finite sequence n( nu ) 
of points of S such that: 1\left_double_bar n+1u - nu \left_double_bar =1 and ∀i, j, iu ≠ ju .

We call a border on S a minimal simple path dividing S into two connected components.

With this definition, it is not hard to see why all our problems are still valid here. We define
them below, but we will begin with a general idea to adapt the results.

First, the exact same proofs apply for relation \sqsubseteq : it is still true that if F \sqsubseteq G, then cc( FP ) \preceq 
cc( GP ) . However, the bulking relation is a little more complicated to define. What we need to
do is to show how to use a protocol for some automaton F using a protocol for \left_angle m,t,z\right_angle F , and
vice-versa. When we have the protocol for F, the adaptation is trivial. In the other case, in one
dimension, we needed to communicate a constant number of bits, in order for one player to
know the bulked state around the border. We can do the same here, but for one player to know
all the states around the border, they need to communicate Ω( m) bits, where m is the length
of the border. This cost is significantly higher than in the one-dimensional case, as it may be inΩ( n) . However, for an automaton to be intrinsically universal, the same condition clearly holds:
its communication complexity must not be in o( 2n ) .

In the adaptations we define below, we can always construct a cellular automaton inΩ( 2n ) :
assume there is a one-dimensional cellular automaton F, of communication complexity Ω( n) 
for problem P. If the problem of simulating n instances of F together has communication
complexity in Ω( 2n ) , then we can build a two-dimensional cellular automaton with maximal
complexity. Indeed, we can simply simulate F on each row separately to get the result.

Now, for all the hard problems we have constructed in section 3.2, we were largely reducing
problems Eq or Disj, for which computing two independent instances is the same as computing
instances twice larger. Hence, our hypothesis that computing n independent instances at once
is no easier than computing them n times separately always holds for our problems.

We can now define the generalizations of our problems:
The prediction problem does not really need to be generalized, as definition 3.2.2 is defined
in terms of F *, which is valid in any dimension.
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The temporal invasion problem does not need to be generalized either, since definition 3.2.4
is formulated in terms of periodic configurations (which still exist in two dimensions), and
differences between configurations.
The spatial invasion problem can be generalized by replacing lδ and rδ by the following
definitions:

2δ ( t) = max{ \left_double_bar i - j\left_double_bar | tF ( up ( x) ) [ i] ≠ tF ( up ) [ i] and tF ( up ( x) ) [ j] ≠ tF ( up ) [ j] } 
And FuSInv is the problem of deciding if 2δ ( t) → ∞.

The cycle length problem could well be defined in any dimension with the same definition
as definition 3.2.6

The two-dimensional case is thus an easy generalization of our one-dimensional problems.
However, they make up an interesting source of open problems, in particular to study special
cases of long-standing open problems such as the direct sum problem, that we have already
defined (open problem 3.2.17).

Moreover, several results in two dimensions let us think that this extension of our approach
may be interesting. In particular, Applebaum, Ishai and Kushilevitz in [52], show how to use a
special kind of two-dimensional cellular automata, namely cellular automata in which the rule is
allowed to change at each step. Our approach here with communication complexity may enable
us to prove (or disprove) the stronger result that their cryptographic primitives are also imple-
mentable in plain cellular automata with a uniform rule.
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4 Extensions to other simulations

4.1 Communication ideals

In definition 1.2.1, we required our simulation relation to be preorders. In fact, this hypothesis
allows for a nice formalism of simulations in cellular automata, already defined in [10], using
order theory. It is quite easy to see that the set of automata simulated by some automaton A
with relation < is an ideal, in the sense of order theory, that is:

Definition 4.1.1 Let S be a set, < be a quasiorder relation on S×S. An ideal for < is a subset I ofS such that:
1. If 2F ∈ I and 1F < 2F , then 1F ∈ I.
2. For any 1F , 2F ∈ I, there is some 3F ∈ I such that 1F < 3F and 2F < 3F .
A principal ideal I is an ideal with a maximal element, that is, there is an i ∈ I such that ∀ x∈I,x < i.
Several results have been proved by Delorme et al. in [10] about this formalism. The following
proposition summarizes the results useful for us:

Proposition 4.1.1 (from [10]) I is an ideal for \sqsubseteq \preceq (respectively \unlhd \preceq ) if:
1. ∀ m,t ∈ ℕ , z ∈ Z, F ∈ I ⇔ \left_angle m,t,z\right_angle F ∈ I
2. 2F ∈ I ∧ 1F \sqsubseteq 2F (resp. 1F \unlhd 2F ) ⇒ 1F ∈ I
3. 1F ∈ I ∧ 2F ∈ I ⇒ 1F× 2F ∈ I
We can reconsider, with this definition, all the results of section 3.2. Indeed, since both simu-
lation relations \sqsubseteq and \unlhd are preorders, we can summarize these results as:

Proposition 4.1.2 Let F( FX ) a family of communication problems, defined for each cellular
automaton F, of complexity increasing with respect to simulation \preceq (that is, if φ \preceq ψ, then
cc( φX ) \prec cc( ψX ) ). Let f be a non-decreasing function from ℕ → ℕ , then the following set is an
ideal for \preceq : I= { φ | cc( φX ) \prec f} 
Proof. This is a direct consequence of the definition of \prec .
In the literature about simulation ideals in cellular automata and symbolic dynamics, the two
most studied relations are the ones that we have defined in chapter 1: \sqsubseteq \preceq and \unlhd \preceq . However, until
now, we have mostly restricted our study to the first one, namely, subsystem simulation. In this
chapter, we generalize our approach to the other simulation. We begin with a presentation of
the tools we are going to use: non-determinism and randomization. Then, the main result of
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this chapter, in section 4.3, shows an example of an automaton universal for \sqsubseteq \preceq , while in a quite
small ideal for \unlhd \preceq .

4.2 Determinism and sub-system simulation

As we said in chapter 1, it is not known whether there is a universal cellular automaton for the
coloring simulation relation. In this part, we present an interesting link between this problem,
and two different generalizations of communication complexity, namely non-deterministic com-
plexity, and randomized complexity.

4.2.1 The limit set

The problem we are going to define is the problem of deciding if a given pattern can appear
arbitrarily late in the evolution of the automaton. We first need to give the following classical
definition:

Definition 4.2.1 Let F be a cellular automaton. The limit set of F is defined by:

FΩ = { x ∈ FFCQ | ∀t, ∃ y∈ FFCQ , tF ( y) = x} 
This set is obviously a subshift, and it is not difficult to see why its language is co-recursively
enumerable. Several examples of automata with non-recursive limit sets are shown in [53]
or [30].

Based on this definition, we can now ask Alice and Bob to compute if a given word can
appear in a configuration of the limit set, that is, if the input is in the language of the limit set.
This is precisely the FLimit problem:

Definition 4.2.2 Let F be a cellular automaton on alphabet Q, and x a word of Q*. The problem
FLimit is defined by:

FLimit ( x) = L( FΩ ) χ ( x) 
Where for any set S, Sχ is its characteristic function.

