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Abstract

Several problems in image processing belong to the class of inverse problems, and
hypotheses should be made to have a well-defined formulation, i.e., a formulation
in which a solution exists and it is unique. A possibility is to use geometric criteria
to regularize the problem, e.g., to favor solutions with smooth contours or short
perimeters. This process is called regularization.

However, it is likely the case that the objects in the scene have unknown mathe-
matical representations and that such geometric measurements should be computed
in place, considering only their visual representation: In the case of image process-
ing, a digital image. Usually, such measurements are computed without considering
the nature of the digital domain, and consequently, are not guaranteed to converge
neither approximate the expected Euclidean quantity. The regularization is thus
incorrect or not precise, and the solutions biased.

Recently, several digital estimators of geometric properties such as tangent and
curvature were proven multigrid convergent. In other words, the estimated values
computed in the digital representation of a shape converges towards the values
computed in its Euclidean representation as the digital mesh becomes finer and
finer. However, there exist few models in the image processing literature that make
use of them. That is because such estimators are more difficult to integrate in an
optimization framework.

In this thesis, we investigate the use of multigrid convergent estimators and their
applications in image processing. In particular, we aim to integrate regularizers
based on convergent estimators of curvature in image segmentation problems. We
present four combinatorial models based on the elastica energy (a classical geometric
regularization term combining perimeter and curvature) with applications in image
segmentation. Next, we evaluate our results and compare with similar methods.
The results have shown to be very competitive with the state of art.
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Résumé

Beaucoup de problèmes en analyse d’images sont caractérisés comme des pro-
blèmes inverses, et des hypothèses s’avèrent nécessaire pour obtenir un formulation
bien posée, c’est-à-dire que le problème ait une solution et que celle-ci soit unique.
Une approche possible consiste à utiliser des critères géométriques pour régulariser
le problème, par exemple pour favoriser des solutions avec des contours lisses ou de
faible périmètre.

Cependant, dans le cadre de l’analyse d’image ; nous ne disposons pas de la
représentation mathématique des objets dans une scène observée. Nous devons uti-
liser les seules données discrètes (les couleurs des pixels de l’image) qui approchent
ces objets et les mesures géométriques sont alors délicates. Les méthodes classiques
prennent peu en compte la nature discrète des données dans leur mesure. En consé-
quence, nous n’avons pas de garanties de convergence ou même d’approximation
des mesures effectuées par rapport aux mesures euclidiennes attendues. La régula-
risation dans le processus de traitement d’image est alors incorrecte ou peu précise,
et les solutions trouvées sont alors biaisées.

Récemment, plusieurs estimateurs discrets de propriétés géométriques, notam-
ment liés à la longueur, à la tangente et à la courbure, ont été prouvé convergents
multigrilles. Autrement dit la valeur mesurée par ces estimateurs sur la représenta-
tion discrète d’une forme converge vers la valeur mesurée sur sa forme euclidienne
quand on utilise des grilles de discrétisations de plus en plus fines. Néanmoins, on
constate que la littérature d’analyse d’image comporte peu de modèles qui utilisent
des estimateurs convergents multigrille. Cela vient du fait qu’il est plus difficile des
les intégrer dans les algorithmes de résolution.

Dans cette thèse, nous explorons l’utilisation d’estimateurs convergents multi-
grille dans des applications en analyse d’image. Plus spécifiquement nous cherchons
à intégrer des régularisations basées sur des estimateurs convergents de courbure
dans des processus de segmentation d’image. Nous présentons quatre modèles va-
riationnels combinatoires basés sur l’énergie dite “Elastica” (combinaison classique
de régularisation géométrique utilisant la longueur et la courbure) avec application
en segmentation d’image. Nos résultats sont ensuite évaluées et comparées avec des
méthodes similaires, et nos modèles s’avèrent très compétitifs avec l’état de l’art.
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Introduction

Is the universe continuous or discrete? The analyst would certainly say that it is
continuous and it will point out the natural phenomena modeled by calculus and
the successful applications in engineering. The computer scientist would surely not
accept this idea because there is not such a thing as an unlimited space or unlimited
time. The statistician would rather say that both are correct with a probability of
50%.

This thesis has no pretension to answer this intricate question and its philo-
sophical consequences. Our contributions are much humbler than that. Applied
mathematics have to face this duality every time an analytic solution is not avail-
able and this is not different with image processing, except that in the latter we
have to deal with a third ingredient: digital objects.

An image is a 2D discrete representation of a projection of a much more complex
3D world. The unit of an image is the pixel, and pixels lie in the digital grid, which
is a regular sampling of the plane. Differently from most discretization schemes in
numerical analysis, whose discretization points are allowed to be located anywhere,
points in an image are constrained to a subset of Z2. This restriction lead to a seri-
ous problem if our image processing model is based on geometric measurements of
objects in the scene. How to compute geometric measurements of objects described
by points in Z2?

A key argument of this thesis is that general discretizations of geometric mea-
surements, e.g. perimeter, tangent, curvature, do not extend well to the digital
world. A linear discretization of curvature proven convergent (in some sense) to the
continuous definition do not say too much when this measurement is done in dig-
ital objects. First because we are not allowed to position the discretization points
anywhere, and second because the convergence theorems usually tells us about con-
vergence when the number of discretization points goes to infinity, which is very
frustrating when coping with finite data. More appropriate would be a convergence
theorem that relates the convergence speed with the resolution of the digital grid.
This concept exists and it is called the multigrid convergence.

Recently, several digital estimators of tangent and curvature were proven multi-
grid convergent, but there is a lack of image processing models using such estimators.

15
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This thesis investigates the use of multigrid convergent estimators in models of im-
age processing relying on a combinatorial optimization framework. The developed
work is mainly concerned with image segmentation models using a digital version
of the elastica energy. The thesis is grouped in two parts:

Image Processing and Digital Geometry. We review classical models
of image processing (continuous and discrete), and we dedicate particular
attention to those employing geometric properties as regularizers, mainly the
curvature. At the end of this part, we briefly introduce basic concepts from
digital geometry and the multigrid convergence definition, as well as some
examples of multigrid convergent estimators.

Contributions. In this part we grouped all our contributions. It is composed
of four combinatorial models aiming elastica energy minimization. Some of
them can be applied in image segmentation. The last model is the fastest one
and is based on graph cuts.

Chapters outline

Part I: Image Processing and Digital Geometry

1. Variational models in Image Processing. As many applied fields,
image processing drinks from the source of continuum models, in particular
those emerging from partial differential equations and signal processing. The
image is then modeled as an infinitely smooth function and, based on the
principle of least energy, energies (functionals) are proposed such that the
image of minimum (or maximum) value gives us the answer of the problem.
That is the so called variational approach, that eventually is solved by the
computation of its Euler-Lagrange equation and it boils down to find the
steady-state of a diffusion process. The classical Tikhonov and total variation
for image denoising and inpainting follow this principle. Similarly, we have
curve evolution approaches to segment objects of interest in the scene.

2. Discrete methods in Image Processing. The continuous point of
view is popular because it is, indeed, very powerful and produce satisfactorily
results for several imaging problems as discussed in Chapter 1. An important
drawback, however, is that it is still very difficult for a continuous model
to preserve the discontinuities of an image along the edges of the objects
present on it, which is the most important feature of an image (the human
perception targets discontinuities in images). That is one of the reasons why
discrete (combinatorial) approaches appear as an alternative. In this chapter,
we review some combinatorial models inspired by Markov random fields and



CONTENTS 17

we will be interested in a special class of energies emerging from its Gibbs
energy: the submodular pseudo-boolean functions class. In particular, we are
going to point out its relationship with graph cuts and present some graph
cut based models applied in imaging at the end of the chapter.

3. Curvature as regularizer. We focus on models that employ curvature
as a regularization term, both in continuous and discrete settings. In a second
moment, we turn to the elastica energy and examine imaging models based on
it for segmentation and inpainting. Finally, we describe combinatorial models
that attempts to minimize the squared curvature.

4. Digital Geometry. It is often the case that we do not know a priori the
mathematical expressions modeling the objects in an image. Sometimes, it is
not even possible to get such expressions, or at least, it is very complicated.
Therefore, we have to recognize shapes from their digital representation, pos-
sibly by recognizing primitives as lines, circles, etc. However, we should re-
member that the sampling on a regular grid imposes special conditions on how
the computation of geometric properties is done on digital objects. Digital
geometry offers the proper tools to do such measurements and evaluate their
convergence towards the measurements on the continuous representation of
the object. In this chapter, we give a brief introduction to digital geometry
and we define the multigrid convergence property for digital estimators of
geometric properties.

Part II: Contributions

5. A combinatorial model for digital elastica shape optimization.
We propose a local combinatorial model to minimize the elastica energy us-
ing multigrid convergent estimators of length and curvature. We validate the
model through experiments and we observe convergence to the shape of min-
imum elastica value in the free elastica problem. At the end of the chapter,
we sketch some attempts of global optimization models.

6. A 2-step evolution model driven by digital elastica minimiza-
tion. We propose to iteratively minimize a quadratic non-submodular pseudo
boolean function to evolve an initial shape to another with lower elastica en-
ergy. The model is specially conceived for the curvature integral invariant
estimator described in Chapter 4. We present an application to image seg-
mentation at the end of the chapter.

7. A single step evolution model driven by digital elastica minimiza-
tion. It can be seen as an improved version of the previous model, though
with some differences. In particular, the model is singled step and has an
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easier implementation. In this chapter we introduce the balance coefficient
and we set up the terrain for a graph cut based model.

8. Digital elastica minimization via graph cuts. The balance coeffi-
cient defined in the previous chapter is used to set up a cost function on the
edges of candidate graphs. The candidate graphs are derived from a neigh-
borhood of shapes, and the solution, at each iteration, is chosen as the source
component of a minimum cut in the candidate graphs with lowest digital elas-
tica value. We observe convergence to the global optimum shape in the free
elastica problem and we show how to use it in image segmentation.

9. Result analysis. We make a summary of the models developed in this
thesis and we point out its pros and cons. At the end of the chapter, we
present a comparison of them with a competitor model that uses curvature
regularization in image segmentation.



Part I

Image Processing and Digital
Geometry
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Chapter 1

Variational methods in Image
Processing

A track should be constructed to connect some point p to a lower altitude point q.
Which form the track should take if we wish that a ball released at p reaches q in the
shortest time? The curve known as brachistochrone or tautochrone is the answer
of this puzzle solved by Jean Bernoulli and a classical problem of the calculus of
variations.

The main object of calculus of variations are called functionals or energies, and
a simple way to describe it is as a function whose variable is itself a function. Min-
imizing functionals is a more intricate problem than minimizing an usual function,
as the variable in a functional has infinite dimension. Nonetheless, by means of the
so called variations, one can model infinitely small variations in the functional and
do a rigorous analysis of its extremum, the main tool of which is the Euler-Lagrange
equation.

The calculus of variations found in image processing a fertile field of applications,
as images themselves can be seen as functions, and image processing tasks can be
modeled as being the results of some functional minimization. In this chapter we
present some popular variational techniques to approach image processing tasks,
with a particular focus on image segmentation.

1.1 Inverse problems in imaging

An archaeological museum decided to digitize some of its collections and make them
available for digital visits over the internet. The chosen method of digitization
consists in taking a set of pictures for each object, in different camera positions,
execute a stereo algorithm to estimate point depths and finally reconstruct the 3D
object. The stereo and reconstruction are examples of inverse problems in imaging.

21



22 CHAPTER 1. VARIATIONAL METHODS IN IMAGE PROCESSING

Inverse problem Forward problem

Projection: Compute vector v ∈ R3 whose
projection is P (v) ∈ R2

Compute the projection P (v) ∈ R2 of vector
v ∈ R3

Parameters inference: Given a set of ob-
servations Γ, infer the parameters (µ, σ) of the
Gaussian distribution that describes Γ

Given a random variable X following a Gaus-
sian distribution with parameters (µ = 0, σ =
1), compute the probability P (X ≤ 0.42)

Image denoising: Given noisy image Ĩ,
compute the original image I, i.e., the image
without noise

Add some random noise to a given image I to
produce noisy image Ĩ

Image inpainting: Given image Ĩ with a
missing patch, reconstruct the removed patch Remove a patch from image I

Image segmentation: Given image I, find
the labeled partition I

Given a labeled partition I of some image I,
assemble the pieces to create image I

Table 1.1: Examples of inverse problems and its direct versions. Inverse problems
are characterized by uncertainty and parameter inference.

Usually, inverse problems are characterized by a degree of uncertainty or lack of
information. The 2D pictures in the problem above miss depth information, that
should be inferred by the stereo algorithm. On the other hand, if the shape geometry
was known, e.g., the values of mean curvature were known for every infinitesimal
point of the shape, then constructing a digital 3D representation would be a forward
problem.

We can find examples of inverse problems in several branches of mathemat-
ics [Kir96], geophysics [Zhd15], natural language processing [SY05], astronomy [Luc94]
and the list goes on. The image processing field itself is plenty of them [BB98]. In
fact, a great part of real world applications consists in inferring parameters of some
model, i.e., an inverse problem. In Table 1.1 we list some examples of inverse
problems and its corresponding forward version.

Another characteristic of inverse problems is that they are usually ill-posed. A
problem is said to be ill-posed if at least one of the properties below is not respected

1. A solution exists and it is unique;

2. The solution changes continuously with its parameters

In order to solve ill-posed problems one should include additional information,
i.e., create assumptions over the properties of the sought solution. In the museum
problem, for example, one may assume that missing patches of the reconstructed
surface should be filled by patches of minimal area. The process of including ad-
ditional information in ill-posed problems is called regularization and its goal is to
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better condition an ill-posed problem and in the best scenario, transform it into a
well-posed one.

Next, we describe the image model used in this thesis and give a precise definition
of the main image problems discussed further on. Examples of such applications
can be seen in Figures 1.1 and 1.2.

Image model

For matters of simplicity, we limit our discussion to grayscale images, the concepts
being mostly extendable to multichannel images. It is convenient to have in mind
two different representations of an image.

Discrete: I ∈ Fm×n
Continuous: fI : Ω ⊂ R2 → [0, 1],

where F is a finite set. In this thesis, we define such set as

F = { i

255
| i ∈ N, i ≤ 255}. (1.1)

The discrete representation is interpreted as a sampling of m× n elements (pixels)
of the continuous representation fI .

Image denoising

Given an image fĨ corrupted with some noise from an external source, image de-
noising consists in finding an estimation fÎ of the original image that respects some
quality criteria, usually encoded by the minimum of a functional E.

Given fĨ , find estimation fÎ such that

fÎ = arg min
f

E(f, fĨ)

Applications: Restoration of old pictures; enhancement of satellite images.

Image segmentation

Given an image fI , the image segmentation problem consists in finding a partition
I of fI such that each element of I is identified with some desired property, usually
encoded by the minimum of some functional E. Given fI : Ω→ [0, 1] and a positive
integer n, find partition I? = {Ωi ⊂ Ω | i ≤ n} such that

I? = arg min
I

E(I, fI) subject to ∀i 6= j : Ωi ∩ Ωj = ∅⋃n
i Ωi = Ω

Applications: enhance blood vessels in angiograms; track roads in satellite images;
identify objects in a scene.
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(a) 1 of 2 aerial images (b) Depth reconstruction [Poc+08]

(c) Photo restoration [MM98] (d) Vessel segmentation
[Pey+10; CK97].

(e) Input image (f) Multilabel segmentation [Sou+13]

Figure 1.1: Real applications of imaging problems.
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Image inpainting

Given an image fĨ and a collection of missing patches P , the problem of image
inpainting consists in creating an image fI with the reconstructed missing patches
such that a quality criteria, encoded as the minimum of some functional, is respected

Given fĨ and missing patches P , find image fI such that

fI = arg min
f

E(f, fĨ) subject to f(Ω \ P) = fĨ(Ω \ P).

Applications: removal of undesired objects in a scene; restoration of old pictures.

1.2 Bayesian rationale and total variation

As remarked in the previous section, inverse problems involve some level of un-
certainty about the solution. In order to solve an ill-posed problem we need to
regularize it by including additional information, otherwise said, make assumptions.

The maximum a posteriori method was first introduced in the image processing
community in the work of [GG84] and we are going to reproduce here the rational
for image denoising. We make two assumptions

1. The noisy image Ĩ was obtained by addition of a normal Gaussian noise with
µ = 0, σ = λ−1/2 (λ > 0) to the original image, i.e.,

Ĩ = I +N , (A.1)

where N is a (m× n) matrix of random variables Ni,j and Pr
(
Ni,j = n

)
=

1
Z1

exp(−λn2

2
), with Z1 being the normalization constant.

2. Given some function ρ, a candidate image estimation C has probability

Pr(C) =
1

Z2

exp(−ρ(C)), (A.2)

where Z2 is the normalization constant.

Then, the original image is estimated as the candidate image with the highest
probability to have occured given the noisy image, i.e.,

Î = arg max
C

Pr(C | Ĩ) = arg max
C

Pr(Ĩ | C)Pr(C)

Pr(Ĩ)
. (1.4)
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(a) Original image (b) 10-partition as in [CCP08]

(c) Noisy image (d) Image denoised with FISTA [BT09]

(e) Inpainting mask (f) Inpainted image with [FFA15]

Figure 1.2: Imaging problems applications. From top to bottom row, an ex-
ample of image segmentation, denoising and inpainting.