As we proved in [54], it is quite easy to see why this problem is compatible with \unlhd . We
first need to show that the property of “being in the language of the limit set” is conserved
by \unlhd :
Proposition 4.2.1 If Φ is a factor map of ( X,F) onto ( Y,G) , then GΩ = Φ( FΩ ) .
Proof. The proof is two-fold:
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Φ( FΩ ) ⊆ GΩ . Indeed:

Φ( FΩ ) = Φ( t∈ℕ 
⋂ tF ( X) ) ⊆ t∈ℕ 

⋂ Φ( tF ( X) ) =t∈ℕ 
⋂ tG ( X) 

Now, let y∈ t∈ℕ ⋂ tG ( Y ) , and, for t ∈ ℕ , tX = -1Φ ( y) ∩ tF ( X) . Note that tX is closed, sinceΦ and F are continuous, and X is compact. Moreover, tX is nonempty, for Φ is onto. By
Cantor's intersection theorem, t∈ℕ ⋂ tX = -1Φ ( y) ∩ FΩ is nonempty, and thus y∈Φ( FΩ ) .

Next, we only need to find a way to use a protocol for FLimit to solve GLimit where G is
a factor of F. Unfortunately, the simple method we used in section 3.2.2.1 does not work
anymore, since proposition 4.2.1 only proves the existence of one antecedent of the input,
by the induced map Φ, that is in the limit language of F. See for instance the following
construction:

Proposition 4.2.2 For any cellular automaton F, there is a cellular automaton F' such that F \unlhd F'
and for each x ∈ FΩ , there is a y∈ F'ZQ ∖ F'Ω such that Φ( y) = x, where Φ is the map induced
by \unlhd .
Proof. The idea of the proof is to duplicate the alphabet to artificially construct configurations
not in the limit set of F'. Concretely, for each q∈ FQ , F' has two corresponding states q andq', and F'( a,b,c) = F( α( a) ,α( b) ,α( c) ) , where α : F'Q → FQ “removes the prime”, in the sense
that ∀q∈ FQ , α( q) = q, and ∀q'∈ FQ ∖ F'Q , α( q') = q.

No configuration with a state in FQ ∖ F'Q can ever be in the limit set, since these configura-
tions have no antecedent by F'. Yet, the factors of F are actually factors of F'.
However, if x is a configuration of FΩ , then its image by the coloring map induced by the
relation G\unlhd F, y = Φ( x) , is in GΩ , since -tF ( -1Φ ( y) ) is nonempty.

4.2.2 Non-deterministic protocols

One possible generalization of the deterministic framework introduced in section 3.1 is adding
non-determinism. In the original definition, given by Lipton and Sedgewick [44], this corre-
sponds to the scenario where, “an all powerful prover, who sees x and y, is trying to convince
Alice and Bob that f( x,y) = z” (this description comes from [43]). If it is actually the case thatf( x,y) = z, then Alice and Bob must agree, else they must be able to detect it, whatever the
prover says. In this case, the complexity of the protocol is the total speaking time of the prover,
Alice, and Bob.

The example given in [43] is a protocol for the non-equality function, hereafter written
NEq, which is the negation of function Eq that we defined in section 3.1.1. In this problem,
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if x ≠ y, the prover can simply give Alice and Bob an index where their inputs differ. The
hint given by the prover is seen by both players; it is public. In the case of NEq, it takes
at most O( log( n) ) bits for the prover to transmit a position, then Alice and Bob can verify
it by sending each other their bit at this position in O( 1) . The cost of this protocol is thusO( logn) .

In our definition, however, we allow the prover to give a “hint” for free to each player. But
contrarily to the classical definition, this information is private; the players do not know each
other's hint. It is clear that any function, within this framework, is going to be no harder
than in the previous definition: if there is a protocol of cost n for some function f, for the
definition of [44], then there is a protocol with at most n bits with our definition: the prover just
gives the same hint, for free but privately, to Alice, who then transmits it to Bob. Conversely,
if there is a private protocol for f, then Alice and Bob can simulate it using a public protocol.
At each round of the private protocol where a private hint is useful, the prover gives the
outcome of the round. Since this information is public, Alice and Bob can skip the round:
they both know what to do next. Formally, the definition of a non-deterministic protocol goes
like this:

Definition 4.2.3 Let f : X×Y → { 0,1} . A non-deterministic communication protocol P for f is
a deterministic protocol for a completion of f, that is, for a function f ' : ( X×X') ×( Y×Y ') →{ 0,1} , such that:

∀ x∈X, y ∈ Y, f( x,y) =1⇒ ∃ x'∈X', y' ∈ Y ', f '( ( x,x') ,( y,y') ) =1
∀x∈X, y ∈ Y, f( x,y) = 0 ⇒ ∀x'∈X', y' ∈ Y ', f '( ( x,x') ,( y,y') ) = 0

A non-deterministic protocol P is said to compute f if:
for all ( x,y) such that f( x,y) =1, it answers 1 on input ( ( x,x') ,( y,y') ) for at least one value
of ( x',y') .
for all ( x,y) such that f( x,y) = 0, there is no value of ( x',y') for which it answers 1 on
input ( ( x,x') ,( y,y') ) .

We also need a definition of non-deterministic communication complexity:

Definition 4.2.4 For z ∈ { 0,1} , we say that f has z-non-deterministic communication complexityn, and we write zN ( f) = n, if there is a non-deterministic protocol P for f, such that the paths
leading to a z are of length at most n.
Now, how can we lower-bound the non-deterministic complexity of a function? If we represent
our protocols also by trees, where each node is labeled by a function depending on the input,
and also on the private hint, then each leaf is again a monochromatic rectangle. The difference
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is that the same input may lead to different leaves, because there may be several hints for it.
The following proposition proves by a combinatorial argument the equivalence between the
two definitions of non-deterministic communication complexity:

Proposition 4.2.3 Let f be a function of X×Y → { 0,1} , and 1N ( f) its private or public commu-
nication complexity, and 1C ( f) the size of a minimal cover of the 1-inputs of f's matrix by
rectangles. Then: 1N ( f) = \right_angle 2log ( 1C ( f) ) \right_ceiling +1
Proof.

For public protocols, any cover of f's matrix induces a proof system, in which the prover
gives the name of a 1-rectangle in exactly \right_angle 2log ( 1C ( f) ) \right_ceiling bits, where 1C ( f) is the number of1-rectangles in f's matrix.
For private protocols, the prover can give Alice the same hint as in the public protocol
(the name of a rectangle), and she transmits it to Bob. This also costs exactly \right_angle 2log ( 1C ( f) ) \right_ceiling .
Conversely, for public protocols, we can reuse the proof of Theorem 3.1.1, since at each step
of the protocol, whoever speaks splits the inputs into two parts. The same induction works
to prove that each leaf corresponds to a monochromatic rectangle in the matrix. Now, since
several proofs might be used on the same inputs, the rectangles may overlap.
For private protocols, once Alice and Bob know their respective hints, their behavior is
essentially the same as in a deterministic protocol; the proof of Theorem 3.1.1 works without
any tweak: a leaf always corresponds to a monochromatic rectangle. And, again, different
hints on the same input might lead to different (overlapping) monochromatic rectangles.

Almost the same fooling set technique allows to prove the same lower bounds for Eq and
Disj:

Proposition 4.2.4 Let z ∈ { 0,1} . If there is a 1-fooling set of size n for f, then the non-deterministic
communication complexity of f is at least logn.
Proof. A 1-fooling set S is a fooling set for the 1-inputs of f: ∀( s, s') ∈S, f( s, s') = 1, and for
any ( 1s , 1s ') ∈ S, ( 2s , 2s ') ∈ S, either f( 1s , 2s ') = 0 or f( 2s , 1s ') = 0. The same proof is still valid, as a
fooling set only proves that no two elements of it can be in the same rectangle.

An example 1-fooling set for Eq is the same as in the deterministic case ( 1S = { ( x,x) | x ∈ n{ 0,1} } ).
To lower-bound the 0-non-deterministic complexity of Eq, however, we need other arguments.
For instance, Exercise 2.6 of [43] uses the fact that a cover of size n of the z-inputs of the matrix
gives a deterministic protocol: Alice can tell Bob all the 0-rectangles her input is in; at round i,
she says 1 if and only if her input is in rectangle iR . At the end, Bob has enough information to
answer. This proves that n ≤D( f) ≤ 0C ( f) +1, and thus logn ≤ 0N ( f) .
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Remark here that in our definitions of non-determinism, we only define protocols for one
result of the function: either 0 or 1. In reality, this does not really matter; we could as well have
defined 0N in a completely symmetric way, and have chosen the maximum of 0N and 1N (let us
call it N) as the definition of non-deterministic complexity. The proofs of hardness would have
had the same difficulty, since proving that 1ncc ∈ Ω( n) implies N∈ Ω( n) . But the proofs of low
complexity would have been harder, and this definition would make fewer functions simple.
Since we are mainly interested in finding simple protocols for cellular automata, it would be a
less powerful tool for our purpose.

Before applying it to cellular automata, we need to cope again with the problem of input
splitting. Remember the i-concatenation function iC defined in section 3.1.3. We can define
the non-deterministic communication complexity as before:

Definition 4.2.5 Let nφ be an application of nQ → { 0,1} . The 1-non-deterministic communica-
tion complexity of φ, hereafter denoted as ncc( φ) , is defined by:

1ncc ( nφ ) = i≤nmax 1N ( nφ ∘ iC ) 
Finally, the definition of private protocols is justified by their use in factor simulations: indeed,
assume that F \unlhd G, and that we have a non-deterministic private protocol for some problem GP
on G. When solving the corresponding problem on F, the non-determinism gives Alice and Bob
a way to choose a right configuration for G:

Lemma 4.2.5 Let f be a function of X → { 0,1} , and g : Y → { 0,1} be a coloring of this function,
that is, a function such that there is an onto function φ : X → Y such that for all y∈ Y, g( y) =1 ⇔ ( ∃ x∈ -1φ ( y) , f( x) = 1) . Then ncc( g) ≤ ncc( f) .
Proof. We use the private formulation of non-deterministic communication protocols. Sinceφ is an onto application of X → Y, then when on input ( 0y , 1y ) , if there is an element ( 0x , 1x ) ∈-1φ ( { 0y } ) × -1φ ( { 1y } ) such that FP ( 0x , 1x ) =1, then the prover gives 0x to Alice, 1x to Bob, and they
can use the protocol for FP , which proves the result. Remark that we implicitly use the fact that
the input for the protocol is already split, that is, the input for FP is from X×X, if f is fromX → X.
A direct application is this is problem Limit: by proposition 4.2.1, the hypotheses are clearly
verified:

Proposition 4.2.6 Let F and G two cellular automata such that F \unlhd \preceq G. Then:

1ncc ( FLimit ) \prec 1ncc ( GLimit ) 
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Proof. This is only a matter of verifying that all the basic ingredients of \unlhd are compatible with
the protocols:

It is clear that \left_angle m,t,z\right_angle F and F have the same protocol for Limit, since temporal and spatial
rescaling are both bijective operations and do not change the complexity of the limit
language.
Then, Lemma 4.2.5 finishes the proof by showing that:

1ncc ( \left_angle Fm , Ft , Fz \right_angle FLimit ) \prec 1ncc ( \left_angle Gm , Gt , Gz \right_angle GLimit ) 
Finally, we must show that there is a cellular automaton F such that FLimit has maximal non-
deterministic communication complexity. We proved this in [48], with the following automaton:

Proposition 4.2.7 There is a cellular automaton F such that:

1ncc ( FLimit ) ∈ Ω( n) 
Proof. Automaton F is a product of three layers:
1. A shift to the left on alphabet { 0,1} .
2. A shift to the right on alphabet { 0,1} .
3. A test layer with alphabet { ∅,⊤,⊥} . This is a cellular automaton of radius 0, with the

rule that:
The blank state ∅ remains blank
State ⊥ remains ⊥.
Whenever a ⊤ sees a 1s on both layers, it becomes a ⊥. Otherwise, it remains ⊤.

The problem of deciding if an input of the following form:

( 1x , 1y ,∅) …( nx , ny ,∅) ( n+1x , n+1y ,⊤) ( n+2x , n+2y ,∅) …( 2nx , 2ny ,∅) 
is in F's limit set amounts to deciding if 1x … nx = 2ny … n+2y , and 1y … ny = 2nx … n+2x , since

it is the only way to preserve a ⊤ state on the third layer. This is another variant of the Disj
problem. According to the lower bound we showed above, we can still use the fooling set
technique. Therefore, 1ncc ( Disj) ∈ Ω( n) , and thus 1ncc ( FLimit ) ∈ Ω( n) .
4.2.3 Randomized protocols

In the model of deterministic communication complexity, the communications at each stage
of the protocols are completely determined by deterministic functions of the input, and of the
communications that have happened until the current stage. On the contrary, randomized com-
munication complexity allows the players to use random bits in their communications. There
are several variants defined in the literature; in the one we will use, Alice and Bob have access to
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a common random string of arbitrary length, and they are allowed to make errors with constant
probability (over the random string).

To formalize this framework, we set up the same context as with deterministic protocols; a
protocol tree, with the nodes labeled by functions, this time depending on the inputs, but also
on the random string, and the leaves labeled by results:

Definition 4.2.6 Let f be a function of X×Y → Z. A randomized public coin protocol P computingf is a tree, where the internal nodes are labeled either by ia : X×{ 0,1} * → { 0,1} (for the rounds
where Alice speaks), or by ib : Y×{ 0,1} * → { 0,1} , and the leaves are labeled by values of Z.

For an input ( x,y) and a random string r ∈ { 0,1} *, we write P( x,y,r) the deterministic
protocol over ( x,y) where each node i is labeled by i ,ra : ( x,y) ↦ ia ( x,y,r) .
Since we want to allow errors in the computations, we need a notion of computation with
errors. Let f be a function of X×Y → Z, and ϵ > 0. We say that P computes f with error
probability ϵ if for any input ( x,y) , the probability (over the random string r ∈ { 0,1} *) thatP( x,y,r) ≠ f( x,y) is bounded by ϵ.
Definition 4.2.7 For ϵ ≥ 0, the randomized communication complexity of f, denoted as ϵR ( f) ,
is the complexity of the best randomized protocol achieving error probability ϵ.
Before defining this model in our context with cellular automata, we shall note that the ran-
domized communication complexity only defines a probability distribution μ over deterministic
protocols, over which the probability of error is defined. For each input, at least a fraction 1-ϵ
(weighted by μ) of the protocols must give a correct answer.

Again, the input splitting issue is resolved by considering the cut maximizing the random-
ized communication complexity:

Definition 4.2.8 Let nφ be an application of nQ → { 0,1} , and 0 ≤ϵ ≤1. The randomized
communication complexity of φ, hereafter denoted as rcc( φ) , is defined by:

ϵ1rcc ( nφ ) = i≤nmax ϵR ( nφ ∘ iC ) 
To use it on cellular automata, we need to prove that it is increasing with colorings, and that
there are hard problems for it. The first result comes from a theorem by Yao [55], relating
distributional complexity to randomized complexity. In the model that we have just described, a
randomized protocol is a probability distribution over the protocols; that is, the probability we
consider is a probability on the coins tossed by the players. On the contrary, in distributional
complexity, we consider a distribution probability μ over the inputs, and a fixed deterministic
protocol, whose probability of error, when the inputs are chosen according to distribution μ, is
no greater than ϵ. Formally:
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Definition 4.2.9 The μ-distributional complexity of f, denoted as ϵμD ( f) , is the least complexity a
deterministic protocol such that μPr ( P( x,y) ≠ f( x,y) ) ≤ϵ.
Now, we need to prove that this notion of communication complexity is useful to our approach,
that is, it is compatible with simulation by coloring. We first need the following result by Yao,
whose proof is to be found in [43].