1.2. BAYESIAN RATIONALE AND TOTAL VARIATION 27

We have already all the elements to expand Equation (1.4). The probability of
having the corrupted image Ĩ given a candidate image C is derived from Equa-
tion (A.1), i.e.,

Pr(Ĩ | C) = Pr(N = Ĩ −C) =
1

Z1

exp
(
− λ‖Ĩ −C‖2

2

)
. (1.5)

The denominator term is computed as the joint probability

Pr(Ĩ) =
∑

J∈Fm×n
Pr(Ĩ | J)Pr(J) =

1

Z1Z2

∑
J∈Fm×n

exp

(
− λ

2
‖Ĩ − J‖2 − ρ(J)

)
.

(1.6)

Substituting Equations (1.5) and (1.6) in Equation (1.4) we obtain

Î = arg max
C

exp
(
− λ

2
‖Ĩ −C‖2 − ρ(C)

)
∑
J∈Fm×n exp

(
− λ

2
‖Ĩ − J‖2 − ρ(J)

) (1.7)

Finally, solving Equation (1.7) is equivalent to solve

Î = arg min
C

λ

2
‖Ĩ −C‖2 + ρ(C). (1.8)

The first term appears so often in imaging problems that it has a special name: data
fidelity. In the denoising problem, the data fidelity term appeared as a consequence
of the Gaussian noise model assumption. The second term is also a regularization
term and it favors images that respect some desirable property for the problem
to be solved. Since natural images has a higher spatial dependency, a reasonable
guess for ρ would be a function that has lower value for piecewise smooth data,
i.e., images composed by closed regions with smooth variations in its interior but
possibly strong discontinuities in their boundaries.

1.2.1 Tikhonov regularization

The classical way to optimize Equation (1.8) is to shift it to a continuous setting,
analytically derive some optimization properties and then use this properties to solve
the problem in a discrete setting. The continuous reformulation of Equation (1.8)
consists in optimizing the energy functional below

fÎ = arg min
f

F (f) =
λ

2

∫
Ω

‖fĨ − f‖
2dx+R(f), (1.9)
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where R is a functional derived from the choice of ρ. A popular choice for R is to
define it as the L2 norm of ∇f , also called the Tikhonov regularization term. Equa-
tion (1.9) is rewritten as

fÎ = arg min
f

F (f) =
λ

2

∫
Ω

‖fĨ − f‖
2dx+

∫
Ω

‖∇f‖2dx. (1.10)

1.2.2 Euler-Lagrange equation

We can establish some necessary optimal conditions for Equation (1.10) by deriving
its Euler-Lagrange equation. Assume that function g minimizes functional F , i.e.,

g = arg min
f

F (f).

Further, assume that there exists a function w that agrees with g at the boundary
of f ’ domain, i.e., w(x) = 0, ∀x ∈ ∂Ω. Define the function h as

h(ε) = F (g + εw)

Therefore, h has a minimum at ε = 0. Thus,

0 =
dh

∂ε |ε=0
=

d

∂ε |ε=0

∫
Ω

λ

2
‖fĨ − g − εw‖

2 + ‖∇(g + εw)‖2dx

=|ε=0

∫
Ω

λ‖fĨ − g − εw‖
(fĨ − g − εw)

‖fĨ − g − εw‖
w + 2‖∇(g + εw)‖ (∇g + εw)

‖∇(g + εw)‖
∇wdx

=

∫
Ω

λ(fĨ − g)w + (∇g)∇wdx.

Applying integration by parts and using the fact that w(x) = 0, ∀x ∈ ∂Ω.

0 =

∫
Ω

(
λ(fĨ − g)−∆g

)
wdx

Since w could be any function, we can write

λ(fĨ − g)−∆g = 0 (1.11)

Therefore, if g is a minimum of Equation (1.9), then it respects the convex Equa-
tion (1.11). Hence, given an initial solution f , one can execute a descent method
(gradient descent, for example) to find its minimum. In practice, Equation (1.9)
is discretized using the samplings Î, Ĩ of fÎ , fĨ and a finite differences scheme is
defined to estimate the Laplacian ∆.

The Tikhonov term favors images with smooth variations in color, but the
smoothness is not restricted to the interior of regions. Thus, Tikhonov tends to
obfuscate the discontinuities that will likely be present in the contour of regions
and we have the impression that the image is blurred (see Figure 1.3). Nonetheless,
Tikhonov term is attractive due to its optimization properties.
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(a) Noisy (b) Tikhonov (c) Total Variation

Figure 1.3: Tikhonov x Total variation denoising. Total variation is capable
to better preserve discontinuities across edges than Tikhonov.

1.2.3 Total variation regularization

An alternative to Tikhonov regularization is to use the so called total variation of
the image function. For a smooth function f , its total variation is defined as

TV (f) =

∫
Ω

‖∇f‖.

For a more general (possibly not differentiable) locally integrable function f : Ω→
Rn, its total variation is defined as

TV (f) = sup

{∫
Ω

∇u · φ | φ ∈ C1
c (Ω,Rn) and ‖φ‖∞ ≤ 1

}
= sup

{
−
∫

Ω

u∇ · φ | φ ∈ C1
c (Ω,Rn) and ‖φ‖∞ ≤ 1

}
,

where φ is vector-valued continuously differentiable function with compact support.
The image denoising total variation model is written as

fÎ = arg min
f

λ

2

∫
Ω

‖fĨ − f‖
2dx+ TV (f). (1.12)

The ROF model [ROF92] assumes the image representation is smooth, and from the
Euler-Lagrange equation of Equation (1.12) the following gradient flow is derived:

∂f

∂t
= ∇ ·

(
∇f
‖∇f‖

)
− λ(fĨ − f)
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The left term is not differentiable, and a small ε > 0 is added to the denominator
in order to avoid numerical instability. However, the calibration of ε might be
delicate, since a small ε might not be sufficient to avoid instability and a larger ε
may disfigure the model. In [Cha04] the total variation definition is exploited to
create a convergent algorithm that works by successive projections and that solves
model Equation (1.12). In [BT09] a modified version of the previous algorithm has
proven to have faster convergence.

The total variation term is characterized by its smooth properties while par-
tially preserving some discontinuities across the edges. In this sense, total variation
models produce results with sharper edges than those produced by the Tikhonov
term (see Figure 1.3) .

1.3 Standard techniques

In this section we give an overview of the key techniques in variational models for
problems in image processing. We start by describing the most influential model in
this category.

Mumford-Shah

The L2-norm regularization has nice optimization properties, but it does not pre-
serve discontinuities along the object boundaries. This effect is attenuate using a
L1-norm, but it it not sufficient to avoid blurred edges. TheMumford-Shah func-
tional [MS89] handles this issue by incorporating the edges in its formulation in the
form of a set of discontinuities K and limiting the L2-norm regularization to points
in the interior of objects, i.e., Ω \ K. Moreover, the set K itself is compelled to
be of small length. The Mumford-Shah model consists in minimizing the following
functional

(fÎ , K̂) = arg min
f,K

α

∫
Ω

‖fĨ − f‖
2dx+ β

∫
Ω\K
‖∇f‖2dx+ λPer(K) (1.13)

The functional can be seen as a model for both denoising and segmentation prob-
lems. The function fÎ being the denoising solution and K̂ the segmentation solu-
tion. Equation (1.13) is proven to have a minimizer [DCL89], and in the case K
is fixed, the minimizer is unique (see chapter 25 of [Bar+11]). However, to find a
minimizer of Equation (1.13) is a challenging task due to its non-convexity.

Nonetheless, there exist several approximations to the Mumford-Shah functional.
We refer to the phase-field model of [AT90]; the finite-differences scheme of [Cha99];
the level-set method of [VC02]; the convex relaxations of [Poc+09; SC14]; and the
discrete calculus approach of [FLT17].
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1.3.1 Curve evolution

Active contours

Active contours or snakes is a supervised method for doing image segmentation.
In the original work [KWT88], an initial parametric curve C0(q) → (x(q), y(q)) is
evolved towards the local minimum of the snakes energy

F (C) = αLength(C) + βSmoothness(C) + γEdge(C)

F (C) = α

∫ 1

0

∥∥∥dC
∂q

∥∥∥2

dq + β

∫ 1

0

∥∥∥d2C

∂q2

∥∥∥2

dq − γ
∫ 1

0

‖∇fI(C(q))‖2dq (1.14)

The length and smoothness regularization term favors curves of smooth variations
and small length while the edge term compels the curve to stop at regions of high
variation of color intensity.

The snakes method was devised having an interactive framework in mind. First
of all, the user must set the initial curve such that it encloses the object to be
segmented, and besides that, a set of additional tools as anchor points, repulsion
and spring forces are available for online modification of the problem. The user can
make use of these tools to conveniently perturb the current solution and force the
curve to evolve to the expected local optimum.

The active contours is an influential paradigm for image segmentation and it was
particularly popular for segmenting medical images [TD96]. Variations of the origi-
nal model include extension to 3D-segmentation [MT99] and topologically adaptable
snakes [MT95].

Some drawbacks in the active contours formulation include its non-intrinsic def-
inition, i.e., the curve is not defined in terms of its geometric properties and its rep-
resentation depends on the chosen parametrization; and, partially as consequence
of the latter, its inability to change the initial curve topology. One needs to ini-
tialize several snakes in order to correctly segment a picture with several holes, for
example.

Geometric active contours

Parametric models as snakes are often criticized because of their non-intrinsic def-
inition, i.e., the energy is not defined in terms of the geometric properties of the
contours. That makes the theoretical analysis of the snakes model harder, as the
evolution of the contour itself depends of the chosen parametrization. In [Cas+93]
the authors propose a model based on the mean curvature motion of the level-sets
of a C2 function u.
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Let u : Ω ⊂ R2 → [0, 1] be a C2 function. The curvature at its k-th level set is
given by

κ(x, y) = ∇ ·
(
∇u
‖∇u‖

)
, ∀(x, y) ∈ { (x, y) | u(x, y) = k }

The geometric active contour model consists in evolving an extension of u, by
including an artificial time parameter t, and compute the steady solution of the
flow

u(0, x, y) = u(x, y)

du

dt
= g(‖∇fI‖)‖∇u‖∇ ·

(
∇u
‖∇u‖

+ v

)
, (1.15)

where g is a non-increasing function that plays the role of an edge-detector, e.g.,
g(x) = 1/(1 + x)2. The function u can be initially defined as a smoothed version of
1−χC , where χC is the characteristic function of some set C ∈ Ω that contains the
objects to be segmented.

Following Equation (1.15), the gray level at some point (x, y) changes propor-
tionally to the curvature of its belonging level set. The constant v forces the change
in u to be always positive, i.e., pixels gets lighter, never darker. The term ‖∇u‖
allows u to evolve only at some neighborhood of the 0-level-set boundary and the
term g(‖∇fI‖) makes the evolution to stop if an edge is reached. At the steady
solution of Equation (1.15) the segmented objects of I corresponds to the 0-level
set of u.

Differently from the snakes, the geometric active contours handle changes in
topology of the initial curve. In figure Figure 1.4, the initial 0-level set of u splits in
two disjoint sets at the steady solution of Equation (1.15). However, the geometric
active contour models cannot segment objects with holes without including a region-
based term [Che+06].

1.3.2 Level set

The active contour and its geometric version are both edge-based methods, a nat-
ural strategy for image segmentation but with limitations, e.g., the models may
encounter some difficulties to segment objects with holes. The Chan-Vese [chan01]
method proposes the inclusion of a region-based term and it generalizes the level-set
approach already presented in the geometric active contour model.

Let fI : Ω ⊂ R2 → [0, 1] a grayscale image and F ⊂ Ω an open set such that
the pair (F,Ω \ F ) is the searched binary partition. Further, assume that there
exists a function φ : Ω→ R with bounded first derivative. The image partitions are
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(a) Active contours

(b) Geometric active contours

(c) Chan-Vese

Figure 1.4: Curve evolution models. Segmentation results of three curve evolu-
tion models. From top row to bottom: active contours, geometric active contours
and Chan-Vese. The initial curve (0-level set) is colored in red and the final one is
colored in green. The blue curve highlights an intermediate iteration.
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identified in the following fashion

φ(x) < 0, ∀x ∈ F
φ(x) = 0, ∀x ∈ ∂F
φ(x) > 0, ∀x ∈ Ω \ F

In possession of the partition descriptor φ, the following energy is proposed

F (φ, x) = µLength(φ, x) + νArea(φ, x) + λ1Foreground(φ, x) + λ2Background(φ, x)

= µ

∫
Ω

δ0(φ(x))‖∇φ(x)‖dx+ ν

∫
Ω

1−H(φ(x))dx

+ λ1

∫
Ω

(
1−H(φ(x))

)
‖fI(x)− cF‖2dx+ λ2

∫
Ω

H(φ(x)‖fI(x)− cB‖2dx,

(1.16)

where H(x) is the Heaviside function and δ0 the standard Dirac delta function, i.e.,

H(x) =

{
1, x ≥ 0
0, otherwise, δ0(x) =

{
+∞, x = 0
0, otherwise. and

∫ +∞
−∞ δ0(x)dx = 1.

The parameters cf , cb are defined as the average color intensity in the interior of the
foreground and background regions, respectively

cF =

∫
Ω

(
1−H(φ(x))

)
fI(x)dx∫

Ω

(
1−H(φ(x))

)
dx

, cB =

∫
Ω
H(φ(x))fI(x)dx∫

Ω
H(φ(x))dx

.

Next, the Euler-Lagrange equation of Equation (1.16) is calculated and used to
define a gradient flow to minimize Equation (1.16), in a similar fashion as done
in Section 1.2.1. In order to be numerically tractable, the Heaviside and Dirac delta
function are regularized as

Hε(x) =
1

2

(
1 +

2

π
arctan(

x

ε
)

)
, δε(x) =

ε

π(ε2 + x2)
.

The initial level set function can be set as any function with bounded first deriva-
tive, but it is recommended to use the checkerboard function φ = sin(π/5x1) sin(π/5x2)
which is reported [Get12] to have fast convergence. In [VC02], the Chan-Vese au-
thors extended their method to contemplate colored images and multisegmentation.
An illustration is presented in Figure 1.4
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1.3.3 Minimum path

In a sequel work, the authors of geometric active contours established a link between
their geometric model in [Cas+93] and the computation of geodesics in a regular
surface [CKS97].

The length of a parametric curve C(q) according to an isotropic metric of po-
tential W (C) is calculated as

L(C) =

∫
W (C)‖Cq‖dq. (1.17)

Equation (1.17) is used to compute shortest paths between two points according
to the given metric. By properly setting the potential W , we can make object
boundaries in an image fI to match the curves of shortest length, for example,
letting W = g(‖∇fI‖) as in Equation (1.15) we obtain

L(C) =

∫
g
(
‖∇fI(C(q))‖

)
‖Cq‖dq. (1.18)

In [CKS97] the authors show that the snakes model without the smoothness term(β =
0) is equivalent to geodesics computations, the metric changing accordingly with the
models parameters. The isotropic metric above is equivalent to the case in which
the length and image terms of the snakes model are equal.

Given an initial curve C0(q), a local minimizer for Equation (1.18) can be com-
puted by finding the steady solution of the following flow derived from its Euler-
Lagrange equation

C(0, q) = C0(q) (1.19)
dC

dt
= (gκ−∇g · n)n, (1.20)

where n is the normal vector to the curve C at (t, q). One can show that, given an
initial function u ∈ C2 such that u is negative (positive) in the interior (exterior) of
its 0-level set, the solution of Equation (1.20) equals the steady solution of

u(0, x, y) = u0(x, y) (1.21)
du

dt
= g‖∇u‖κ+∇g · ∇u (1.22)

Comparing Equation (1.22) with Equation (1.15) we notice that the ∇g ·y term was
included while the v parameter was removed. The geometric active contour stops
as soon as an ideal edge is found (a threshold should be set), which is particularly
bad for real images segmentation, as it is likely that the flow will stop at the first
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variation of color intensity. The new term allows the flow to evolve even in those
cases. Nonetheless, one can include again the v parameter, as it permits to increase
the convergence in some cases.

The relation between segmentation and geodesic computation inspired several
works. Elongated and thin objects as blood vessels or roads in satellite images
are the global optimum of a geodesic computation in which the minimum path is
constrained to lie between two points [CK97]. Further development of this work
reduced the initialization to just a single point [BC09]. Anisotropic metrics aligned
to the image edges are reported to return improved solutions for blood vessels
segmentation [Jba+08; BC11]. Ideas from Chan-Vese and Geodesic models are
put together in [Che+06]. Finally, an elucidating review of geodesic methods in
computer vision can be found in [Pey+10].

1.3.4 Convex relaxation

A set Ω is convex if for all a, b ∈ Ω, every element in the line connecting a, b also lie
in Ω. A function f : Ω → R is convex if its domain Ω is convex and the following
inequality holds

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Convexity is a desirable property in optimization problems because any local min-
imizer (maximizer) is also a global one. In other words, methods that optimizes f
do not depend on its initialization. Therefore, it is of great interest to find convex
formulations for image processing problems.

Ideally, one would look for the so called convex envelope of f , which is the
tightest convex function f̃ such that f̃ ≤ f . In fact, one can compute the envelope
of a function f by taking its convex biconjugate.