Theorem 4.2.8 (from [55]) ϵR ( f) = μmax ϵμD ( f) 
The following lemma is the equivalent of Lemma 4.2.5 for public coin randomized complexity.

Lemma 4.2.9 Let f be a function of X → { 0,1} , and g : Y → { 0,1} be a coloring of this function,
that is, a function such that there is an onto function φ : X → Y such that for all y∈ Y, g( y) =1 ⇔ ∃ x∈ -1φ ( y) , f( x) = 1. Then ϵ1rcc ( g) ≤ ϵ1rcc ( f) .
Proof. Let μ be a probability distribution on Y. Then we can transform it into a distribution μ'
on X, in the following way: for each x ∈ X, let xS = -1φ ( φ( { x} ) ) ∩ -1f ( { 1} ) . Then:

If xS ≠ ∅, we set μ'( x) = μ( φ( x) ) if x = min xS , and 0 else.
Else, we set μ'( x) = μ( φ( x) ) if x = min( -1φ ( φ( { x} ) ) ) , and 0 else.

We use min here to choose a unique element of each xS . This choice is not relevant, and, on
finite sets like X or Y, it is a correct choice function.

Now, by Theorem 4.2.8, we know that there is a μ'-distributional protocolP' for f, operating
in at most ϵR ( f) bits, with error ϵ. Transforming it into a μ-distributional protocol P for g is
quite easy: we keep the same protocol tree, and only turn the labels of P', at each node i, from
ia ' or ib' into ia and ib , as follows: At each node where Alice speaks, and for all y∈ Y, set ia ( y) =1 if and only if, for x ∈ -1φ ( { y} ) such that μ'( x) > 0 (there is only one such x, by construction ofμ'), ia '( x) =1. We convert Bob's nodes (those labeled by a ib') similarly.

For the inputs such that f( x,y) = 0, the protocol does not change: that is, the same bits
are exchanged for x in P' and φ( x) in P, considering an adequate splitting of x and φ( x) . This
is because we have not changed the nodes' labels for these inputs. Else, for v such that f( v) =0, there is only one element of u ∈ -1φ ( v) such that μ'( v) > 0, thus the protocol is still correct
with probability ϵ with distribution μ'. If there is set of weight more than ϵ with distributionμ, on which the protocol P we have just built makes errors, then we can transform it into a set
of weight more than ϵ for μ' on which P' is incorrect, which contradicts the definition
of P'.
Like in the case of non-deterministic communication complexity, we can also apply this def-
inition to the case of the Limit problem, exactly with the same proof as for proposition
4.2.6:
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Proposition 4.2.10 Let F and G two cellular automata such that F \unlhd \preceq G, and ϵ > 0. Then:
ϵrcc ( FLimit ) \prec ϵrcc ( GLimit ) 

4.2.4 Applications to natural examples

The two new definitions of communication complexity we have given in this section offer a new
playground for experiments on natural examples, such as the elementary cellular automata.
Let us recall our goal of section 3.5, that was: showing that no elementary cellular automaton is
intrinsically universal. Covering the matrices is a much easier problem than finding a parti-
tion for them; indeed, it is an instance of Set - Cover problem, that has a polynomial timeO( logn) -approximation (see [56]).

It is not hard to see that these two definitions are compatible with sub-automata:

Proposition 4.2.11 Let FP be a problem on cellular automata, F be a cellular automaton on
alphabet FQ , and ϵ > 0. Then, for any G \sqsubseteq \preceq F:

1ncc ( GP ) \prec 1ncc ( FP ) 
ϵrcc ( GP ) \prec ϵrcc ( FP ) 

However, as in the case of the logrank conjecture (open problem 3.1.2), we do not know of any
natural example on which this approach really helps:

Open problem 4.2.1 What is the minimal number of states such that there is a radius one
cellular automaton F for which 1ncc ( FPred ) ∈ o( cc( FPred ) ) ?
4.3 Separating colorings and sub-system

The result we are going to show now is a separation result, that we published in [54], between
the simulations \unlhd and \sqsubseteq . We show the existence of a \sqsubseteq -universal cellular automaton with
a limit language in nl, thus, according to Juraj Hromkovič's theorem (theorem 3.1.4), with
communication complexity in O( 2log n) . This is actually far from our lower bound on the
complexity of the limit set of a universal cellular automaton: indeed, the following result shows
that for if that if the limit set of a cellular automaton F is an SFT (that is, by definition 1.1.6, if
its language is finite), then F is stable, that is, it reaches its limit set after only a finite number of
steps:

Definition 4.3.1 Let F be a cellular automaton over some alphabet Q. We say that F is stable if
there is a step Ft such that FtF ( ZQ ) = FΩ .
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Lemma 4.3.1 Let F be a cellular automaton. If FΩ is an SFT, then F is stable.

Proof. An SFT subshift, as defined in Definition 1.1.6, is characterized by a finite set of for-
bidden patterns S. For each w ∈ S, by compactness, there is a first time step wt such that for
all t ≥ wt , w does not appear anymore in wtF ( ZQ ) . Taking t* = w∈Smax wt , we have:

FΩ = t*F ( ZQ ) 
For those automata with an SFT limit set, the problem TInv is easy to solve:

Proposition 4.3.2 Let F be a cellular automaton with an SFT limit set. Then, for all u ∈+Q :
cc( FuTInv ) ∈O( 1) 

Proof. A protocol for FTInv iterates F t* times over up ( x) , to reach the limit set. This can be
done in O( t*) bits of communication, which is O( 1) here. Alice and Bob now need only check
if there is a difference between t*F ( up ( x) ) and t*F ( up ) . A classical result of symbolic dynamics
(see [57]) shows that F is preinjective on an irreducible subshift, which means that it preserves
finite differences.

This means that the differences will remain forever between the orbits of up and up ( x) 
if and only if t*F ( up ( x) ) ≠ t*F ( up ) . This completes the proof, and shows that there cannot be\sqsubseteq -intrinsically universal stable cellular automata.

Returning to our goal of separating coloring and subsystem simulations, the construction is
based on the existence of a firing-squad cellular automaton S, due to Kari in [58]. This cellular
automaton has a so-called firing state γ, and a spreading state κ. We call its radius Sr , its alphabetQ, and Q' the set Q∖{ κ,γ} . Furthermore, we define the set SX of the configurations with an
infinite history avoiding κ and γ, i.e. SX = SΩ ∩Q Z' .
Lemma 4.3.3 S is such that:
1. For any j ∈ ℕ , there is a z such that jS ( z) ∈ Z{ γ} , and ∀ t<j, tS ( z) ∈ Q Z' .
2. ∀ i∈Z, SΩ ∩ i[ γ] ⊆ Z{ κ,γ} .
3. SX is recognizable in nl.

Proof. Properties (1) and (2) are proved in [58]. We prove property (3) in section 4.3.1 below.

We now prove the following theorem:

Theorem 4.3.4 Any cellular automaton is a sub-automaton of a cellular automaton whose limit
set is recognizable in nl.
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Proof. The idea of the proof is to add an extra component to a given cellular automaton F over
alphabet A, which delays the apparition of any configuration of ZA to a time arbitrarily late in
the future. The limit set is thus completely flooded with configurations of ZA . The technical dif-
ficulty is to control the contribution of the additional component to the complexity of the final
limit set.

Let F be a cellular automaton of radius Fr , local rule f, and alphabet A, with a spreading
state 0 ∈ A. We define cellular automaton F,SΔ , of local rule F,Sδ , on alphabet C = A∪ ( A×Q) ,
with radius r = max( Fr , Sr ) , by:
1. F,Sδ ( c) = f( c) if c ∈ 2r+1A
2. F,Sδ ( c) = 0a if c = ( -ra ,γ) …( ra ,γ) 
3. F,Sδ ( c) = ( 0a ,s( - Srb … Srb ) ) if c = ( -ra , -rb ) …( ra , rb ) ∈ 2r+1( A×Q') 
4. F,Sδ ( c) = 0 otherwise
Intuitively, this cellular automaton freezes its first component, while applying the firing squad
on the second component, until the firing state appears somewhere. Only then, it starts the
evolution of F on the first component. When the configuration is not consistent, or when κ
appears, spreading state 0 is generated. It is not hard to see why F is a sub-automaton of F,SΔ .
The structure of F,SΔ is described by the following lemma:

Lemma 4.3.5 ZA ⊆ F,SΔΩ
Proof. Let x ∈ ZA and j ∈ ℕ . From point 1 of lemma 4.3.3, there is a configuration z ∈ ZQ
such that j-1F ( z) ∈ Z{ γ} , and for any t < j-1 and any i ∈ Z, tF ( z) [ i] ∉ { γ,κ} . Consider now the
configuration y = i∈Z( ix , iz ) . By an easy induction on t < j, we can see that for any cell i ∈ Z,
only case (3) of the local rule is used, and F,StΔ ( y) [ i] = ( ix , tS ( z) [ i] ) . At time j, since j-iS ( y) [ i] =γ, part (2) of the rule is applied, and F,SjΔ ( y) [ i] = x[ i] . As a result, x ∈ j∈ℕ ⋂ F,SjΔ ( ZC ) .
Lemma 4.3.6 Let x ∈ F,SΔΩ , i < j two integers. If x[ i] = ( a[ i] ,γ) and x[ j] = ( a[ j] ,b[ j] ) , thenb[ j] ∈ { γ,κ} .
Proof. Assume, on the contrary, that b[ j] ∉ { γ,κ} . Let t∈Z( tx ) be a biorbit of x = 0x , that is, a
bisequence of configurations such that ∀ t∈Z, F,SΔ ( tx ) = t+1x . By an easy recurrence, and the
fact that states of A×Q are obtained only by case (3) of the rule, we see that:

-tx [ i - rt…i+ rt] ∈ 1+2rt( A×Q) 
Similarly, -tx [ j- rt…j+ rt] ∈ 1+2rt( A×Q) and ts ( -tb [ j- Sr t…j+ Sr t] ) = jb . Then, for any t >

2rj-i-1, -tx [ i -2rt…j+2rt] is in j-i-1+4rt( A×Q) and the image ts ( -tx [ i - Sr t…j+ Sr t] ) contains ib and

jb . In other words, the cylinder i[ ib j-i-1Q jb] intersects tS ( ZQ ) for any t, and by compactness,
intersects SΩ , which contradicts point 2 of lemma 4.3.3.
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If Σ ⊆ ZA is a subshift and 0 ∈ A, then we consider the set 0∘Σ∘0 of configurations or pieces
of configurations of Σ surrounded by 0:

0∘Σ∘0 =-∞≤l≤m≤∞⋃ { x ∈ ZA | x[ l…m] ∈L( Σ) and ∀ i∉{ l…m} , x[ i] = 0} 
Lemma 4.3.7 F,SΔΩ ∖ ZA ⊆ 0∘ Z( A×Q) ∘0.
Proof. By shift-invariance, it is sufficient to prove that:

F,SΔΩ ∩ 0[ A×Q] ⊆ 0∘ Z( A×Q) ∘0
Let us prove by induction on n that the patterns of ( A×Q) ( 2rnA ∖{ 2rn0 } ) are forbidden in

F,SΔΩ . The base case is trivial, since there are no such patterns. Now, assume it holds for n ∈ ℕ ,
and there exists a configuration x ∈ 0[ ( A×Q) 2rn+k0 ( A∖{ 0} ) ] ∩ F,SΔΩ , with 1≤ k ≤ 2r. Consider a
preimage i ∈ F,SΔΩ of x.

On the one hand, in cell 0 of y, we must have applied case (3) of the rule, so thaty[ -r…+r] ∈ 2r+1( A×Q) , and this word does not involve γ.
On the other hand, if we have applied case (1) in cell 2nr+k+1 of y, then:

y[ ( 2n-1) r+k+1…( 2n+1) r+k+1] ∈ 2r+1( A∖{ 0} ) 
but the space between these two neighborhoods is ( 2n-1) r+k+1- r -1≤ 2nr-1, which con-
tradicts the induction hypothesis.

The other possibility was that we had applied case (2) in cell 2nr+k+1, which involves a
state γ among cells of y[ ( 2n-1) r+k+1…( 2n+1) r+k+1] , which contradicts lemma 4.3.6. In
the limit, and with a symmetric argument on the left, we obtain that all the configurations of

F,SΔΩ ∖ ZA are in 0∘Σ∘0.
Lemma 4.3.8 Let us write ZA× SX = { i∈Z( ia , is ) ∈ Z( A×Q) | i∈Z( is ) ∈ SX } . Then:

F,SΔΩ = ZA ∪0∘( ZA× SX ) ∘0
Proof. Let x ∈ ZC and -∞≤ l ≤m ≤∞ such that x[ l…m] ∈ Z( A×Q) , and for any i ∉ [ l…m] ,x[ i] = 0. First assume that x ∈ F,SΔΩ , i.e. for any t ∈ Z, there exists tx ∈ F,StΔ ( x) . By recurrence,
we can see that -tx [ i] ∈ A×Q' for all i ∈ { l - rt…m- rt} and t ≥1 since states from A×Q only
come from case (3) of the rule. Let -tw ∈Q m-l-2rt+1' be the projection of ( -tx ) [ l - rt…m+rt] 
on its second component. Clearly, 0w is in the language of SX . We deduce that x = 0x ∈ 0∘( ZA× SX ) ∘0.
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Conversely, assume that x ∈ ZA× SX , that is, there are l ≤m two integers, and a sequence( ty ) with, for t ≥1, ty ∈Q Z' and ty = S( t+1y ) and, for any t ∈ ℕ and any i ∈ { l…m} , x =( a[ i] , tS ( ty ) [ i] ) for some a[ i] ∈ A. Now, take the configuration ty ∈ ZC such that for any i ∉{ l - rt…m+rt} , ty [ i] = 0, and for any i ∈ { l - rt…m+rt} , ty [ i] = ( ib , ity ) with ib ∈ A and

ib = ia if i ∈ { l ,m} . By a direct recurrence, for any j < t and any i ∉ { l - rt+ rj…m+rt- rj} ,
we have F,SjΔ ( jy ) = 0 and for any i ∈ { l - rt…m+rt- rj} , we have F,SjΔ ( jy ) [ i] = ( ib , jS ( jy ) [ i] ) 
(since jy ∈Q', case (3) of the definition of F,SΔ applies at position i of jy ). This proves that

F,SΔ ( y) = x. Thus:
F,SΔΩ ∩0∘ Z( A×Q) ∘0

We can conclude thanks to lemmas 4.3.7 and 4.3.5.