Definition 1(Convex conjugate): Let f : Ω → R ∪ {+∞,−∞}. Its convex
conjugate is defined as

f ∗(y) = sup
x
yTx− f(x)

The biconjugate f ?? is the convex envelope of f . In fact, if f is convex and lower-
semicontinuous, f ?? = f (Frenchel’s inequality). Unfortunately, the computation
of the biconjugate is known only for a few functions. Nonetheless, the conjugate
is key to prove properties on convex optimization algorithms as those based on the
proximal operator [Cha04; BT09].

In order to use tools from convex optimization one needs to define a convex
energy. Very often in imaging problems the functionals are defined over a non-
convex function space, for example, in the binary denoising or the multilabeling



1.3. STANDARD TECHNIQUES 37

problem, in which the optimization function has a discrete range. A straightforward
approach is to simply relax the range to a continuous set and execute a standard
optimization method. The discrete solution is then obtained by simple rounding.
However, fewer are the cases in which the projected solution is optimum or even
meaningful to the original problem. A technique that gives guarantees with respect
to the quality of the back projected solution is functional lifting.

Functional lifting

Consider the binary image denoising problem. Let fĨ : Ω→ [0, 1] the observed noisy
image and consider the total variation model for binary denoising

min
fI :Ω→{0,1}

E2−den(fI) = min
fI

∫
Ω

‖∇fI‖+ λ

∫
Ω

(fI − fĨ)
2, (1.23)

This model is not convex, as the optimization variable fI belongs to the non-convex
domain of binary functions. The corresponding level-set formulation of Equa-
tion (1.23) (in the same spirit of the Chan-Vese model) is given by

min

∫
Ω

‖∇H(φ(x))‖+ λ

∫
Ω

(
H(φ(x))− fĨ(x)

)2
. (1.24)

Whose a local minimum is a steady solution of

dφ

dt
= H ′ε(φ)

(
∇ ·
(
∇φ
‖∇φ‖

)
+ 2λ(fĨ(x)−Hε(φ))

)
(1.25)

We reproduce the example given in [CEN06] to illustrate a situation in which the
Chan-Vese method returns a local optimum solution. Assume that the observed
image fĨ is the characteristic function of some disk of unknown radius to which some
noise is included. In this example, the noise function itself includes (or removes)
disks of radius smaller than 2 (see Figure 1.5). Then, we set the initial guess of the
level-set function to be precisely the observed image, i.e., φ0(x) = fĨ(x).

The evolution given by Equation (1.25) maintains the radial symmetry of φ0,
which means that φ(t) represents the characteristic function of a collection of disks,
that is, the main disk and the noise, composed of disks of radius smaller than 2. In
other words, for a single disk of radius R in the image, Equation (1.24) is equivalent
to

min
r
g(r, λ) = min

r
2πr + λπ|r2 −R2|, r ≥ 0. (1.26)

Equation (1.26) has a local minimum at r = R and a local maximum at r = 1/λ.
However, depending on the value of λ, its global minimizer will be at r = 0 or
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(a) Input image and contour of lowest en-
ergy for λ = 1

(b) Result of level-set method for λ = 1

Figure 1.5: Level-sets return local optimum solutions. Level-set result
of Equation (1.23) stops at a local minimum in the right, instead of the green
contour in the left.

r = R. For a fixed λ, let’s consider the case in which g(0, λ) < g(R, λ).

g(0, λ) < g(R, λ)

λπR2 < 2πR

R <
2

λ

Therefore, for any disk of radius R ∈ (1/λ, 2/λ), the flow of Equation (1.25) is
going to stop at the local minimum r = R, even though the global minimum is
located at r = 0.

The parameter λ is set by the user to calibrate the denoise capabilities of the
model. In the example of Figure 1.5, it indicates whether a disk of certain radius
should be considered as an object or as a noise element. In the illustrated case, with
λ = 1, the optimal solution consists in segmenting only the disk of largest radius in
the picture, but Chan-Vese fails to converge to this solution because it gets stuck
in local minimum r = R for the noise disks with R ∈ (1, 2).

In [Poc+08], the authors use an upper-level set representation to derive an equiv-
alent model to Equation (1.23) but with the particular property that global optimum
solution can be recovered by simple thresholding. The function u can be rewritten
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in terms of its upper level representation as

fI(x) =

∫ 1

0

ϕ(x, µ)dµ,

where ϕ(x, µ) is its µ-th upper level set, i.e.,

ϕ(x, µ) = 1{fI>µ} =

{
1, fI(x) > µ
0, otherwise.

Using the co-area formula [fleming1960integral] we rewrite the total variation
term as ∫

Ω

‖∇fI‖ =

∫
Ω

∫ 1

0

‖∇ϕ(x, µ)‖dxdµ

and we can rewrite Equation (1.23) as

min
ϕ:Ω→{0,1}

E2−den = min
ϕ

∫
Ω

∫ 1

0

‖∇ϕ(x, µ)‖+ (µ− fĨ(x))2δ(fI(x)− µ)dxdµ (1.27)

= min
ϕ

∫
Σ

‖∇ϕ(x, µ)‖+ (µ− fĨ(x))2|∂µϕ(x, µ)|dΣ, (1.28)

where Σ = [Ω× [0, 1]]. It happens that in the new formulation Equation (1.28), one
can recover a binary solution from simple thresholding. From its relaxation

min
ϕ:Ω→[0,1]

E2−den (1.29)

we can once again rewrite E2−den in terms of the upper level set representation of ϕ

E2−den =

∫
Σ

∫ 1

0

‖1{ϕ>γ}‖+ (µ− fĨ(x))2|∂µ1{ϕ>γ}|dΣdγ

=

∫ 1

0

E2−den(1{ϕ>γ})dγ

Therefore, if ϕ? is the solution of the convex relaxed problem Equation (1.29),
1{ϕ?>γ} is also an optimal solution of the binary one for almost every choice of γ.

The functional lifting technique creates an equivalent higher dimensional model
with the property that binary solutions can be easily recovered from its relaxed
solution. In [Poc+08] this strategy is extended for multilabeling problems and
in [Poc+09; SCC12] they are used to create a convex relaxation of the Mumford-
Shah model.

To optimize the higher dimensional energy one could regularize the indicator
and dirac delta functions in the same spirit of the Chan-Vese method, but it is
usually preferable to use a convex optimization method that is suitable for non-
differentiable functions as the proximal gradient [Cha04], FISTA [BT09] or the
primal-dual [CP11] algorithm. The results are very satisfactory, but the running
times very high.
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Chapter 2

Discrete methods in Image
Processing

In the last chapter, we described the Bayesian rational for the denoising problem.
We turn once again to probability thinking, but restricting our analysis to discrete
probabilistic models. Markov Random Fields (MRF) are in the foundations of the
methods discussed in this chapter, and an inspiration for many others. Image pixels
are naturally interpreted as Markov states, and image properties, such as spatial
coherence, are encoded as potentials stored in the edges of the image grid graph.
Problems are solved by computing the solution of maximum a posteriori probability
(MAP). The MAP inference itself boils down to minimize the challenging class of
pseudo-boolean functions.

In some fortunate cases, the functions can be minimized exactly and efficiently
by a reduction to a max-flow (min-cut) problem, and it happens that such cases
model imaging problems, as segmentation, nicely well. In fact, the minimum cut
defines a partition, and one can interpret the cut as the contour separating two
objects. It is the key for fruitful research that has followed. One can abstract the
MRF machinery and define potentials on vertices and edges of the grid graph such
that its minimum cut answers the problem being posed. Moreover, the potentials
can model geometric properties of objects embedded in the grid graph, and one can
use cuts to estimate the objects perimeters, for example.

We start this chapter by giving a brief description of Markov Random Fields
and the minimization problem arising from the MAP inference. In the second
section we present some properties of pseudo-boolean functions and how to optimize
them. In the third section we describe the special class of submodular functions
and efficient algorithms to compute the minimum of such functions. Finally, we
describe successful models in the image processing community based on graph cuts
and how one can inject geometric information in them.

41
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2.1 Markov Random Fields

Let G = (V , E) an undirected graph with vertices set V and edges set E . The set
of adjacent vertices to v ∈ V is denoted N (v). Given two subsets S,Q ⊂ V , a
(S,Q)-cut is any subset of edges E ′ ⊂ E such that S,Q are in different connected
components in the graph G(V , E \E ′). We denote cut(S,Q) the set of all (S,Q) cuts.

For each vertex v ∈ V we associate a discrete random variable Xv that take
values from a label set Γv according with some distribution P . We group all random
variables in vector X and we write XS to refer to the set of associated variables
with vertex set S ⊂ V . We also group all the label sets in the collection Γ. We
denote WX the set of all configurations for the random vector X. We say that
H = (G,X,Γ, P ) is a Markov Random Field (MRF) if for any non-adjacent states
Xu and Xv, the probability distribution P satisfies the independence conditions
below

Pairwise independencies:
{
Xu ⊥ Xv |

{
Xi, ∀i ∈ V \ {u, v}

}}
(2.1)

Local independencies:
{
Xu ⊥ Xv |

{
Xi, ∀i ∈ N (u)

}}
(2.2)

Global independencies:
{
XS ⊥XQ |XZ , Z ∈ vertices

(
cut(S,Q)

)}
, (2.3)

where Xu ⊥ Xv |XS means that variable Xu is independent of Xv given an assign-
ment of variables in XS; and vertices(E) is the set of all vertices present in the set
of edge’s collection E.

For example, the MRF in Figure 2.1 respects the following expressions

P
(
X1 = w1 |

{
Xi = wi, i 6= 1

})
= P

(
X1 = w1 | X2 = w2, X3 = w3

)
P
(
X3 = w3 |

{
Xi = wi, i 6= 3

})
= P

(
X3 = w3 | X1 = w1, X2 = w2, X4 = w4

)
P
(
XC123 = w |X4 = w4, X5 = w5

)
= P

(
XC123 = w | X4 = w4

)
,

where we use the shorter notation XC123 = w to denote some assignment of the
random variables associated with the nodes of clique C123. A clique is any complete
subgraph of G. Given a graph, it may be quite difficult to sort out a probability dis-
tribution that satisfies Equations (2.1) to (2.3). However, for the class of MRF that
can be factorized in terms of the maximal cliques of G, creating a valid probability
distribution is straightforward with the help of clique potential functions.
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ω
X1 X2 X3 X4 X5 P (ω)
0 0 0 0 0 0.0238
0 0 0 0 1 0.0023
0 0 0 1 0 0.0011
0 0 0 1 1 0.0059
0 0 1 0 0 0.0238
0 0 1 0 1 0.0023
0 0 1 1 0 0.0011
0 0 1 1 1 0.0059
0 1 0 0 0 0.119
0 1 0 0 1 0.0119
0 1 0 1 0 0.0059
0 1 0 1 1 0.0297
0 1 1 0 0 0.0476
0 1 1 0 1 0.0047
0 1 1 1 0 0.0023
0 1 1 1 1 0.0119

ω
X1 X2 X3 X4 X5 P (ω)
1 0 0 0 0 0.119
1 0 0 0 1 0.0119
1 0 0 1 0 0.0059
1 0 0 1 1 0.0297
1 0 1 0 0 0.0476
1 0 1 0 1 0.0047
1 0 1 1 0 0.0023
1 0 1 1 1 0.0119
1 1 0 0 0 0.238
1 1 0 0 1 0.0238
1 1 0 1 0 0.0119
1 1 0 1 1 0.0595
1 1 1 0 0 0.0952
1 1 1 0 1 0.0095
1 1 1 1 0 0.0047
1 1 1 1 1 0.0238

Figure 2.1: Example of a Markov Random Field. The nodes X1, X2, X3 forms
the 3-clique C123.

2.1.1 Clique factorization and Gibbs energy

A distribution PΦ is a Gibbs distribution if it can be parameterized by a set of
factors Φ = {φ1, φ2, . . . φm}, i.e.,

PΦ(X = w) =
1

Z

m∏
i=1

φi(w)

Z =
∑
w∈WX

m∏
i=1

φi(w)

For strictly positive distributions (P (X = w) > 0 ∀w ∈ WX), the Hammersley-
Clifford theorem [KF09] states that (G,X,Γ, P ) is a MRF if and only if P is a Gibbs
distribution parameterized over complete subgraphs (cliques) of G. Therefore, for
MRF with strictly positive distributions P we can write

P (X = w) =
1

Z

∏
c∈C

φc(w) (2.4)

Z =
∑
w∈WX

∏
c∈C

φc(w), (2.5)

where C is the set of all cliques of G. We define the order of such MRF as
maxC∈C |C| − 1, i.e., the size of the highest clique in C minus one. The second
order MRF in Figure 2.1 was constructed by defining the following clique potentials
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X1 X2 X3 φ123

0 0 0 1
0 0 1 5
0 1 0 5
0 1 1 10
1 0 0 5
1 0 1 10
1 1 0 10
1 1 1 20

X3 X4 φ34

0 0 100
0 1 50
1 0 20
1 1 10

X4 X5 φ45

0 0 100
0 1 10
1 0 10
1 1 50

For strictly positive distributions we also have that the global independencies
in Equation (2.3) are equivalent to the pairwise and local independencies [KF09].

2.1.2 Hidden Markov model

Imaging problems are naturally coupled with a set of observations, namely the color
intensities of each pixel. We can expect that such observations play a role in any
probabilistic model pretending to solve an imaging problem. The Hidden Markov
Model (HMM) is a subclass of MRF that incorporates such observed variables in
its definition and is quite often used in the image processing literature.

Definition 1(Hidden Markov Model): A Hidden Markov Model is a MRF
H = (G,X ∪ Y ,ΓX ∪ ΓY , P ) such that

Y = {Yi | Xi ∈X}
∀i 6= j, Yi ⊥ Xj | Xi

∀i 6= j, Yi ⊥ Yj.

We are going to be interested in problems arising from the setting in which the
states of random variables in Y are known, and one wishes to infer the states of
random variables in X. In other words, we are interested to find w? such that

w? = arg max
w

= P (X = w | Y ). (2.6)

The vector Y is called the vector of observed variables, and in image problems they
are usually associated to the color intensity of pixels.

The set of labels ΓX is defined according to the problem. In segmentation it
could represent the different partitions in which to segment the image, e.g. a label
to encode vehicles, another to encode pedestrians, a third to encode the sky and so
on. In stereo, the labels could mean the relative depth of the object with respect
to the others. In denoising and reconstruction problems in general, it could be the
color intensities themselves.
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Figure 2.2: HMM and grid graphs. A typical HMM in imaging using a 4-
neighborhood system.

2.1.3 Grid graph and Tikhonov denoising revisited

Let I ∈ Fm×n a grayscale bidimensional image. We denote p ∈ I a pixel of I. We
define its undirected grid graph GI(V , E) as

V = {vp | p ∈ I}
E =

{
{vp, vq} | p ∈ I and q ∈ Nk(p)

}
,

where Nk(p) is the k-neighborhood of pixel p. Common values for k are 4 and 8,
i.e.,

N4(p) = {p+ (i, j) | |i| ≤= 1, |j| ≤ 1, |i+ j| = 1}
N8(p) = {p+ (i, j) | |i| ≤= 1, |j| ≤ 1}.

In the grid graph GI , we have 1 and 2-cliques only. We attach to GI the HMM
H = (GI ,X ∪ Y ,ΓX ,ΓY , P ) in which the random variables take values over the
grayscale levels of the image, grouped in ΓX = ΓY = { i

255
| 0 ≤ i ≤ 255}. The

Gibbs distribution P is given by Equations (2.4) and (2.5) with clique potentials
defined as

ψp(γp) = λ
2

(
fĨ(p)− γp

)2
.

ψpq(γp, γq) = (γp − γq)2.

φp(xp = γp) = exp
(
− ψ1(γp)

)
, ∀p ∈ I

φpq(xp = γp, xq = γq) = exp
(
− ψ2(γp, γq)

)
, ∀p ∈ I and q ∈ Nk(p).

In Figure 2.2 we have a representation of this HMM, which encodes the Tikhonov
denoising model of Section 1.2. The estimated image Î is computed as the maximum
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likelihood of P , i.e.,

Î = arg max
I′

P (X = I ′ | Y = I)

= arg min
I′

E(I ′)

= arg min
I′

∑
p∈I

ψp
(
I ′(p)

)
+

1

2

∑
p∈I

q∈Nk(p)

ψpq
(
I ′(p), I ′(q)

)
, (2.7)

the 1
2
factor is necessary in order to compensate double counting of ψpq. The energy

E to be minimized is called the Gibbs energy.
The success of this approach depends on our capacity to minimize the Gibbs

energy in Equation (2.7). For the Tikhonov multilabel HMM, it can be computed
exactly and efficiently [Ish03]. However, MAP inference in general multilabel HMMs
is NP-hard. The scenario is a little bit better for binary HMMs, as we are going to
see in the next section.