Corollary 4.3.9 L( F,SΔΩ ) is nl-recognizable.
Proof. From lemma 4.3.8 and point 2 of definition 4.3.3, the limit language is a finite boolean
formula of finite concatenation of nl-recognizable languages.

Let F be a cellular automaton on some alphabet A. We can artificially add some spreading state0 ∉ A to build a cellular automaton F' on alphabet A∪ { 0} which admits F as a sub-automaton.
Now, we have seen that F' is a sub-automaton of F',SΔ . From corollary 4.3.9, its limit set has an
nl-recognizable language.

4.3.1 A firing squad cellular automaton

Let S be the firing squad cellular automaton defined in [58]. Its radius is 1. Let us call its
alphabet Q. It has size 16, with a killer state κ. The complete rule is given in Kari's article
[58], and figure 4.1 shows an example of each neighborhood on which the rule does not yield κ.

The analysis of S's limit set goes by finding the form of the configurations that can be in the
limit set. For this purpose, we will use arguments about distances ran by signals. However, since
cellular automata are by essence discrete objects, it will often be convenient to use a continuous
version of signals, made possible by the following lemma:

We call a euclidean history diagram a set of labeled points, lines, segments and half-lines of2R . Two lines cannot cross; instead, they are transformed into a number of other lines (possibly
null). The lines are labeled by symbols among { 1L , 1l , 2l , ♯ ', 2r , 1r , 1R } , and the points by the same
symbols, X, Y, Z or ♯ . The rules are the same as in the local rule of the automaton. We only need
to take care of possible “rounding problems”:

Lemma 4.3.10 To each history diagram D, we can associate a valid euclidean history diagram E
such that, at any integer coordinate of E containing a point or a single signal, the label gives the
state of the corresponding position in D.
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Proof. There is no rounding problem for signals of slope -1, 0 and 1, since the coordinates on
both axes are always either both integers or both non-integers. For slopes 1/2 and -1/2, when-
ever two points 0p and 1p with integer coordinates are connected by a vector with that slope, it
is easy to see that the cells at positions { 0p + ( i , 2i) | 0 ≤ i ≤n} (or { 0p + ( -i , 2i) | 0 ≤ i ≤n} in
the case of slope -1/2), that is, the cells with integer coordinates on this segment, are in state 2r
(respectively 2l ).
We prove now that the limit language of S is recognizable in logarithmic space by a non-
deterministic Turing machine (that is, L( SΩ ) ∈ nl).
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Figure 4.1 - The firing squad automaton of [58]

97



4.3.1.1 Synchronization of the ♯ s.
The first four lemmas show that if there is both a ♯ and a ♯ ' in a word, without κ between
them, then this word is not in the limit language.

Lemma 4.3.11 Consider a history diagram containing a word w ∈ ♯ Q♯ ' at time 0t . Let 1z be the
position ofw's first cell, and 2z the position ofw's last cell. If the ♯ at 1z was created by an 1l sig-
nal, then there is a time step 1t , before 0t , in which cell 1z was in state ♯ , and a time step 2t , also
before 0t , in which 2z was in state ♯ .
Proof. First let us prove the existence of 1t . Assume that there is no ♯ in the past of cell 1z .
The only possible post of this cell, in this case, is necessarily an infinite column of ♯ 's. But
we assumed that the left ♯ was created by an 1l signal, which necessarily either crossed this
column, or was generated by it. In both cases, it is a contradiction.

Now that we know this, we prove the existence of 2t . Assume that cell 1z has only ♯ ' in
its past. Since the ♯ in the right column was necessarily created by a signal coming from
the left, be it 1r or 2r , this means that the signal should also have crossed the left column,
which is impossible. Thus, there is at least one ♯ in this column, that generated the 1l signal.

Now, this lemma allows us to prove that there is actually no configuration of this form in the
limit set of S. Let us call Σ = Q'∖{ ♯ , ♯ '} .
Lemma 4.3.12 There is no history diagram containing a wordw of the form ♯ Σ♯ ', where the left♯ was created by a 1r / 1l pair of signals.

Proof.
Let us call Z the 1l signal that created the left ♯ of w at 0t . According to lemma 4.3.11, there

is some time step 1t in which a ♯ appears in the past of the right ♯ ' (we call this column C).
Moreover, let 2t be the most recent step in which a ♯ appears in the past of the right ♯ at 0t ;
we call this column B. There are two cases:

This ♯ in column C was created by an 1r signal 1Z . In this case, this ♯ is necessarily the same
as the one that generated Z. Else, applying the same argument as in lemma 4.3.11, there
would be another ♯ between Z, and the ♯ at 1t , and then 1Z would have crossed both Z and
the 1L signal emitted by this intermediate ♯ .

We now have two subcases:
The ♯ at time 1t in column B was created by signals 2l and 2r . Thus, the ♯ on columnC, at time 1t , was created by signals 1l and 1r , for otherwise, we would have an 2l / 2r
intersection between the two columns, which is would create a column of ♯ s between
the two columns, that would still exist at time 0t . Thus:
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1. Column C had ♯ s or ♯ 's before 1t , and we can thus consider the first ♯ on it before 1t .
This is the ♯ which emitted the 2l signal creating the ♯ on columnB at 2t , otherwise
an 1l or 2l signal emitted by this ♯ would intersect column B between 0t and 2t ,
which is impossible by minimality of 2t .

2. The 2r signal arriving on the ♯ of columnB at time 2t and the 1r arriving on the ♯ of
column C at time 1t meet in the past on some ♯ . This allows to infer the existence of
a third column A on the left of B and C.

♯ ) '( ♯ '♯ 
♯ 

♯ ♯ 

t0

t1t2

r1 Z

♯ ♯ 

r2
Z1

l2

l1

A B Cd2 d1

d2

d22

d1

d12

'd

Figure 4.2

We can summarize this situation on figure 4.2.
We have the following equations on the distances:

1d + 2d = 2 2d +d'- 1d (1)

2 1d = 2d +d'
2d + 1d = 2 1d +d'- 2d (2)

2 2d = 1d +d'
Equation 1 comes from the 1r signal from the leftmost bottom ♯ , and equation 2

comes from the rightmost bottom one. From this, we can conclude that 1d = 2d = d',
and that the 1R / 1r signal emitted at time 2t by the ♯ in column B reaches the right
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column at time 0t , contradicting the fact that the state at time 0t in this right column
is ♯ '.
It was created by an 1l / 1r intersection, and so was the right ♯ at 1t . In this case, one of
them has to have another ♯ in its past, by lemma 4.3.11. Thus, this new ♯ sends an 2r or

2l signal (depending on which one we consider), that necessarily collides either with the
other column of ♯ 's, or with the 1L or 1R signals represented in thick on the following
figure 4.3: ♯ '♯ 

♯ ♯ 
♯ ♯ 

Figure 4.3

Since this 1L signal creates the top left ♯ , this collision should occur necessarily
before time 0t and would create a κ, which is forbidden by hypothesis.

Or it was created by an 2l / 2r collision. In this case, the only possible option for the ♯ at 2t
on the left column is a 1l / 1r , else there would be another ♯ /sharp' column between the ♯ 
and the ♯ ' at time 0t , contrarily to our hypothesis.