2.1.4 Potts and Ising models

Let I ∈ Fm×n a grayscale image to which we associated its grid graph GI(V , E). We
wish to denoise image I, but instead of using the Tikhonov regularization term, we
want to use one that preserves discontinuities. An intermediate step would be to
minimize the naive discrete version of total variation, which can also be efficiently
minimized. In this case, the Gibbs energy is given by

E(x) =
λ

2

∑
p∈I

(Ĩ(p)− xp)2 +
∑
p∈I,

q∈N (p)

|xp − xq|. (2.8)

The rightmost term in Equation (2.8) is called the discrete anisotropic total vari-
ation. As its continuous version, the discrete total variation performs better than
Tikhonov for imaging problems, but it still not considered a discontinuity preserving
function and it presents some undesirable side effects (see Figure 2.3). On the other
hand, truncated functions are discontinuity preserving. For some K > 0, consider
the following Gibbs energy

ψpq(xp, xq) =

{
K, if xp 6= xq
0, otherwise. (2.9)

E(x) =
∑
p∈I

ψp(xp) +
∑
p∈I,

q∈N (p)

ψpq(xp, xq). (2.10)
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(a) Noisy image (b) |xp − xq| (c) min(3, |xp − xq|)

Figure 2.3: Comparison between convex and truncated poten-
tials [BKR11](chapter 3). Truncated potentials are discontinuity preserving
functions, and are suitable for imaging problems.

Equations (2.9) and (2.10) defines a Potts model. Minimizing Equation (2.10) is
NP-hard [BVZ01] if variables xp, xq are not binary, i.e., the underneath HMM is a
multilabel one. In the binary case, Equations (2.9) and (2.10) are referred as the
Ising model, and this one can be minimized efficiently.

In fact, MAP inference in multilabel HMMs are much more difficult than MAP
inference in binary HMMs. At first glance, the multilabeling extension does not
seem to be an issue, as we can always transform a multilabel problem in a binary
one by including as many as log2 |ΓX | new variables. The difficulty is that the
resulting energy is very likely to lie in a class of binary energies whose minimization
is NP-hard [Ram+08]. Therefore, MAP inference in multilabel HMMs is not likely
to be solved exactly in an efficient manner. Instead, approximation algorithms as
(α, β)-swap [BVZ01] or range moves [Vek07] are used.

In the next two sections we are going to focus on the analysis of binary first-order
HMMs, i.e., MRF that are encoded by 1, 2-cliques potentials and binary random
variables. This restriction is justified by two reasons: first because there exist effi-
cient algorithms to solve them (see Table 2.1); and second because of its generality.
A general MRF can be transformed into an equivalent binary first-order MRF by
including a sufficient number of auxiliary variables. Naturally, such transformations
are not always useful. In the multilabel case the derived energy is almost surely
non-submodular and in the case of high-order cliques, the inclusion of auxiliary
variables may turn the minimization problem impractical [Ish10].

In binary first-order MRFs, the clique potentials maps binary vectors to real
values and the energy belongs to the class of quadratic pseudo-boolean functions,
which can be written as

f(x1, · · · , xn) =
∑
j<n

cjxj +
∑
j<k<n

cjkxjxk.



48 CHAPTER 2. DISCRETE METHODS IN IMAGE PROCESSING

MRF Order Graph topology Function class
Submodular Non-submodular

0th order All topologies Greedy algorithm

1st order 1-connected Viterbi algorithm [Vit67], Belief Propagation [Pea82]
≥ 2-connected Max-Flow: O(|V |2|E|) [KZ04]

NP-Hard [NW81]2nd order All topologies Max-Flow: O(|V |2|E|) [BM85]
Higher order All topologies O(n5Q+ n6) [Orl09]

Table 2.1: MAP inference algorithms for binary MRF of different orders.
In 0th order HMM, a simple Greedy algorithm computes the MAP inference. In
1st order HMM we have linear algorithms based on dynamic programming for 1-
connected graphs and max-flow for other topologies. For orders greater than 2,
MAP inference can be computed efficiently if the 2-clique potential is submodular.
Notice, however, that the best algorithm for orders greater than 2 is quite expensive
(Q denotes the time to evaluate the function). Submodular functions is a special
class of Pseudo-Boolean functions discussed in Section 2.2 that can be minimized
in polynomial time, in constrast with non-submodular, which in this case is proven
to be a problem in NP-hard. There are other classes of pseudo-boolean functions
that are efficiently optimized, some of them are described in [BH02]

In the next section, we explore the class of pseudo-boolean functions and how to
optimize them.

2.2 Pseudo-boolean functions

Definition 1(Pseudo-boolean function): A pseudo boolean function f :
{0, 1}n → R is a function that maps binary vectors to real values.

Pseudo-boolean functions (PBF) can be interpreted as set functions, i.e., func-
tions that map sets to real values. Indeed, a binary vector of n elements is in bijec-
tion with the power sets of V = {1, 2, · · · , n}. Therefore, the PBF f : {0, 1}n → R
can be written as

f(x1, · · · , xn) =
∑
S⊂2V

cS
∏
i∈S

xi. (2.11)

where cS ∈ R is a coefficient associated to each subset S. Equation (2.11) is denoted
the polynomial form of PBF f . The order of a PBF is defined as the cardinality of
the largest subset S in which cS > 0. The polynomial form is unique.

Sometimes it is convenient to express f in its so called posiform representation,
usually denoted by φ instead of f . In its posiform representation we use literals
x̄i, xi ∈ L to represent states 0, 1 of indexed variable i and all coefficients are positive
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except the one associated to the empty set (which is also called the constant term
of the posiform and denoted a∅).

φ(f) = φ(x1, · · · , xn) =
∑
T⊂2L

aT
∏
p∈T

p, (2.12)

where aT ≥ 0 whenever T 6= ∅. The posiform representation can be seen as a
truth table with positive values for all configurations, except the one in which all
variables are set to zero. One can pass from posiform to polynomial representation
by exchanging x̄i and (1−xi). A posiform is said maximum-constant if its constant
term C(φ) is maximum among all posiforms representing f . A maximum-constant
posiform is denoted φ?. Both general and maximum-constants posiforms are not
unique representations of the PBF f .
Example 1:The polynomial form and two possible posiform representations for the
same PBF.

f(x1, x2) = a∅ + a1 + a2 + a12 +
(
a1 − a1 + a12 − a12

)
x1

+
(
a2 − a2 + a12 − a12

)
x2

+
(
a12 − a12 − a12 + a12

)
x1x2

φ1(x1, x2) = a∅ + a1x1 + a1x1 + a2x2 + a2x2

+ a12x1x2 + a12x1x2 + a12x1x2 + a12x1x2

φ2(x1, x2) = (a∅ − c) + (a1 + c)x1 + (a1 + c)x1 + a2x2 + a2x2

+ a12x1x2 + a12x1x2 + a12x1x2 + a12x1x2

Classical problems in combinatorial optimization as vertex cover, maximum in-
dependent set, 3-SAT and many others are formulated as PBF optimization prob-
lems. The mentioned problems are in NP-complete, so we can expect that the
optimization of a general PBF is a task that is unlikely to be solved efficiently.
Nonetheless, we can investigate subclasses of PBF in which the optimum can be
found efficiently.

2.2.1 PBF optimization

We first observe that optimizing a PBF of order n can be transformed into an
equivalent quadratic PBF optimization problem by creating extra variables and
penalty terms. For example, let x, y, w, z ∈ {0, 1}. Then,

z = xy ↔ xy − 2xz − 2yz + 3x = 0

z 6= xy ↔ xy − 2xz − 2yz + 3x > 0
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Therefore

min f(x, y, w) = min g(x, y, w, z)

minxyw = min zw + xy − 2xy − 2yz + 3x.

This procedure can be extended and formally described in a polynomial time algo-
rithm that transforms an arbitrary PBF f in a quadratic PBF g with the property
that min f = min g [BH02]. We remark, however, that the transformation may
add a prohibitive number of auxiliary variables, turning the minimization prob-
lem impractical. With that in mind, we are going to restrict our analysis to the
optimization of quadratic PBFs.

Roof duality

A quite natural and naive approach to optimize Equation (2.11) would be to formu-
late the quadratic PBF as a continuous linear programming. Consider the quadratic
PBF

f(x) =

{
min c0 +

∑
cixi +

∑
cijxixj

subject to x ∈ {0, 1}n. (2.13)

Equation (2.13) can be linearized by substituting each pairwise term xixj with
binary variable zij and including the following set of constraints

R(x, z) =


zij ≤ xi,
zij ≤ xj,
zij ≥ xi + xj − 1

∣∣∣∣∣ ∀0 < i < j < n


Therefore, an equivalent linear integer programming formulation is

min c0 +
∑
cixi +

∑
cijzij

subject to x, z ∈ {0, 1}n
R(x, z)

(2.14)

Finally, the relaxation of Equation (2.14) gives

g(x, z) =


min c0 +

∑
cixi +

∑
cijzij

subject to x, z ∈ [0, 1]n

R(x, z)

Clearly, formulation g is a lower bound of f , i.e., g(x, z) ≤ f(x). Such lower bound
is called the roof dual (it was originally defined for a maximization problem) and it
is shown [HHS84] to be equivalent to

g(x, z) = C
(
φ?(f)

)
,
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i.e., the constant in the max-constant posiform representation of f . In this same
work, the so called strong persistency theorem is proven. It says that for every
unary term app (p a literal) in a max-constant posiform representation of f , we
have that p = 0 in every solution of min f .

Example 2: Consider the quadratic PBF

f(x1, x2, x3) = 6− x1 − 4x2 − x3 + 3x1x2 + x2x3.

It can be shown that its roof dual equals 2. A possible max-constant posiform
representation for f is

φ?(f) = 2 + x1 + x̄2 + x1x2 + 2x̄1x̄2 + x̄2x̄3

According with the strong persistency theorem, x1 = 0, x̄2 = 0 for every solution of
min f . Replacing this values in f we have

min f(x1, x2, x3) = min f(x1 = 0, x̄2 = 0, x3)

= min 6− 4− x3 + x3

= 2.

The strong persistency theorem allow us to fix some variables of the quadratic
PBF, which could possibly result in a simpler optimization problem. Clearly, the
main difficult is to find the max-constant posiform φ?(f) that results in a maximum
number of variable elimination. Such posiform, called the master posiform, can be
found by computing the maximum flow of some capacitated graph.

Master posiform and max-flow reduction

We present a construction given in [BHS91; BH02] of a capacitated graphGφ(V , E , c)
that encodes some posiform φ with constant C(φ) = 0. The authors showed how
to derive its max-constant posiform from the computation of the maximum flow of
Gφ. Let φ be a posiform of the form

φ =
∑
p∈L

app+
∑
p,q∈L

apqpq,

with ap > 0, apq > 0 ∀p, q ∈ L . We construct the capacitated graph Gφ(V , E , c)
such that each term in the sum is encoded by two edges. Each unary term with
literal p have one edge from the source vs to its negated literal vertex vp̄ and one
edge from vp to the target vertex vs̄. The source and target vertices are identified
with the constants 1 and 0, respectively.
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vs vq̄

aq
2 vp vs̄

ap
2

Similarly, pairwise terms with literals p, q have edges (vp, vq̄) and (vq, vp̄). The
full graph is given by

V ={vp | p ∈ L} ∪ {vs, vs̄}

E =
{

(vs, vp̄), (vp, vs̄) | ∀ap > 0
}
∪
{

(vp, vq̄), (vq, vp̄) | ∀apq > 0
}

c( (vp, vq) ) = cpq =


aq/2, if vp = vs and vq 6= {vs, vs̄}
ap/2, if vp 6= {vs, vs̄} and vq = vs̄
apq/2, if vp, vq /∈ {vs, vs̄}

0, otherwise.

A construction of graph Gφ is illustrated in Figure 2.4a. Therefore, the posiform φ
can also be written as φ =

∑
(vp,vq)∈E cpq̄pq. In fact, it is possible to show that there

is a bijection between the posiform with zero constant φ and the graph Gφ.
A flow is a function ϕ : E → R+ that satisfies

ϕ( (vp, vq) ) = ϕ(p, q) < cpq, ∀vp, vq ∈ V∑
vp∈V

ϕ(p, q) =
∑
vp∈V

ϕ(q, p), ∀vq ∈ V .

The value of some flow ϕ is denoted as ν(ϕ) and is given by

ν(ϕ) =
∑
vp∈V

ϕ(s, vp),

i.e., the flow value equals to the sum of the flow leaving the source. A flow ϕ? is
said to be maximum if

ϕ? = arg max
ϕ

ν(ϕ).

The residual graph of Gφ with respect to some flow ϕ is denoted Gφ[ϕ](V , E+, r)
and owns the same set of vertices of Gφ. The set of edges is extended to include
returning edges as well, i.e.,

E+ = E ∪ {(vq, vp) | (vp, vq) ∈ E}.

The edges cost is given by the residual function r

r( (vp, vq) ) = rpq =

{
cpq − ϕ(p, q), (vp, vq) ∈ E
ϕ(p, q), (vp, vq) ∈ E+ \ E .
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One can also construct a posiform from the residual graph Gφ[ϕ]. In this case, the
posiform is denoted φ[ϕ]. We remark that edges arriving in the source or leaving
the target are all mapped to 0, as the source and the target are identified with the
constants 1, 0 respectively. For example, (p, s) is encoded as ps̄ = 0.

The Ford-Fulkerson algorithm computes the maximum flow by incrementing an
initial zero flow function ϕ0 = 0 every time an augmenting path is found. The k-th
augmenting path is a path πk = (p0 = s, p1, p2, · · · , pn, pn+1 = s̄) in the residual
graph Gφ[ϕk−1] in which all edges of πk have a positive residual value. We say that
πk is an ε-augmenting path if

ε = min
pi∈πk\s̄

rpi,pi+1
.

Proposition 1(Residual graph to posiform): Given a posiform

φ = C(φ) +
∑
p∈L

app+
∑
p,q∈L

apqpq,

construct its corresponding capacitated graph Gφ and compute its maximum flow
executing the Ford Fulkerson algorithm. Then, for every step k of the algorithm we
have that

φ = C(φ) + ν(ϕk) + φ[ϕk].

Proof:
We observe that every ε-augmenting path πk = s, vp1 , vp2 , · · · , vpn , s̄ in Gφ[ϕk]

encodes an alternating sum of literals of the form

φπk =a1p̄1 + a12̄p1p̄2 + a23̄p2p̄3 + · · ·+ an−1n̄pn−1p̄k + anpn

=ε(p̄1 + p1p̄2 + p2p̄3 + · · ·+ pn−1p̄n + pn) + φ′,

where

φ′ = (a1̄ − ε)p̄1 + (a12̄ − ε)p1p̄2 + (a23̄ − ε)p2p̄3 + · · ·+ (an−1n̄ − ε)pn−1p̄n + (an − ε)pn.

By observing that

p̄1 + p1p̄2 = 1− p1p2

−p̄j−1pj + pj p̄j+1 = p̄j−1pj − pjpj+1

−pn−1pn + pn = p̄n−1pn,



54 CHAPTER 2. DISCRETE METHODS IN IMAGE PROCESSING

(a) Initial graph Gφ for φ = 2x + 8z +
2xz̄ + 4x̄y + 6ȳz̄

(b) 1-Augmenting path 1 (c) 1-Augmenting path 2

(d) 1-Augmenting path 3 (e) 1-Augmenting path 4

(f) Final residual graph Gφ[ϕ?]. The master
posiform is written as φ? = 4 + 2z + 2z̄ȳ +
4zy + 4ȳx+ 2zx̄

Figure 2.4: Example of max-flow to find the master posiform. The Ford
Fulkerson algorithm is executed for the capacitated graph representation of posiform
φ. In (a), the initial capacitated graph; a sequence of augmenting paths (we omit
the returning edges) are shown in figures (b-e); the final residual graph is shown in
figure (f).
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we can rewrite the alternating sum as

φπk = ε+ ε(p̄1p2 + p̄2p3 + · · ·+ p̄n−1pn) + φ′

= ε+ ψ + φ′

= ε+ φ[ϕk]

Note that φ′ and ψ corresponds, respectively, to the update of the residual costs for
the edges of πk and the updates of its returning edges. Therefore, we can write

φ = C(φ) + ν(ϕk) + φ[ϕk],

i.e., the initial posiform φ can be rewritten as a constant plus the posiform corre-
sponding to the residual graph at step k of the Ford Fulkerson algorithm. �
It follows that the master posiform is given by

φ? = C(φ) + ν(ϕ?) + φ[ϕ?].

Example 3: The posiform φ = 2x+8z+2xz̄+4x̄y+6ȳz̄ is represented by the graph
Gφ in Figure 2.4. Its maximum flow value equals to 4 and the master posiform is
given by φ? = ν(ϕ?) + φ[ϕ?] = 4 + 2z + 2z̄ȳ + 4zy + 4ȳx+ 2zx̄.

From the strong persistency theorem we conclude that z = 0, and we have

minφ = minφ?(z = 0) = min 4 + 2ȳ + 4ȳx.

We can say more. Let U be the set of literals that are reached from the source by a
path of positive residual in the final residual graph. Then, a solution x ∈ arg min f
must agree with x(U = 1) [BH02]. Therefore,

minφ = minφ?(z̄ = 1, y = 1) = min 4 = 4.

In fact, by looking at all configurations of φ, we observe that (z = 0, y = 1) in every
minimum configuration of f .

x y z f
0 0 0 6
0 0 1 8
0 1 0 4
0 1 1 12
1 0 0 10
1 0 1 10
1 1 0 4
1 1 1 10
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The construction above is the core of the QPBO algorithm [BHS91] that finds
partial solutions of general quadratic PBF. The labeled variables by QPBO are
guaranteed to belong to an optimum solution. This last property is usually referred
as the partial optimality property of QPBO, and it is a consequence of the strong
persistency theorem. In the most cases, the master posiform allows us to elimi-
nate only few variables, but if the function f is a submodular function, QPBO is
guaranteed to find the minimum of f .