Therefore, we are in the exact symmetric of the case studied above, where we supposed
that the ♯ at 2t was created by an 2l / 2r , and the left ♯ at 1t by 1l / 1r . For the same reason, this
is a contradiction.

The other case of creation of a ♯ is the collision between signals 2l and 2r . But then again, this
kind of word is not in the limit language:

Lemma 4.3.13 There is no history diagram containing a wordw of the form ♯ Σ♯ ', where the left♯ was created by a signal pair 2l / 2r .
Proof. We use lemma 4.3.12 above to prove this one. To do this, we need to prove the existence
of a configuration of the form ♯ Σ♯ ' or ♯ 'Σ♯ , with in any case the ♯ created by an 1l / 1r pair of sig-
nals, in the past of our current configuration.

We begin by proving the existence of another column of ♯ , on the left of the left ♯ . Since the
right column of ♯ ' collides with signalZ (the 2l signal creating the left ♯ ), there is necessarily a ♯ 
in the past of this ♯ ', say at time 1t . But then, this ♯ is the one which emitted Z, for else it would
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have been formed by an 2l / 2r pair of signals colliding with Z, thus forming another ♯ between
the ♯ and the ♯ ' of our hypothesis. This shows that Z was originated by a ♯ in the same column
as the right ♯ '.

But then, this ♯ must also have emitted an 1L signal, that cannot collide with the 2r signal (let
us call it Z'), colliding with Z to form the left ♯ . Thus, this signal must be converted into an 1l
before meeting the 2r of the hypothesis; more precisely, it must collide with an 1R signal. But this
one necessarily has a finite origin, since it could not have crossedZ'. This shows the existence of
another column of ( ') ♯ at 2t (see figure 4.4):

t

t2
t1

♯ '♯ ♯ ) '( 

♯ 
♯ Z

'Z♯ x y

Figure 4.4

Lemma 4.3.14 Any configuration of L( SΩ ) with at least two ♯ s is of the following form, for
some value of n: ω ω( ♯ nB ) .

Proof. We first need to show that in a configuration x ∈L( SΩ ) containing ♯ s, there is no
history diagram yielding x in which two consecutive ♯ s of x were both created by an 2l / 2r pair,
or both by an 1l / 1r pair. This is the case, since:

If two consecutive ♯ s were created by an 2l / 2r pair, these signals would have collided before,
yielding another ♯ between them.
If two consecutive ♯ s were created by an 1l / 1r pair, the right 1r would originate in the left
column, and vice-versa (see figure 4.5).
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♯ ♯ 

♯ ♯ 
Figure 4.5

These signals would then have been created by ♯ s, which also would have emitted 2r s
and 2l s, intersecting between the two ♯ s in question, thus creating another ♯ .

Now, if we have two consecutive ♯ s in a configuration, we can infer the position of the third
one from the signals having created them, since they have different speeds, and thus must
intersect. Then, we can reproduce this argument at the step where these signals were created.

The only problem with this is that the inferred ♯ could be lay on the same side at each step of
the argument, thus yielding a configuration with a rightmost ♯ or a leftmost ♯ . Without loss of
generality, let us assume there is a rightmost ♯ or a leftmost ♯ . Then, the past of this cell would
be an infinite column of ♯ s and ♯ 's, with infinitely many ♯ s.

Then, it is easy to see that there can be no signal between two consecutive ♯ s, for they
would come from a desynchronized step in a history diagram of the configuration.

4.3.1.2 Complexity of the limit set

Lemma 4.3.15 Let L be the language of configurations of SΩ admitting a history diagram where
two ♯ s occur at some time t in the past. Then L ∈ nl.

Proof. Applying lemma 4.3.14 at time t, we know that the configuration at time t is of the
form ω ω( ♯ nB ) . Moreover, using again the argumentation of lemma 4.3.14, we know that there is
some time t' before t in the history, where the configuration is of the form

ω ω( ♯ n'B ) , with n' >n. Hence, L is exactly the language of forward orbits of periodic configurations of the formω ω( ♯ nB ) . It is straightforward to check from the definition of S (see figure 4.1) that the language
of periods of such forward orbits is a finite union of languages of the form:

♯ ' 1xB 1A … ixB iA
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Where i ≤ 4 (since there are no more than four different signals and points at any time
between two ♯ s), iA ∈ Σ and where the ix satisfy simple linear equations. The lemma follows.

Lemma 4.3.16 The language of configurations from SΩ which contain only one state from { ♯ , ♯ '} 
is also in nl.

Proof. Let c be the column containing the state from { ♯ , ♯ '} . There are several possibilities for
the number of ♯ s in its past. There may be at most two, for else, two of them would have been
created by 1l signals crossing the 1R / 1r emitted by the third ♯ , and that intersection, circled in
the following picture, can occur only once:

'♯ 
'♯ ♯ '♯ 
'♯ ♯ 

Figure 4.6

Thus, we are left with the following cases:
Two ♯ s in the past: in this case, the 2r emitted allows to guess the whole column. After the
last 2r signal, there may be signals in the opposite direction, that cannot collide in the past,
that is, first 2l s, then 1L s and 1l s. Such configurations are described by the following regular
expression, with x = 2z + y:

ω{ 1R , 1r ,B} { 2r ,B} 1l xB 2l yB 1L zB 2l zB { ♯ , ♯ '} zB 2r zB 1R yB 2r xB 1r ω{ 1L , 1l ,B} 
With only one ♯ in the past, there may still be some 1l signal somewhere, such as in the
following figure 4.7: '♯ 

'♯ ♯ 
Figure 4.7
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Thus, the configurations are of the following form:

ω{ 1R , 1r ,B} 1L zB 2l zB { ♯ , ♯ '} zB 2r zB 1R ω{ 1L , 1l ,B} 
With possibly a 1r replacing some state on the left, and an 1l on the right, like on

the figure.
With no ♯ in the past, we have an infinite column of ♯ ', thus no signal can come from it.
These configurations are of the form:

ω{ 1R , 1r ,B} { 2r ,B} ♯ '{ 2l ,B} ω{ 1L , 1l ,B} 
The lemma easily follows from the characterization of the different possible forms of configura-
tions discussed above.

Lemma 4.3.17 Let L be the language of configurations from SΩ which two or more ♯ ', and
having a history diagram with no ♯ . Then L is regular.

Proof. In a history diagram satisfying the hypothesis, there can be no collision generating a ♯ ,
and even no signal crossing, because this would mean that two signal are going in opposite
directions, in the same of a configuration. Thus, at least one would meet a ♯ ' in the past, which
is forbidden by hypothesis. Therefore, we have:

L = ( +B { 1R , 1L } ) ( +B 2r ) ( +B ♯ ') ( +B 2l ) ( +B { 1L , 1l } ) *
Lemma 4.3.18 The language of configurations from SΩ without any ♯ nor ♯ ' is also regular.