2.2.2 Submodularity

Definition 2(Submodular set function):
Let V be a set with n elements, e.g., V = {1, 2, · · · , n}. A set function f : 2V → R
is submodular if

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ), ∀X, Y ⊂ V. (2.15)

An equivalent local definition is given by

f(X ∪ {x1}) + f(X ∪ {x2}) ≥ f(X ∪ {x1, x2}) + f(X), ∀X ⊂ V and {x1, x2} 6⊂ X.
(2.16)

Proposition 2(Quadratic submodular PBF): Let f : 2V → R a quadratic PBF
written as

f(x1, · · · , xn) = C +
∑
i<n

fi(xi) +
∑
i<j<n

fij(xi, xj).

Then, the statements below are equivalent

i Function f is submodular.

ii fij(0, 1) + fij(1, 0) ≥ fij(0, 0) + fij(1, 1), ∀i < j < n

iii ∂2f
∂xi∂xj

≤ 0, ∀i < j < n

Proof:
(i→ ii): Immediately from Equation (2.16).

(ii→ iii): Writing down the terms in f for variables xi, xj we have

fij(0, 0)(1− xi)(1− xj) + fij(1, 1)xixj + fij(0, 1)(1− xi)xj + fij(1, 0)xi(1− xj).
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Taking its second derivative

∂2f

∂xi∂xj
= fij(0, 0) + fij(1, 1)− fij(0, 1)− fij(1, 0) ≤ 0.

(iii→ i): From iii

fij(0, 1) + fij(1, 0) ≥ fij(0, 0) + fij(1, 1).

That is equivalent to Equation (2.16), therefore it is submodular. �

Supermodular functions, on the other hand, are functions that satisfy

f(X) + f(Y ) ≤ f(X ∪ Y ) + f(X ∩ Y ), ∀X, Y ⊂ V.

Therefore, if f is submodular, −f is supermodular. The QPBO algorithm efficiently
computes the minimum (maximum) of submodular (supermodular) functions. The
opposite problem, i.e., maximizing (minimizing) a submodular (supermodular) func-
tion is in NP -hard.

There are functions which are neither submodular nor supermodular and are
called non-submodular. Optimizing a non-submodular function is in NP -hard but
QPBO can be used to find a partially optimal solution, as noticed previously.
Nonetheless, it is likely the case that QPBO will leave several variables unlabeled
while minimizing a non-submodular energy. To attenuate this problem, two varia-
tions of QPBO were proposed in [Rot+07]

QPBO-Probe: Implements a branch-and-bound technique in an attempt
to increase the number of variables labeled by QPBO. It keeps the partial
optimality property.

QPBO-Improve: An heuristic that is guaranteed to return a labeling of
lower or equal value than the labeling giving by QPBO. The partial optimality
property is lost.

As discussed in Sections 2.1 and 2.2, several problems in image processing can
be modeled in terms of an HMM H defined over the image grid graph. The hidden
states ofH are often estimated as the maximum likelihood of the induced probability
distribution given the set of observed variables Y . In that occasion, we mention that
the success of this approach depended on the difficulty of the maximum likelihood
computation. We observed that the general problem is NP-Hard for multilabel
HMM, and we turn our attention to binary ones. In this case, we have to solve a
PBF optimization problem.
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As we have seen, the optimization of a PBF is closely related to the computation
of maximum flows, or equivalently, minimum cuts in a graph. In fact, in some
applications such as binary segmentation, it is more practical to think in terms of
a minimum cut problem than in terms of an HMM one. Both interpretations are
equivalent and trigger different insights, but the graph cut mindset fits very nicely
in the binary segmentation framework and it gives to us an implicit representation
of a digital contour, which can be exploited to incorporate geometric information
in the model.

2.3 Graph cut models
Graph cut techniques in imaging were pioneered by [GPS89] and became popular
after the interactive binary segmentation model proposed by [BJ01]. In this sec-
tion, we are going to describe the latter and two other applications of graph cut
techniques. The first explains how to set the cost function to estimate perimeter of
segmented shapes and the second one extends the first by incorporating a constraint
that helps in the segmentation of thin and elongated objects.

2.3.1 Binary segmentation

Let I ∈ Fm×n a discrete grayscale image and GI(V , E) its grid graph. We denote x
the vector of binary variables indexed by image pixels, i.e., xp is associated to pixel
p. We consider the capacitated grid graph GI+(V+, E+, c) where

V+ = V ∪ {s, t}
E+ = E ∪

{
{s, vp}, {vp, t} | p ∈ I

}
.

The cost function c is defined later. Edges starting from s or ending at t are called
terminal edges. Next, let sets Vfg,Vbg ⊂ V to represent foreground and background
seeds furnished by the user. A (s, t)-cut set of GI+ partitions the graph in connected
components S, T . The first component is connected to the source and the other to
the target vertex. Vertices in Vfg (Vbg) will be forced to be in the source (target)
component.

The data term is modeled by

ψ1(xp) =

 − lnHbg

(
I(p)

)
, if xp = 0

− lnHfg

(
I(p)

)
, if xp = 1,

where Hbg, Hfg are mixed Gaussian distributions derived from foreground and back-
ground seeds. We associate the value 0 to the background label and the value 1 to
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the foreground label. The space coherence term is expressed as

ψ2(xp, xq) =

 exp

(
− 1

dE(p, q)

(I(p)− I(q))2

2σ2

)
, q ∈ Nk(p)

0, otherwise,

where dE(p, q) is the Euclidean distance between the pixel coordinates of p, q .The
value σ is interpreted as a parameter to configure the noise level of the input image;
and k denotes the chosen neighborhood cardinality of the graph (e.g. 8).

Finally, given weights γr ≥ 0 and γb ≥ 0, we define the cost function c : E+ → R
as

edge e c(e) for

{vp, vq} γb · ψ2(xp, xq) ∀p ∈ I and q ∈ Nk(p)

{vp, s}
γr · ψ1(xp = 0) ∀p ∈ I and p /∈ Vfg ∪ Vbg

M p ∈ Vfg

0 p ∈ Vbg

{vp, t}
γr · ψ1(xp = 1) ∀p ∈ I and p /∈ Vfg ∪ Vbg

0 p ∈ Vfg

M p ∈ Vbg.

where, M = 1 + max
p∈I

γb
∑

q∈Nk(p)

ψ2(xp, xq).

Notice that each vertex in V must have one and only one of its terminal edges
in a cut set. Let E ′ be a cut set partitioning GI+ in connected components (S, T ),
the first connected to the source and the other connected to target. Its cut value is
written as

Egcut(GI+, E ′) = γr

∑
vp∈S

ψ1(1) +
∑
vp∈T

ψ1(0)

+ γb
∑

(vp,vq)∈E ′
vp,vq /∈{s,t}

ψ2(0, 1). (2.17)

We observe that Equation (2.17) can also be written in the form of the Gibbs energy

γr
∑
xp∈X

ψ1(xp) +
γb
2

∑
xp,xq∈X
xp 6=xq

ψ2(xp, xq). (2.18)
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Figure 2.5: Graph cut segmentation. Foreground seeds are colored in green and
background seeds are colored in blue.

Therefore, a minimum (s, t)-cut of GI+ induces a labeling of minimum value for Equa-
tion (2.18). Vertices connected to the source component of the cut are labeled as
foreground and those connected to the target are labeled as background. This in-
terpretation is quite natural for the binary segmentation problem, as a minimum
(s, t)-cut of the grid graph gives a binary partition of the image. In this sense, one
could abstract the HMM machinery underneath and simply construct a graph such
that its minimum cut separates the desired objects.

Given the particular topology of grid graphs, specific versions of max-flow algo-
rithms were conceived for them. A scalable version of graph cut algorithm [DB08]
can be used for images of high resolution; if several flows should be computed for
similar graphs (video sequence segmentation), one can use the flow recycling algo-
rithms [KT05; JB06]. Although the general complexity of these alternatives may
be higher than Ford-Fulkerson algorithm, they are reported [Sze+06] to compute
minimum cuts in lower time for grid graphs.

2.3.2 Geodesics computation

In the previous section, we have seen the natural connection between graph cuts
and binary segmentation. The removal of a cut E ′ set partitions the grid graph
in two disjoint connected components, one connected to the source and associated
to the foreground and the other connected to the target and associated to the
background. The cut E ′ itself can be related with the contour ∂S of the foreground
shape (see Figure 2.6). In [BK03] it was shown that one can define a cost function
for the edge set E such that the cost of E ′ is arbitrarily close to the length of ∂S.

The key idea is to use the Cauchy-Crofton [sors2004integral] formula from
integral geometry. In 2D, let L be the set of all straight lines in the plane and dL



2.3. GRAPH CUT MODELS 61

ek

δ δ

∆φk

Figure 2.6: Computing perimeter via graph cuts. The perimeter of a shape S
can be encoded as the value of some cut in the grid graph. In the figure, the contour
of shape S intersects a set C ∈ E of the grid graph with neighborhood system N8.
One can set a cost function on E such that the cost of C converges to the length of
∂S as the neighborhood system goes to infinity.

a Lebesgue measure on this set. Then, the perimeter of a shape S is given by∫
ncdL = 2|∂S|,

where nc is the number of intersections of some line in L with the shape contour.
In [BK03], the set L is approximated by a collection of families of lines defined
by some standard adjacency relation in the digital grid. For example, in a 4-
neighborhood, we have two family of lines (horizontal and vertical) covering the
digital domain. To compute the Euclidean length, the cost function should be set
as

wk =
δ2∆φk
2|ek|

,

where δ is the distance between two lines in the same family and ∆φk is the angle
difference between two consecutive lines (counterclockwise orientation) of different
directions in the neighborhood system (see Figure 2.6).

The authors proved equivalent results for an arbitrary Riemannian metric in two
and three dimensions. A drawback of this approach is that the quality of the results
are very sensitive to the neighborhood system. Small neighborhoods are prone to
metrication errors and the convergence theorem, although of theoretical importance,
it does not possess the multigrid convergence property. The 4-neighborhood system
returns a poor estimation of length no matter the image resolution. We discuss
multigrid convergence in Chapter 4.
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(a) (b) (c) (d)

Figure 2.7: Graph cut with connectivity priors [VKR08]. In (a) the foreground
(green) and background (blue) seeds. In (b) the graph cut segmentation. In (c)
the points selected by the user in which the connectivity constraint is going to be
applied. In (d) the final segmentation.

Another interesting contribution in the attempt to inject geometric information
in the graph cut framework is the connectivity priors of [VKR08]. This work pro-
vides an additional tool to the graph cut algorithm in which the user select points
of the image that should be connected to the foreground component. An heuristic
based on the Dijkstra algorithm for shortest paths is computed using a metric based
on the color intensities. The method proved very useful to the segmentation of thin
and elongated objects (see Figure 2.7).



Chapter 3

Curvature as a regularizer

The curvature is a geometric property of curves and it measures the rate of change
in curve orientation. A straight line has zero curvature while the curvature at a
corner of a square is infinity. The curvature is measured with respect to the arc-
length parametrization, and it is invariant to translations, rotations and reflections
(rigid transformations).

In imaging, the most widely use of curvature is, perhaps, as a smooth regular-
ization term. That was the case in the Geometric Active Contour and Chan-Vese
image segmentation models of Chapter 1. The curvature action in these models is
closed related with the curve-shortening flow applied to the image level curves. Ad-
ditionally, the curvature also appears in the derivation of the TV denoising model.

Beyond the smoothing role, curvature can be used to favor connectivity, suggest-
ing that its use could be valuable in the segmentation of thin and elongated objects,
a difficult class to standard segmentation models. In image inpainting, the elastica
curve revealed to be a suitable model to mimic the amodal completion phenomenon,
believed to be the process behind the human vision in the perception of occluded
objects (e.g., see Figure 3.4a). However, elastica minimization is a challenging task,
mainly because of its non-convexity and the 4th order expression emerging from its
Euler-Lagrange equation.

In Sections 3.1 and 3.2, we recall the definition of curvature and point out its
role in some earlier imaging models. In Section 3.3, we describe the elastica curve,
and the challenges involved in the minimization of the elastica energy. Section 3.4
describes discrete models aiming at the minimization of the elastica energy, which
is an important topic of this thesis.

63
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3.1 Curvature and the curve-shortening flow

The curvature is a fundamental geometric property of curves and is widely present
in geometric imaging models. In this section, we start by recalling the curvature
definition and a few of its mathematical representations. Next we describe the curve-
shortening flow for planar curves, the one dimensional case of the mean curvature
flow.

3.1.1 Definitions

In the remainder of this section, we assume that every curve is regular, planar
and counter-clockwise oriented. Let C : [0, L(C)] → R2 a curve parameterized by
arc-length, i.e.,

C(s) = (x(s), y(s)).

Let T (s) and N(s) two orthonormal vectors such that they are respectively, the
unitary tangent and normal to C(s). Writing C(s) using these orthonormal vectors
we obtain

C(s) = (C(s) · T (s))T (s) + (C(s) ·N(s))N(s)

Notice that ∂C
∂s

= T (s), therefore

∂C

∂s
· ∂C
∂s

=
∥∥∥∂C
∂s

∥∥∥2

= 1.

Derivating the last expression in both sides we obtain

0 = 2
∂2C

∂s2
· ∂C
∂s

= 2
∂2C

∂s2
· T (s).

We conclude that ∂2C
∂s2

is orthogonal to T (s), and that the curvature is given by the
normal component of ∂2C

∂s2
(the curvature is defined as the Euclidean norm of the

derivative of the unitary tangent of the curve), i.e.,

∂2C

∂s2
= κ(s)N(s).
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We have several formulations for curvature, some of them listed below (for a full
derivation see the appendix).

Arc-length parameterization: κ(s) =
∥∥∥∂2C

∂s2

∥∥∥.
Arbitrary parameterization: κ(u) =

y′x′′ − x′y′′

(x′2 + y′2)3/2
.

Implicit function: κ(x, y) = −
f 2
xx − 2fxfyfxy + f 2

yy

‖∇f‖3

= ∇ ·
(
∇f
‖∇f‖

)
.

3.1.2 Curve-shortening flow

Let t ≥ 0 and u ∈ [0, U ], for some U > 0. Next, let C(0) : [0, U ]→ R2 and C(t, u) a
family of curves such that

C(0, u) = C(0)(u) (3.1)
∂C
∂t

(t, u) = v(t, u)N(t, u), (3.2)

where v is an arbitrary smooth function. The curve C(t) is deformed at each point
p at speed v in the normal direction at p. Note that any tangent component is
irrelevant to curve deformation. From Equation (3.2) we compute the first variation
of curve length of family C

∂

∂t
L(t) =

∂

∂t

∫ U

0

‖Cu‖du

=

∫ U

0

Cu · Cut
‖Cu‖

du

=

∫ U

0

T · (Ct)u du.

Changing from an arbitrary parameterization u to an arc-length one and recalling
that ds = ‖Cu‖du, hence ∂Ct

∂u
= ‖Cu‖∂Ct∂s

, we obtain

∂

∂t
L(t) =

∫ U

0

T · (Ct)s ‖Cu‖du =

∫ L(C)

0

T · (Ct)s ds.
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Using Equation (3.2) and Ns = −κT , we obtain

∂

∂t
L(t) =

∫ L(C)

0

T · (−κvT + vsN)ds = −
∫ L(C)

0

κvds = − < κ, v > .

From which we conclude that length decreases the fastest by choosing v = κ. We
define the curve-shortening flow (CS flow) of curve C(0)(u) as the family C(t, u)
such that

C(0, u) = C(0)(u) (3.3)
∂C
∂t

(t, u) = κ(t, u)N(t, u). (3.4)

Example: Let C(0) be a circle of radius R0, i.e., C(0) = R0(cos t, sin t). From Equa-
tion (3.4) we conclude that for every t ≥ 0, C(t) is a circle of radius R(t) where

∂R

∂t
= − 1

R
→ R(t) =

√
R2

0 − 2t. (3.5)

Moreover, the curve collapses to a single point in time t =
R2

0

2
. The curve-shortening

flow has many interesting properties [Hui+84; GH+86; Eck08]. Among them (for
planar curves),

Comparison principle: Let C1,C2 two closed curves such that C(0)
1 is in the

interior of C(0)
2 . Then C(t)

1 is in the interior of C(t)
2 for every t.

Convexity preserving: A convex curve C(0) stays convex for all t.

Point collapsing: Let C(0) a closed curve. There exists a time t in which C(t)

describes a circle and it follows Equation (3.5) until collapsing into a single
point.

Perimeter minimization: The curvature flow is the continuous deformation
that decreases the perimeter of a single closed curve at the fastest speed.

The CS flow appeared in the Chan-Vese and Geometric Active Contour models
for image segmentation in Chapter 1 in its level set formulation [OS88]

∂f

∂t
= ‖∇f‖∇ ·

(
∇f
‖∇f‖

)
. (3.6)

In this case, each of the image level curves describes a CS flow.
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(a) (b) (c) (d)

Figure 3.1: CS flow in action. CS flow at different times in evolution. In this
example we observe the CS flow properties listed in the text.

3.2 Diffusion and level curves motion
Several models in Chapter 1 are stated as diffusion processes, but quite often a
(level) curve evolution interpretation is more convenient. In this section we analyze
the role of curvature, its properties in earlier models of image processing and how
the dual interpretation of these models helps us to gain extra insight on them.

3.2.1 Curvature in denoising and image segmentation

The necessary optimality condition of the total variation denoising energy is given
by (see Section 1.2.1)

∇ ·
(
∇f
‖∇f‖

)
+ λ(fĨ − f) = 0. (3.7)

The solution of Equation (3.7) is the steady state of the anisotropic diffusion

u(0, x) = f(x) (3.8)
∂u

∂t
= ∇ ·

(
∇f
‖∇f‖

)
+ λ(fĨ − f). (3.9)

Note the similarity between Equation (3.9) and the level set formulation of the
CS flow in Equation (3.6). We are interested in the evolution of Equations (3.8)
and (3.9) without considering the data fidelity term, i.e., λ = 0, and we are going to
call it the TV flow [BCN02]. Interestingly, both CS flow and TV flow decrease total
variation of f , but in different ways. The CS flow tends to deform the boundary of
objects and decreasing total variation by perimeter minimization. The TV flow, on
the other hand, preserves the boundary for a longer time and it decreases the TV by
decreasing the surface height, i.e., the color intensity of the pixels(see Figure 3.2).

Naturally, the CS flow can also be used to do image denoising. If we think of
noise as small artifacts with high gradient of color, the level curves corresponding to
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‖∇fI‖ = 25 ‖∇fI‖ = 15
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Figure 3.2: Minimizing TV energy with TV flow and CS flow.Both flows
decrease the image total variation, but CS flow tends to deform object boundaries
while doing so. On the other hand, TV flow reduces the image contrast.

noise will have a very small radius, and will collapse faster than other level curves
(see Figure 3.3).

In the geometric active contours model for image segmentation, the level sets of
a predefined function u (e.g., a smoothed version of function 1−χC where C is a set
that contains the object to be segmented and χC its characteristic funtion) describes
a CS flow motion modulated by an edge detector function g (e.g., g = (1+‖∇f‖)−1).

u(0, x, y) = u(x, y)

du

dt
= g(‖∇f‖)‖∇u‖∇ ·

(
∇u
‖∇u‖

+ v

)
,

3.2.2 Curvature and the connectivity principle applied to in-
painting

We recall that the inpainting problem consists in reconstructing a collection of
missing patches P of the image. The earlier inpainting model [Ber+00] diffuses
image information through the patches boundaries. The particularity of this model
is that the Laplacian (heat equation) is diffused along the image level lines. Despite
its impressive results, this models does not possess an important property which is
desirable in inpainting models: the connectivity principle.
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(a) Noisy Image (b) CS flow (c) TV flow

Figure 3.3: TV denoising using CS and TV flow.Results are quite similar, but
TV flow image is sharper, although with lower contrast than CS flow. Images (b)
and (c) have the same TV value.

(a) Amodal completion. (b) Thin and elongated
object segmentation.

Figure 3.4: Connectivity principle. In Figure 3.4a, an illustration of amodal
completion, the process followed by the human vision to complete the boundary
of occluded object with curves of low curvature and that conform the most with
the direction of the endpoints. In Figure 3.4b a vessel segmentation with length
penalization term only. Curvature favors connected objects.
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Figure 3.5: Inpainting by curvature driven diffusions.[CS01] The diffusion
process modeled by Equation (3.10) completes the features disconnected by the
inpainting mask.

Studies of the Gestalt school of psychology suggest that the human vision, by
a process called amodal completion [Mum94], completes the boundary of partially
occluded object with a short and low curvature curve, as illustrated in Figure 3.4a.
The model proposed in [CS01] is a TV flow modulated by the curvature of the image
level curves.

u(0, x, y) = f(x, y)

∂u

∂t
= ∇ ·

(
|κ(t)| ∇f

‖f‖

)
. (3.10)

The diffusion in Equation (3.10) is stronger at points of high curvature with re-
spect to its level curves. This model partially achieves the connectivity principle
(see Figure 3.5), but the completion is done only for very small regions.

The connectivity principle suggests that the curve connecting the endpoints of
an occluded object should minimize some energy with respect to the curvature.
Moreover, the segmentation of thin and elongated objects may also benefit from a
curvature term, since classical methods have difficulties to give connected solutions.
In the next section we describe the Elastica, the curve that minimizes the squared
curvature along its length.

3.3 Elastica curve
In 1691, James Bernoulli posed a challenge to his colleagues: What is the form taken
by an elastic beam whose endpoint A is kept fixed in the ground while a weight
is attached to its other endpoint B such that the tangent at each of the endpoints
are perpendicular with the horizontal and vertical axis, respectively? A simplified
scheme is presented in Figure 3.6.

By using mechanical principles, James concluded that the curvature of such
curve at some point Q can be written as a linear function of the distance from Q
to the line BO, i.e., κ(x) = cx. One can show that [Lev08; Tru60],

∂y

∂x
=

cx2

√
1− c2x4

. (3.11)
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Figure 3.6: Elastic beam and James Bernoulli’s solution. In equilibrium, the
moments at the two ends of the virtual lever PQM should cancel, implying that
the curvature is a linear function of x if we assume the spring behaves in accordance
with Hooke’s law.

The curve modeled by Equation (3.11) is called the rectangular elastica. The expres-
sion in the right cannot be integrated using elementary functions and is a member of
the class of elliptic integrals. Fortunately, Euler has shown that one can express not
only the rectangular elastica, but its general version in the form of a minimization
principle.

The generalized elastica in 2D is the planar curve C of fixed length L whose
endpoints have known tangents C ′(0) = θ0, C

′(L) = θL and minimizes the energy∫
C
κ2ds.

min
C

∫
C

κ2

subject to ‖C‖ = L,
C ′(0) = θ0,
C ′(L) = θL.

Given parameters α ≥ 0, β ≥ 0 we incorporate the isoperimetric constraint in the
objective function (can be interpreted as a Lagrange multiplier) to define the elastica
energy as

E(C) =

∫
C

α + βκ2ds. (3.12)

If we do not impose any constraint in Equation (3.12), its minimization is interesting
only if α > 0 and β > 0 and we call this problem the free elastica. On the other
hand, if one imposes constraints to the minimization of Equation (3.12)(e.g., fixed
tangent endpoints), we refer to this problem as the constrained elastica.

One can easily derive the solution of the free elastica for a closed curve. Setting
β = 0, the minimization of Equation (3.12) behaves as the curve-shortening flow of
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section Section 3.1.2. On the other hand, if we set α = 0, the minimum is a disk of
infinite radius. For the intermediate case, with both parameters greater than zero,
it is easy to see that the solution is a circle Cr of some radius r, therefore

Cr = arg min
C

E(C)→ ∂

∂r

∫
Cr

α + βκ2ds = 0

∂

∂r

(
α2πr + 2βπ/r

)
= 0

r =

(
β

α

)1/2

.

In general, a planar curve C minimizing the elastica energy satisfies the following
Euler-Lagrange equation [Cha+02; Sin08]

2κss + κ3 =
α

β
κ⇔ ∂4C

∂s4
+

(
∂2C

∂s2

)3

=
α

β

∂2C

∂s2
. (3.13)

This fourth order expression is the main difficult in minimizing the elastica. In
the following we are going to describe some models that attempt to minimize the
elastica and the strategies employed.

3.3.1 Imaging models using the elastica

In [Cha+02] the authors propose an inpainting model in which the interrupted level
lines in the inpainting domain are completed by elastica curves. The key is to define
an energy that found the elastica of all level curves simultaneously. Given an image
fI : Ω→ [0, 1], let Γλ be one of its level curves, i.e.,

Γλ = {x | fI(x) = λ} .

Next, for an interrupted level curve Γλ, we wish to connect its endpoints with an
elastica curve γλ, i.e.,∫ 1

0

∫
γλ

(
α + βκ2

)
dsdλ =

∫ 1

0

∫
γλ

(
α + β∇ ·

(
∇fI
‖∇fI‖

)2
)
dsdλ (3.14)

Notice that γλ is unknown, but let us assume that we know them for a moment.
Next, let dt be the length element in the normal direction of the level curves.
Therefore,

dλ

dt
= ‖∇fI‖ → dλ = ‖∇fI‖dt.
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Replacing the last expression in Equation (3.14) we obtain∫ 1

0

∫
γλ

(
α + β∇ ·

(
∇fI
‖∇fI‖

)2
)
‖∇fI‖dsdt =

∫
Ω

(
α + β∇ ·

(
∇fI
‖∇fI‖

)2
)
‖∇fI‖dΩ.

(3.15)

The last expression is derived from the fact that dt and ds are orthogonal length
elements. Therefore, we have an equivalent optimization problem but acting in
the whole image domain. The authors propose a finite difference scheme for the
gradient flow derived from the Euler-Lagrange of Equation (3.15), which happens
to be of 4th order. The high order poses some issues with numerical stability,
namely the definition of the time step and convergence analysis, which is skipped.
The running time is also quite high even for small inpainting domains. Moreover,
one can expect a local solution at most, and giving the highly non-convex character
of the equation, an acceptable local solution might be very difficult to be found
without a conveniently chosen initial solution. Finally, the method tends to produce
blurry edges even for small inpainting domains.

The numerical instability arising from Equation (3.15) is lessened by the 3rd
order gradient flow proposed in [Bal+01]. The idea is to create a new variable θ to
replace the unstable term ∇fI/‖∇fI‖ and include a penalization term that forces
θ to assume the value of its original interpretation. The energy to be minimized is
closely related to Equation (3.15) and is written as∫

Ω

a|∇ · θ|2 (α + β‖k ∗ fI‖) dΩ +

∫
Ω

‖∇fI‖ − θ · ∇fIdΩ, ‖θ‖ ≤ 1. (3.16)

The kernel k (e.g. Gaussian) smooths image fI and is included due to numerical
issues. Nonetheless, Equation (3.16) suffers from similar issues to those of Equa-
tion (3.15). Generally, PDE-based methods encounter difficulties in producing so-
lutions with discontinuities, one of the main features of images.

A discrete approach to inpainting is proposed in [MM98]. The model’s first step
is to identify pairs of admissible T-junctions, i.e., pixels in the outer boundary of the
inpainting domain that have the same color value and orientation (see Figure 3.7a).
Due to a property of level curves, for every color value λ there is an even number
of T-junctions. Next, let J be the set of T-junctions and Γtj a curve connecting
an admissible pair (j, t). Additionaly, we denote θj, θt the respective angles the
curve Γtj makes with the associated level set at j and t. The authors propose to
find a matchingM = {(j, t) | j, t admissible} and its respective curves such that it
minimizes the energy

∑
(j,t)∈M

∫
Γtj

α + β|κ|ds+ θj + θt. (3.17)
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(a) T-junctions illustration [AM03]

(b) Inpainting by [MM98]

Figure 3.7: Discrete inpainting. In Figure 3.7a an illustration of T-junctions and
an ideal completion of the level lines; in Figure 3.7b we have the original image
in the left, the image to be inpainted in the middle and the result of the discrete
inpainting in the right.
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Figure 3.8: Discrete elastica. The curvature is approximated by θi/li.

Assuming that one knows the optimal matchingM, the curves connecting the T-
junctions pairs are geodesics. In the plane, that means that the T-junctions are
connected by polygonal curves. An ingenious dynamic programming algorithm is
conceived by exploiting the causality relation imposed by the non-crossing con-
straint of the level curves and excellent results are obtained. In particular, the
algorithm can reconstruct large inpainting domains and does not produce blurry
edges (see Figure 3.7b). However, Equation (3.17) cannot produce curvy level lines.

The work of [MM98] illustrates an advantage of discrete approaches to image
models: discontinuities are naturally implemented. To find a discrete model is not
a trivial task, and sometimes a compromise needs to be done in order to achieve
efficiency, as it was the case in [MM98], in which the absolute value of the curvature
is used instead of its square. In the next section we are going to describe some
discrete models for elastica in its original form, i.e., using the square of the curvature.

3.4 Discrete methods and squared curvature

3.4.1 Discrete elastica

Let Pn = {pi | 1 ≤ i ≤ n} a sequence of n points describing a polygonal line. We
define the following elements (an illustration is given in Figure 3.8).

Segment length: `i, 1 ≤ i ≤ n−1

Segment angle: ψi, 1 ≤ i ≤ n− 1

Angle deviation: θi, 1 ≤ i ≤ n− 2.
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Given parameters α ≥ 0, β ≥ 0 and a fixed length segment `, the discrete
elastica [BHN01] is defined as

E(θ, `) = ` ·
∑

1≤i≤n−2

α + β

(
θi
`

)2

=
∑

1≤i≤n−2

α`+ β
θ2
i

`
. (3.18)

Without loss of generality, we assume that the curve starts at the origin with tangent
ψ1 = t1 and ends at point (L, 0) with tangent ψn−1 = tn−1, L being the curve length.
Then, the general discrete elastica problem is defined as

min
ψ,`

∑
1≤i≤n−2

α`+ β
(ψi+1 − ψi)2

`

subject to ∑
1≤i≤n−1

` cosψi = L,∑
1≤i≤n−1

` sinψi = 0,

ψ1 = t1,

ψn−1 = tn−1.

The constraints can be included in the objective function with its respective La-
grange multipliers coefficients and we end up with a nonlinear system. In [BHN01],
the authors reported that standard methods as Newton-Raphson return nice ap-
proximations of the continuous elastica. In a companion paper, the authors proved
that a similar formulation of the discrete elastica, namely

E(θ, l) =
∑

1≤i≤n−2

α`+ β

(
θ2
i

min {`i, `i+1}

)
(3.19)

is convergent in the sense of Γ-convergence [BNR01], i.e., the minimizer of the
discrete elastica approaches the minimizer of the elastica as the number of dis-
cretization points goes to infinity.

The discrete elastica was proposed in the context of nonlinear splines with appli-
cations in shape design. In imaging, we have to consider additional constraints. For
example, digital images are defined in an uniform grid, while the discrete elastica
imposes no restriction on the location of the interpolation points in the plane. In
fact, this is a fundamental difference between discrete and digital settings. In the
list that follows, we point out some of the issues one has to handle in order to adapt
the discrete elastica in image segmentation
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(a) (b) (c)

Figure 3.9: Digital surface and consistency constraints. In Figure 3.9a, a
valid solution made of three cells and a sequence of eight linels. In Figure 3.9b
the sum of linel-cell incidence equals to zero (blue are positively incident and red
negatively incident). In Figure 3.9c, the sum of linel-edge incidence equals to zero.

1. Data term: The interpolation points should lie close to the contour of ob-
jects and by doing that we lose the implicit description of the curve as a
sequence of lengths and angle deviations, being forced to also consider the
points coordinates;

2. Contour complexity: We are handling closed contours, meaning that we
likely have to minimize not one but many elasticas along a single contour (not
to mention multisegmentation). In practice, that means that we have to chose
feature points in the image to force the curve to pass through them;

3. Point sampling: Finally, one has to decide how many points to use in the
interpolation and where to position them (an uniform sampling is unlikely
to be a good strategy), bearing in mind the compromise between number of
points and computation time.

3.4.2 Linear programming model for image segmentation us-
ing the discrete elastica

In [SKC09], the authors handle the previous list of issues by considering only the
discrete elasticas lying on a 2D cellular complex. The 2D cellular complex is com-
posed by non-overlapping surfaces called cells and its lower dimension components:
linels and pointels. The cellular complex forms a tessellation of the plane and the
shape of the cells is arbitrary. The chosen cellular complex has a direct influence
in the quality of the discrete elastica, as a finer tessellation covers a larger range of
angles (see Figures 3.10a and 3.10b). To simplify exposition, we are going to de-
scribe the model for a standard cellular grid complex, in which each cell represents
a single pixel in the image.

Let n,m the number of cells and edges, respectively. We establish a convention
on cells and linels orientation. We define the positive orientation of a cell as being
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counter-clockwise and the positive orientation of linels as being left (horizontal) and
down (vertical), as indicated in the figure below.

One binary variable is defined for each cell and two other binary variables are
defined for each linel, one for each possible orientation the linel may assume. We
refer to the variables associated to linels as edges. The variables are grouped in
the vector x ∈ {0, 1}n+2m and, hence, a solution is made of active cells and active
edges. However, we have to make sure that solutions are consistent, i.e., a solution
x must encode a digital surface.

A digital surface is composed of a set of cells and a closed path (loop) of edges
forming its boundary. To enforce digital surfaces, we define an incidence relation
between linels and cells and between linels and edges. This relation is encoded by
matrix A ∈ {−1, 0, 1}m×(n+2m)

Ai,j =


1, if positive incident
−1, if negative incident

0, otherwise.