Proof. Without any ♯ nor ♯ ', we are left with blank states and signals. The configurations of the
limit set are those configurations in which the possible signals do not have to collide in the past,
thus they fall into one of these three possibilities:

ω ω{ 1l , 2r ,B} 
ω ω{ 1r , 2l ,B} 

ω{ 1r , 1R ,B} { 2r ,B} { 2l ,B} ω{ 1l , 1L ,B} 
Finally, we can state the following proposition, which does the disjunction of all the cases we
have seen until now:
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Proposition 4.3.19 The language of the limit set of S is recognizable in logarithmic space on a
non-deterministic Turing machine, that is, L( SΩ ) ∈ nl

Proof. There are several cases, and the disjunction on the form of the configurations allows
to express the language of SΩ as a union of “simple” nl languages:

Configurations with ♯ 's or ♯ s. We can describe the set of these configurations by the
following expression: ω{ 1L , 1l ,B} { 2l ,B} A{ 2r ,B} ω{ 1R , 1r ,B} 

Where A is one of the following (possibly infinite) configurations:
1. A has exactly one state from { ♯ , ♯ '} . We conclude, in this case, with lemma 4.3.16.
2. A has one ♯ , and at least one other ♯ or ♯ '. Lemmas 4.3.12, 4.3.13 and 4.3.14 show that

the configuration satisfy the hypothesis of Lemma 4.3.15, which allows us to conclude.
3. A has at least two ♯ ', but does not contain any signal. This case is treated by lemma

4.3.17.
4. A has at least two ♯ ', along with some signal(s) between two of them. Denote by c the

global configuration in this case. We can simply go back a few steps in the past to find a
configuration c' of case 1.2. We can therefore apply lemma 4.3.15 to c.

The configurations with no ♯ s nor ♯ 's are treated by lemma 4.3.18
The end of the proof goes by constructing a machine making a non-deterministic choice
between all these cases, then doing the computation of the chosen one. By this case analysis, the
global machine runs in logarithmic space.

Simulation \unlhd \preceq is far from being really understood, but this result gives a strong insight on the
difference between the two simulations, by showing the long-term behaviors they imply on
universal cellular automata.
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Future work

This work asks many more questions than it gives answers. Some of the ideas and open
problems presented here were already present in the literature, and we only gave a new light
on them. This is the case of open problem 1.2.1, asking if there could exist an automaton
intrinsically universal for relation \unlhd ? Others are relatively new, like the problematic developed
in chapter 2, where we ask what algorithmic complexity implies on the dynamics of cellular
automata. We conclude this manuscript by giving research directions that seem interesting
continuations of the results presented so far, as well as possible generalizations and extensions
of this work.

In circuits

The two main open problems that we studied in Chapter 2 are related to the implications of
hypotheses on the algorithmic complexity of predicting a cellular automaton on its dynamics.
The first question that remains open is whether cellular automata predictable by circuits of
constant depth have all their dependencies at a bounded distance of lines. This question can be
asked for any complexity class: do the modulo gates of ac circuits help to predict the evolution
of cellular automata? The reverse question also holds: Neary and Woods proved in [33] that a
particular automaton (elementary rule 110) has a p-complete prediction problem. The question
is open for any other class than p-complete problems: what automata simulate circuits of a
given depth and size? This seems a really promising research direction, as it gives a dynamical
vision to computation, and replaces two obstacles in the way of understanding circuit families
and Turing machines; namely, reductions and uniformity, by the elegant notion of simulation, and
spatial and temporal identity, respectively.

Our second question was about the simulation power reachable by cellular automata with
constraints similar to hypotheses of classical theorems in the theory of circuits. The example we
studied first was monotonic cellular automata, which are only one level of Post's classification of
boolean functions. Post's lattice is a classification of n-ary boolean functions, according to what
basic bricks are needed to write them. More precisely, we call a clone a set of boolean functions,
closed by composition. Post's result gives a classification of all boolean n-ary functions into a
countable number of clones, which is a wide extension of Proposition 2.1.1. Applying this to our
work, we could ask, for instance, what are the automata with a local rule writable as a composi-
tion of max and ⊕ gates, which is just one level above the monotone functions in Post's lattice?
What about the lower levels of the hierarchy, such as compositions of threshold functions and
simple logical operators of fan-in three? Moreover, results in clone theory show that the general-
ization of Post's classification to sets of more than two elements is much more complicated, and
has an uncountable number of classes (see [59] for an introduction). But cellular automata are
not arbitrary compositions of functions: the way they are composed is much more constrained.
Can the circuits needed to predict them be decomposed into a countable number of clones?
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In symbolic dynamics

The generalization of our deterministic approach, that we presented in chapter 4, asks an
interesting question: are these all-powerful complicated communication models with non-
determinism and randomization really needed? The answer is that we do not know, and
it would be really interesting to prove that deterministic communication complexity cannot
be applied to relation \unlhd . This would give a useful insight on the differences between the
two models of simulation we have presented in this thesis: colorings and sub-automata, and
would allow to understand why we fail to find an intrinsically universal cellular automaton for
relation \unlhd .

In chapter 3, we quickly showed how our approach could be generalized to two dimensions.
Classically, the favored non-deterministic two-dimensional objects are tilings. What do our
results mean for tilings? Are they amenable to the same kind of analysis? The first basic exten-
sion that we can envision in this direction is to find a method to show that a given tileset cannot
generate arbitrarily complicated tilings.

Another possible extension would be to bound the difficulty of computing a tiling in parallel,
before assembling all the parts. For instance, if the communication complexity of a certain
tileset is bounded by a constant d, then tiling an arbitrarily large rectangle could be done
by computing the parts in parallel: each processor could compute its part for all the possible
executions of the protocol, since there are at most c2 of them.

In small machines and experiments

The field of experimental theoretical computer science is quite new, but seems really promising.
Its goals can be to disprove, by experimental evidence, conjectures about large sets of data;
this is similar to the role of experiments in physics. Or to suggest unexpected behaviors. The
importance of this idea is also justified by results such as natural proofs, predicting that proofs of
complexity must be complicated or applicable to a very small number of functions.

A natural extension to our work would be to find an algorithm to compute an optimal,
or approximately optimal, partition of the matrices given by protocols for relations. This is a
variant of communication complexity, in which Alice is given an element of -1f ( { 0} ) , Bob
is given an element of -1f ( { 1} ) , for some f : n{ 0,1} → { 0,1} . They are asked to compute an
index where their configurations differ. If they have a circuit C computing f, they can use
it to find a protocol of cost the depth of C. And the correspondence between monochro-
matic rectangles and communication complexity still holds. Hence, if we can compute such
a partition experimentally, this would give a lower bound for the small input sizes. Natural
examples that seem interesting, for this approach, include the two elementary rules 30 and
110.
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In communication complexity of cellular automata

Several questions are asked by our work on the communication complexity of cellular automata.
First, we have not managed to find any lower bound for a natural example. We highly suspect
that automata such as elementary rule 30 do not have protocols of less than maximal complex-
ity, but they resisted to all our proof attempts. The result of Neary and Woods [33] might make
it possible to construct a fooling set of size P( n) 2 , with P( n) ≥ 1/kn for some integer k, for rule 110,
but a general method is yet to be found.

Then, our results using distributional communication complexity (Proposition ) open the
way to a study of statistical properties on the inputs of cellular automata, in relation with their
simulation power. This would be complement elegantly the approach of [60] about stochastic
cellular automata.

Also, studying the converse of Proposition 4.1.2 could be interesting. Our conjecture is
that, to any simulation ideal without intrinsically universal cellular automaton, corresponds
a communication problem easy for all the automata of the ideal, and hard for at least one
cellular automaton.

In general

Finally, we believe that our approach is applicable to from other theories than the theory of
computation. The most tempting extension would be algorithmic game theory, and economics,
to show for instance that a certain type of behavior is impossible in a game, or on the contrary
that given such and such a law, another type of behavior is frequently observed in a model of
economics. The study of information transmission is by the way one of the key elements of
today's economic science, as the works of Stiglitz [42] show.
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