We say that a linel is positive incident to a cell if their orientations agree and
negative incident if they disagree. Similarly, a linel is positive (negative) incident
to an edge if they agree (disagree) in orientation. The space of solution is correctly
restricted to digital surfaces by imposing

Ax = 0,

i.e., the sum of incidences for each linel must equal to zero (see Figure 3.9). Finally,
we set vector w ∈ Rn+2m that is going to hold the data, length and squared curva-
ture penalization terms. For example, data term coefficients are associated to cells
variables while length and curvature terms are associated to edges. The complete
formulation is written as

minx wtx
subject to Ax = 0

x ∈ [0, 1]n+2m,

where vector x was relaxed. The quality of the model naturally depends of the
plane tessellation defined by the chosen cellular complex. A simple grid complex is
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(a)

(b)
(c)

Figure 3.10: Linear programming model [SKC09]. In the left, examples of the
8 and 16-connectivity cellular complexes. The authors implementation consists in
subdividing a pixel. For example, the 8-connectivity is implemented by rescaling
the image twice its size and let the model unit being composed of 4 pixels of the
rescaled image. In the right, a result with different connectivities using a data term
derived from given foreground (green) and background (blue) seeds.

not that interesting, as the discrete elastica can turn only on multiples of π/2. The
authors present results for two different cellular complexes. They are equivalent to
8-connectivity or 16-connectivity in a graph-cut framework.

The data term issue is handled by separating the roles of cells and edges. Cells
variables holds data terms and edge variables hold curvature and length information.
The refinement of the cellular complex is done via pixel subdivision, therefore,
every cell lying in the interior of a pixel p carries data term relative to pixel p.
The consistency constraints guarantees well defined boundaries and the contour
complexity issue is also covered. Finally, the model is extensible to different angular
resolutions while keeping a digital setting, and a discrete elastica with an arbitrary
sequence of interpolation points can be well approximated given a good choice of
the cellular complex.

Some results are displayed in Figure 3.10c. However, the computation time
is quite high and the segmentation present sharp angles even when employing a
16-connectivity cellular complex.

3.4.3 Unconstrained formulations

The high number of variables and constraints explains the high running time of the
linear programming approach. In [EG10], the authors encode the squared curvature
value in an unconstrained quadratic non-submodular PBF and propose a model for
binary image segmentation.
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Figure 3.11: Turn angles detection and triplets [EG10]. Assuming that red
pixels correspond to 1-labeled variables and blue the 0-labeled ones, angle variation
is triggered by configurations (xi = 1, xj = 0, xk = 0) and (xi = 0, xj = 1, xk = 1),
assuming that xi is the centered variable.

Let I be a digital image with n pixels. We associate to each pixel the binary
variable xi indicating if the pixel belongs to foreground (xi = 1) or background
(xi = 0). For a given segmentation x, one can identify 90 degrees turns in the
segmentation contour by inspecting sequential pairs of vertices neighbors (given an
order on the neighbors), as illustrated in figure Figure 3.11. The turns are expressed
as 3-clique potentials, as shown in the table below

xi xj xk w
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 wijk
1 0 0 wijk
1 0 1 0
1 1 0 0
1 1 1 0

The coefficients wijk are defined accordingly with the curvature discretization
given by Equation (3.19), i.e.,

wijk =
α2
i

min{|eij|, |ejk|}
.

Remarkably, the 3-clique potential can be decomposed in three 2-cliques potentials

E(xi, xj, xk) = wij(xi − xj)2 + wik(xi − xk)2 + wjk(xj − xk)2, (3.20)
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(a) Original (b) Data (c) Data+Curvature

(d) Original (e) Data (f) Data+Curvature

Figure 3.12: Results for the grid graph model [EG10]. The original image is
displayed in the left; segmentation using only data in the middle; and the segmenta-
tion using squared curvature regularization in the right. Connectivity is encouraged,
but to a very limited extension.

where

wij =
1

2
wijk

wik =
1

2
wijk

wjk = −1

2
wijk.

Equation (3.20) is a non-submodular PBF (the negative wjk coefficient creates a
non-submodular term) and it is optimized using QPBO or one of its variations. The
computation is much faster than the linear programming formulation and the model
favors the connectivity principle, although the completion effect seems limited to
very small portions (see Figure 3.12). A clear drawback is the limitation in the
angle resolution, which tends to produce block artifacts. The authors argue that
the model can be extended to any desired connectivity, but it is not clear how this
is done.

In [Nie+14] is presented an alternative formulation that is extensible to any
desirable angle resolution. The idea is in fact quite similar to the one in [EG10]
in the sense that curvature is measured by counting the number of configurations
(0, 1, 0) and (1, 0, 1) of triplets of vertices. Intuitively, as illustrated in Figure 3.13a,
the curvature is higher at regions in which these configurations are more frequent.
The authors prove the following theorem
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(a) (b)

Figure 3.13: Triplets configurations and integral geometry [Nie+14]. In Fig-
ure 3.13a we intuitively notice that curvature is higher where triplets configurations
(0, 1, 0) and (1, 0, 1) are perceived. In Figure 3.13b, an illustration of Theorem 1.

Theorem 1([Nie+14]): Let contour point n have tangent orientation t and os-
culating ball Br of radius r = 1/|k|. Then, the set of all points p ∈ Br such that
‖p− n‖ ≤ r and (p± d · t) /∈ Br for given distance d < r has area

A(κ, d) =
|κ|d3

4
+O(d4).

Notice that the theorem is valid for cliques aligned with the tangent at the
point of curvature computation. The set of available cliques orientations is defined
according to the chosen neighborhood. The neighborhood system of size (2d+ 1)×
(2d + 1) for pixel p is similar to a digital circle of radius d centered at p (although
not the same), in the sense that the neighbors of p are chosen in order to have
approximately the same distance d from p (see Figure 3.14). The larger the value
of d, the greater the chances to have a triplet orientation that matches the tangents
along the object contour.

Let d be the chosen neighborhood system and ci the corresponding triplets in
this neighborhood. Moreover, assume that the triplets are ordered with respect the
angle made with the horizontal axis. Let ∆θi be the angle difference between two
consecutive triplets and i(p) the triplet index with the closest orientation to the
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(a) d = 2 (b) d = 3

Figure 3.14: Neighborhood system [Nie+14]. The higher the value of d, the
higher is the angle resolution.

tangent at p. The integral squared curvature is approximated by∫
C

κ2ds ≈
∑
p

|κp|∆θi(p)

=
∑
p

4∆θi(p)
d3
i(p)

· A(κp, di(p))

≈
∑
i

∑
p

4∆θi
d3
i

· δ(ci(p)),

where the function δ is one for triplets configurations (0, 1, 0) or (1, 0, 1) and zero
otherwise. The function δ can be expressed as

δ(xa, xb, xc) = xi(1− xj)xk + (1− xi)xj(1− xk)
= xj + xixk − xixj − xjxk.

The resulting energy is non-submodular (the positive term in the δ function is non-
submodular) and is solved using the LSA-TR method [Gor+14], reported to produce
better results than QPBO for some non-submodular instances. Some results for
inpainting and segmentation are shown in Figure 3.15. The model is unconstrained,
extensible to arbitrary angle resolution and can be easily modified to include data
and length terms.

Although an argument is provided to justify the curvature approximation, it is
difficult to do a multigrid analysis, i.e., to analyse its convergence over different res-
olutions. The experiments provided by the authors are limited to the computation
of the elastica along a disk, and we are not sure about the behavior of such estimator
in shapes of more complex geometry. The fundamental goal of this thesis is to inves-
tigate imaging models using geometric penalization estimated by proven multigrid
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(a) Original. (b) Binary segmentation.

(c) Original and
inpainting masks.

(d) Inpainting with length
regularization.

(e) Inpainting
with curvature
regularization.

Figure 3.15: Segmentation and inpainting results [Nie+14]. The connectivity
principle is perfectly illustrated in the inpainting problem but one would expect a
completion of the rightmost bar of the camera tripod.

convergent estimators. In the next chapter we explore the multigrid convergence
property and some other concepts of digital geometry.



Chapter 4

Digital Geometry

The primitives of Euclidean geometry, such as lines and points, are idealized objects.
A line segment is infinitely thin and a point is dimensionless. When referring to such
entities, we eventually make use of visual representations and the line is incarnated
as a trace and the point as a dot in the black board, for example. As long as we
have the mathematical description of some shape S, we do not need any visual
representation of it to compute its tangents, curvatures or perimeter.

In imaging, however, it is almost always the case that we do not have a mathe-
matical description of the objects in the scene. We need to identify the primitives
from its visual representations. We are not dealing with idealized objects anymore,
but with finite descriptions of them. One of the subjects of study of digital geom-
etry, and the one focused in this chapter, is how to correctly measure geometric
properties in digitized objects.

We introduce basic concepts of digital geometry in Section 4.1 and we point out
the difference between exact sampling and digitization. In Section 4.2, we intro-
duce the multigrid convergence property and we give examples of several multigrid
convergent estimators for local and global geometric measurements.

4.1 Ground concepts

In this section, we define the grid point model and its adjacency relations. To-
gether, they allow us to define the digital line primitive. Next, we describe the grid
intersection and Gauss digitization mappings, which link continuous objects to its
digital representations in the grid point model. The concepts defined in this section
can be explored in much more depth in the book [KR04].
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(a) Grid point model

(b) 4-adjacency (c) 8-adjacency

(d) Connected components

Figure 4.1: Digital grid and adjacency relations. The grid point model and its
components in (a); The 4 and 8 adjacency relations in (b) and (c); A 4-connected
set (orange) and a 8-connected set (blue) in (d).

4.1.1 Digital grid, digitization and digital line

Definition 1(2D Digital grid): The 2D digital grid hZ2 = {p = (h ·i, h ·j) | i, j ∈
Z} with grid step (resolution) h ∈ R+ + \{0} is a regular sampling of the plane. Its
members are called grid points.

We can think of the digital grid as a regular tessellation of the plane. The grid
points are the center of the grid squares (pixels). The other components, grid edges
and grid vertices are illustrated in Figure 4.1a. They form the grid point model of
the plane. Next, we define the two commonest adjacency relations in the grid point
model.

Definition 2(4-adjacency relation): Two grid points p1 = (x1, y1) and p2 =
(x2, y2) are 4-adjacent iff p1 6= p2 and |x1 − x2|+ |y1 − y2| = 1. We denote relation
membership as p1A4p2.

Definition 3(8-adjacency relation): Two grid points p1 = (x1, y1) and p2 =
(x2, y2) are 8-adjacent iff p1 6= p2 and max{|x1 − x2|, |y1 − y2|} = 1. We denote
relation membership as p1A8p2.

The adjacency relations are illustrated in Figures 4.1b and 4.1c. Armed with
an adjacency relation, we can define the notions of path and connectivity. A 4-
connected path is a sequence {p1, p2, · · · , pn} of grid points such that piA4pi+1 for
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(a) h = 1.0 (b) h = 0.5 (c) h = 0.25

Figure 4.2: Gauss digitization. Digitization of a ball of radius 5 in three different
resolutions.

all 1 ≤ i < n. A set P is 4-connected if for every p, q ∈ P there exists a 4-connected
path starting at p and ending at q. Analogous definitions holds for 8-adjacency
relation (see Figure 4.1d).

The adjacency relations are also used to define the 4, 8 neighborhood sets of a
grid point.

N4(p) = {q | pA4q}.
N8(p) = {q | pA8q}.

Next, we are going to define mappings that will give us the grid point representation
of continuous objects.

Definition 4(Gauss digitization): Let S ⊂ R2 a shape in the plane. Its Gauss
digitization Dh(S) in a digital grid of resolution h ∈ R+ \ {0} is defined as the set
of grid points contained in S.

In Figure 4.2 we show the Gauss digitization of an Euclidean ball of radius 5.
As one could expect, the Gauss digitization is not adequate for the digitization of
lines. In this case, the grid intersection digitization is preferred.

Definition 5(Grid intersection digitization): The grid intersection digitization
of a planar curve γ is the set of all grid points in the digital grid that are closest
(Euclidean distance) to the intersection points of γ with the grid lines.

An illustration of grid intersection digitization is given in Figure 4.3. The digiti-
zation gives us a mapping from continuous objects to its digital grid representation,
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(a) (b) (c)

Figure 4.3: Grid intersection digitization. The Euclidean line is superposed in
the digital grid in a); the closest grid points from the intersection with the grid lines
are highlighted in blue in b); the grid intersection digitization of the line segment
is given in c). The digitized segment is 8-connected.

(a) ε = |a|+ |b| (b) ε = max{|a|, |b|}

Figure 4.4: Digital straight segment. In a) we have a 4-connected DSS and in
b) a 8-connected DSS.

but an operation in the opposite direction is necessary if we wish to identify geo-
metric primitives. Alternatively, one could define digital geometry primitives, for
example, the digital counterpart of a line segment.

Definition 6(Digital straight segment (DSS)): Let a, b, µ ∈ Z such that
gcd(a, b) = 1. The digital straight segment of tangent a/b shifted of µ from the
origin and of width ε is any subset of Z2 satisfying

{(x, y) | µ ≤ ax− by ≤ µ+ ε− 1}.

The value of ε defines the connectivity of the DSS, as illustrated in Figure 4.7a.
In applications, we are going to be interested in the recognition of maximal DSS’s,
for which linear time algorithms are available (some of them described in [KR04],
chapter 9). A maximal DSS is a DSS that is not contained in any other DSS. The
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Figure 4.5: Tangential conver. The tangential cover is the collection of
all maximal DSS in the digital contour of some digital shape. (Extracted
from [lachaud13multigrid])

collection of maximal DSS’s in the boundary of a digital set form its tangential
cover (see Figure 4.5). The tangential cover computation is a fundamental step in
the computation of convergent estimators of tangent, as we are going to see in the
next section.

Finally, we refer to the digital contour ∂hS of Dh(S) as the collection of grid
vertices on the boundary of the axis-aligned polygonal shape formed by the grid
squares of Dh(S).

4.1.2 Exact sampling versus digitization

Let S some regular shape in the plane, for example, a disk of radius r. We wish
to measure the perimeter of S, but let us assume that we do not know that S is a
disk. Additionally, let us assume that we can ask to an oracle for a collection of n
points on the boundary of S. To make things simple, let us assume that the oracle
gives us an ordered sequence of n uniformly spaced points on the boundary of S for
a given orientation of ∂S.

We could estimate the perimeter of S by simply computing the length of the
polygon connecting the n points, i.e.,

L(S) ≈
n−1∑
i=1

‖pipi+1‖.

This estimation converges to 2πr as the number of sampling points increase. Now,
let us consider the scenario in which we have a digitization of S. The oracle gives
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(a) (b)

Figure 4.6: Exact sampling x digitization.The perimeter is approximated by the
Euclidean polygon formed by n points in the boundary of S in (a). The perimeter
is estimated by counting the number of grid edges in (b).

us a digitization of S in any resolution h. Can we measure the length of S using
the same strategy employed in the previous scenario?

Let us say that we engage into estimating the length of S by computing the
length of the axis-aligned polygon derived from the digitization of S, as illustrated
in Figure 4.6. We assume that the disk is centered at a grid point. It is easy to see
that for each quarter of the disk, we have 2r/h + 1 horizontal and vertical steps.
Therefore,

L̂(S) = 4h(2r/h+ 1) = 8r + 4h.

The estimator converges to 8r as the resolution increases. Several estimators based
on the assignment of weights to local configurations were proposed. The BLUE (best
linear unbiased) estimator [DS+87] uses a 8-neighborhood to estimate perimeter as

L̂(S) = h(0.948ni + 1.343nd),

where ni is the number of axis-aligned steps and nd the number of diagonal steps.
Other estimators propose to use an extended set of configurations to cover a higher
number of directions, but none of these approaches can achieve multigrid conver-
gence, whatever the finite number of configurations employed [TD03].

This simple example points out that standard discretization strategies of contin-
uous measures or energies, as the one proposed for the discrete elastica in Chapter 3,
do not necessarily extend well in the digital world. The fundamental issue with dig-
ital objects is that we have to handle digitization errors. We do not have an exact
sampling of the continuous object.
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4.2 Geometric measurements in digital objects

4.2.1 Multigrid convergence and perimeter estimation

As exemplified in the previous section, geometric measurements in digital objects
can be tricky. Intuitively, a good estimator should converge to its continuous coun-
terpart value as the grid resolution is refined. The criteria that formalizes this
intuition is the multigrid convergence property.

Definition 1(Multigrid convergence):
Let F a family of shapes in the plane and Q a global measurement (e.g., perimeter,
area) on members of F . Additionally, denote Dh(S) a digitization of shape S in a
digital grid of resolution h. The estimator Q̂ of Q is multigrid convergent for the
family F if and only if for every shape S ∈ F , there exists hS > 0 such that

∀h ≤ hS, |Q̂(Dh(S), h)−Q(S)| ≤ τS(h),

where τS : R+ \ {0} → R+ is the speed of convergence of Q̂ towards Q for S.

In the following, we give some examples of multigrid convergent estimators for
perimeter.

DSS estimator [Kov92]: It estimates the perimeter by partitioning the
digital contours in a sequence of longest DSS’s. Starting from any point p,
it finds the longest DSS starting from p and it repeats the process until all
the digital contour is covered. This set of DSS’s defines a polygon whose
perimeter is the estimated value (see Figure 4.7a). It is multigrid convergent
for the family of piecewise 3-smooth convex shapes and also convex polygons.

MLP estimator [Slo98]: It estimates the perimeter of the digital contour
as the perimeter of the minimum length polygon that separates interior grid
points from exterior grid points (see Figure 4.7b). It is multigrid convergent
for all finite convex shapes.

The DSS estimator can be implemented in linear-time by using a linear-time
DSS recognition algorithm. A linear-time algorithm for the MLP computation is
also available [PL09].

Perimeter and area are examples of global properties of shape S, i.e., they are not
defined at points in S but for the whole shape. A multigrid convergent estimator
for area consists in simply counting the number of grid points in its digitization
and scale it by h2 [KŽ00]. A detailed comparison of several multigrid convergent
estimators can be found in [CLR12].
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(a) DSS estimator (b) MLP estimator (extracted from [PL09])

Figure 4.7: Multigrid convergent estimators for perimeter. The perimeter
is estimated by sum of the lengths of the recognized DSS in (a). The perimeter is
estimated as the length of the minimum length polygon separating inner and outer
pixels in (b).

4.2.2 Tangent and multigrid convergence of local quantities

Tangent and curvature are examples of local properties computed along the bound-
ary of some shape S in the plane. We need a slight different definition of multigrid
convergence in order to map points of the Euclidean boundary to those in the digital
contour.

Definition 2(Multigrid convergence for local geometric quantities): Let F
a family of shapes in the plane and Q a local measurement along the boundary ∂S of
S ∈ F . Additionally, denote Dh(S) a digitization of S in a digital grid of resolution
h and ∂hS its digital contour. The estimator Q̂ of Q is multigrid convergent for the
family F if and only if for every shape S ∈ F , there exists hS > 0 such that the
estimate Q̂(Dh(S), p, h) is defined for all p ∈ ∂hS with 0 < h < hS, and for any
x ∈ ∂S,

∀p ∈ ∂hS with ‖p− x‖∞ ≤ h, |Q̂(Dh(S), p, h)−Q(S, x)| ≤ τS(h),

where τS : R+ \ {0} → R+ has null limit at 0. This function defines the speed of
convergence of Q̂ towards Q for S.

The λ-MST tangent estimator [LVV07] computes the tangential cover of Dh(S)
and then estimates the tangent direction at point p ∈ ∂hS as a weighted combination
of the tangents directions tan−1(a/b) of maximal DSS (a, b, µ, ε) passing through p.
We recall that we defined digital contours as a collection of grid vertices, but we
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can always interpret them as grid points. It is enough to translate every grid vertex
by h(0.5, 0.5).

For a given order in the points of ∂hS, a maximal DSS starting at pi and ending
at pj is denoted Cij. For each pk ∈ ∂hS, let C(pk) be the set of maximal DSS’s
passing through pk. The eccentricity of a point pk is defined as

e(pk) =

{
|k−j|
|i−j| , if Cij ∈ C(pk)
0, otherwise.

The tangent direction at pk is estimated as

θ̂(pk) =

∑
Cij∈C(pk) λ(e(pk)) tan−1(aij/bij)∑

Cij∈C(pk) λ(e(pk))
,

where λ is a mapping from [0, 1] to R+ with λ(0) = λ(1) = 0 and λ > 0 elsewhere.
The λ-MST estimator is multigrid convergent for the family of convex shapes that
are twice differentiable with continuous curvature. The convergence speed is of
O(h1/3) [LVV07].

The λ-MST estimator can be used to estimate the contribution of each grid
edge to the perimeter of the shape, the so-called elementary length. Let {ei} be the
collection of grid edges (vectors) in the digital contour of Dh(S). We compute the
λ-MST estimator for the sequence of points formed by the center points ėi of each
ei. The elementary length is defined as

ˆ̀(ei) =
(

sin(θ̂(ėi)), cos(θ̂(ėi))
)
· ei.

One can integrate the elementary length to obtain a multigrid convergent estimator
for the perimeter of S. More generally, given a measurement g in ∂S and a multigrid
convergent estimator ĝ of g in ∂hS, the expression∑

ei∈∂hS

ĝ(ei)l̂(ei),

is a multigrid convergent estimator for the energy [Lac06]∫
∂S

gds.

4.2.3 Multigrid convergent estimators of curvature

Analogously to digital straight segments, the digital circular arc is the digital coun-
terpart of a circular arc. For any C ∈ ∂hS, a grid point p is an interior (exterior)
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(a) Digital circular arc (extracted
from [RL11] )

(b) II estimator (extracted from [CLL13] )

Figure 4.8: Curvature estimation. The digital circular arc separates the interior
grid points (black) from the exterior grid points (white) in (a). The back-projection
operator maps digital grid points to points in ∂S in (b).

point of C if p ∈ DhS (p /∈ DhS) and there exists a grid edge in C that is incident
to the grid square corresponding to p.

Definition 3(Digital circular arc): A segment C ∈ ∂hS is a digital circular arc
if and only if the interior and exterior grid points of C are circularly separable,
i.e., there exists an Euclidean circle that either encloses the interior points without
enclosing any exterior points or that encloses the exterior points without enclosing
any interior point.

An illustration is given in Figure 4.8a.The Maximal Digital Circular Arcs esti-
mator (MDCA) [RL11] estimates the curvature at point p ∈ ∂hS as the inverse of
the radius of the most centered digital circular arc that contains p. The MDCA
estimator is multigrid convergent for the family of convex shapes in the plane with
continuous, strictly positive and bounded curvature. An alternative is the λ-MDCA
estimator [SMF17], which follows the same rational of the λ-MST. The λ-MDCA
has been proven multigrid convergent for the same family of convex shapes with
continuous curvature. It converges with speed O(h1/3).

The next curvature estimator is based on the concept of integral invariants. Gen-
erally speaking, an invariant is a function whose value is unaffected by the action of
some group on the elements of its domain. The curvature, for example, is an invari-
ant for shapes in R2 with respect to the Euclidean group of rigid transformations.
However, curvature is a second order differential invariant and its computation is
very sensitive to noise. In the digital grid, the issues appearing in tangent estimation
are amplified for curvature estimation.
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An integral invariant, on the other hand, is a value computed via integration
and one can expect more robustness to noise. In the context of digital estimation,
an integral invariant is attractive because we have already a very simple multigrid
convergent estimator to estimate the area. In [Man+04], the authors define the
integral area invariant and link it with the measurement of curvature

Definition 4(Integral area invariant): Let S ⊂ R2 and Br(x) the Euclidean
ball of radius r centered at point x. Further, let 1S(·) be the characteristic function
of S. The integral area invariant σS,r(·) is defined as

∀x ∈ ∂S, σS,r(x) =

∫
Br(x)

1S(y)dy.

The value σS,r(x) is the area of the intersection of the ball Br(x) with shape
S. By approaching the shape at point x ∈ S, one can rewrite the intersection area
σS,r(x) in the form of the Taylor expansion [Pot+09]:

σS,r(p) =
π

2
r2 − κ(S, x)

3
r3 +O(r4),

where κ(S, x) is the curvature of S at point x. By isolating κ we can define a
curvature estimator

κ̃(x) :=
3

r3

(
πr2

2
− σS,r(x)

)
. (4.1)

In [CLL13], the authors combine the approximation Equation (4.1) and the esti-
mator of area to define a multigrid convergent estimator for the curvature (see Fig-
ure 4.8b).

Definition 5(Integral Invariant Curvature Estimator): Let Dh(S) a digiti-
zation of S ⊂ R2. The integral invariant curvature estimator is defined for every
point p ∈ ∂hS as

κ̂r(Dh(S), p, h) :=
3

r3

(
πr2

2
− Ârea

(
Dh

(
Br(p)

)
∩Dh(S), h

))
.

where Ârea(D, h) estimates the area of D by counting its grid points and then
scaling them by h2. This estimator is multigrid convergent for the family of compact
shapes in the plane with 3-smooth boundary. It converges with speed O(h

1
3 ) for

radii chosen as r = Θ(h
1
3 ) [lachaud17robust].



96 CHAPTER 4. DIGITAL GEOMETRY

4.3 Conclusion
In imaging problems it is very rare to have a mathematical description of the objects
in the scene. If we wish to measure geometric properties on these objects, we have
to deal with its digitization error. In contrast with exact sampling, whose points can
be located everywhere in R2, the digital grid restricts the sampling to a subset of
hZ2. In this chapter, we have shown that we cannot extend standard discretization
strategies to do geometric measurements of digital objects. Instead, we should
study the problem from the point of view of digital geometry and the multigrid
convergence property.
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Chapter 5

A combinatorial model for digital
elastica shape optimization

The goal of this chapter is to experimentally validate a model for the elastica energy
using multigrid convergent estimators of length and curvature. In Section 5.1 we
introduce the digital elastica and in Section 5.2 we present a combinatorial opti-
mization model capable to evolve a shape to another of lower digital elastica energy.
In several occasions, the final shape is indeed the optimal one, which confirms the
pertinence of using multigrid convergent estimators to optimize geometric-related
energies in digital sets. In Section 5.4, we present several attempts to derive a global
model to minimize a simplification of the digital elastica and we discuss why they
fail.

5.1 Digital elastica

The elastica energy of parameters θ = (α ≥ 0, β ≥ 0) for some Euclidean shape
S ⊂ R2 is defined as

Eθ(S) =

∫
∂S

α + βκ(s)2ds.

Similarly, the digital elastica Êθ of some digitization Dh(S) of S is defined as

Êθ(Dh(S)) =
∑
ė∈∂hS

ŝ(ė)
(
α + βκ̂2(Dh(S), ė, h)

)
, (5.1)

where ė denotes the center of the linel e and the estimators of length ŝ and curvature
κ̂ are multigrid convergent. In the expression above, we will substitute an arbitrary
subset D of Z2 to Dh(S) since the continuous shape S is unknown. In the following
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(a) (b) (c)

Figure 5.1: Cellular grid model and m-ring set.The flower shape in figure (a)
and the cellular-grid model representation in (b) of the blue bounded rectangle
region in (a). In figure (b), pixels are colored in gray, linels in green and pointels in
blue. In figure (c), the blue pixels denotes a 3-ring set.

we omit the grid step h to simplify expressions (or, putting it differently, we assume
that the shape of interest is rescaled by 1/h and we set h = 1).

In the next section, we describe a combinatorial scheme whose aim is to optimize
the digital elastica energy Equation (5.1).

5.2 Local combinatorial scheme

Given a digital shape D(0) we describe a process that generates a sequence D(k) of
shapes with non-increasing elastica energy. The idea is to define a neighborhood of
shapes W(k) to the shape D(k) and choose the element of W(k) with lowest energy.

Let D be a 2-dimensional digital shape embedded in a domain Ω ⊂ Z2. We
adopt the cellular-grid model to represent D, i.e., pixels and its lower dimensional
counterparts, linels and pointels, are part of D (see Figure 5.1b). In particular, we
denote by ∂D the topological boundary of D, i.e., the connected sequence of linels
such that for each linel we have one of its incident pixels in D and the other not in
D.

Let dD : Ω → R be the signed Euclidean distance transformation with respect
to shape D. The value dD(p) gives the Euclidean distance between p /∈ D and
the closest pixel in D. For points p ∈ D, dD(p) gives the negative of the distance
between p and the closest pixel not in D.
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Definition 1(Inner pixel boundary):
Given a digital shape D embedded in a domain Ω, we define its inner pixel boundary
set I(D) as

I(D) := { p | p ∈ D, |N4(x) ∩D| < 4 } ,

where N4(p) denotes the 4-adjacent neighbor set of p (without p).

Definition 2(m-Ring Set): Given a digital shape D ∈ Ω, its signed distance
transformation dD and natural number m ≥ 0 the m-ring set of D is defined as

Rm(D) := Lm ∪ L−m,

where

Lm(D) :=


I(D), m = 0

{p ∈ Ω | m− 1 < dD(p) ≤ m} , m > 0
{p ∈ Ω | m+ 1 > dD(p) ≥ m} , m < 0

Thus, the m-ring is composed of two sets of pixels with positive and negative
distances to the shape D if m > 0 (see Figure 5.1c), and equal to the inner pixel
boundary in the case m = 0. Consider the following set of neighbor candidates to
D:

{Q | Q ⊂ (R1(D) ∪D) and Q is connected}.

Such set can be extremely large and its complete exhaustion is prohibitively expen-
sive. Instead, we are going to use a subset of it.

Definition 3(n-neighborhood):
Given a digital shape D ⊂ Ω, its n-neighborhood Wn(D) is defined as the set of
digital shapes that can be built from D by adding or removing a sequence of n
connected pixels in R1(D).

In Figure 5.2 it is shown two members of theW12 neighborhood. At first glance,
we may be tempted to set the local-search neighborhood at the k-th iteration as the
union of all n-neighborhood for 1 < n < |∂D(k)|. However, that is often unnecessary
and time consuming, as the greatest reduction in digital elastica for a member of
Wn is likely very close to the greatest reduction for a member of Wn−1. Moreover,
we can improve running time by implementing a multiscale approach, i.e., we look
for reductions in digital elastica for larger values of n first, and in case of a negative
answer we refine our search by choosing a smaller n.
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Figure 5.2: 12-Neighborhood of the square shape.The black linels mark the
digital contour of the original shape and the gray linels mark the 1-ring. In the left,
a member of W12 in which the red pixels were removed; and in the right a member
of W12 in which the yellow pixels were added.

The LocalSearch Algorithm 1 describes the local combinatorial process and is
suitable for any combination of multigrid convergent estimators of perimeter and
curvature. In our experiments, we set the λ-MST [LVV07] to estimate elementary
length and perimeter. We compare our results for two curvature estimators: the
MDCA [RL11] and the integral invariant (II-r) estimator [CLL13] (r denoting the
radius of the estimation disk).

5.3 Experimental results

We study the behavior of Algorithm 1 in two problem configurations.

Free elastica. The digital elastica Equation (5.1) is optimized without any
constraint.

Constrained elastica. We force pixels to be present in the final shape or we
impose an orientation in the endpoints of a segment of the digital contour.

5.3.1 Free elastica

As observed in Section 3.3, the closed planar curve that minimizes the free elastica
is the circumference of a disk of radius (β/α)1/2

∂B(β/α)1/2 = arg min
C

∫
C

(α + βκ2)ds.
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input : A digital set D; weight coefficients θ = (α, β); the maximum
number of iterations maxIt

t←− 1 ; // multiscale level
k ←− 0 ; // current iteration
D(0) ←− D;
while k < maxIt and t < log2 |∂D(k)| do

n←− |∂D(k)|/2t ; // Maximum n-neighborhood value.
W(k,t) ←−Wn(D(k));

//Find neighbor shape with lowest energy.
Q? ←− D(k−1);
for Q ∈ W(k,t) do

if Êθ(Q) < Êθ(Q
?) then

Q? ←− Q;
end

end

delta ←− Êθ(D
(k−1))− Êθ(D(k));

if delta ≤ 0 then
//Better solution not found. Refine the scale.
t←− t+ 1

end
else

//Better solution found. Set D(k) and reset to highest
scale.

t←− 1;
D(k) ←− Q?;
k ←− k +1;

end
end

Algorithm 1: LocalSearch algorithm for elastica minimization.
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In Figure 5.3 we present the digital elastica evolution for parameters α = 0.01, β = 1
and four different curvature estimators in three different scales. The shapes evolu-
tion using the II-5 estimator are shown in Figure 5.5. We observe that both II-5
and II-10 evolve the shapes to disks of radius close to the optimum value of 10.
The II-3 estimator stops prematurely at a local optimum due its limited sensibility
compared to II-5 or II-10, while MDCA encounters some difficulties to evolve in a
high resolution setting and it also stops at some local minimum. In fact, the MDCA
estimator, although with higher convergence speed, is more sensitive to noise than
II, as illustrated in Figure 5.7. Nonetheless, the results can be improved by using a
larger neighborhood, as illustrates Figure 5.6.

We have executed the same experiments for different parameters α to confirm the
effectiveness of our approach. We observe that the plots for α = 0.001 in Figure 5.4
follows a pattern similar to those in Figure 5.3 for α = 0.01. In particular, the
remarks for the II-3 and MDCA estimator are the same. Further, we point out that
II-5 values are slightly farther from the optimum for α = 0.001. The reason being
that the shapes evolve to a disk of higher radius compared to the case α = 0.01. At
some point of the evolution for α = 0.001, the sensibility of II-5 is not sufficient to
escape from local minimum. We remark that the adoption of an automatic selection
of the estimation disk radius may attenuate this problem.

5.3.2 Constrained elastica

An important advantage of Algorithm 1 is that constraints can be imposed with
minimum effort. We present results for two types of constraints. In the first type, we
force some pixels to be part of the final solution and in the second we impose orien-
tations at the endpoints of a curve, as in the general elastica problem. In Figure 5.8
we compare the flows for different values of α.

We clearly observe that lower values of α produce longer curves with smoother
turns, as expected. However, the local nature of the method may lead to sub-
optimal solutions. A global optimization method would not only handle these issues,
but would naturally possess the completion property associated with the squared
curvature, which may be damped by local approaches.

5.3.3 Running time

The running time of Algorithm 1 is summarized in table Table 5.1. All the ex-
periments in this thesis were executed on a 32-core 2.4Ghz CPU. Although its use
in practical applications is limited, we demonstrated that digital estimators are ef-
fective in their measurements and the flows evolve as expected, reaching the global
optimum for some shapes in the free elastica problem. We observe that this approach
is fully digital, and we do not suffer from discretization and rounding problems, a
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Figure 5.3: Free elastica evolution plots for (α = 0.01, β = 1).Minimum value
attained for the digial elastica in comparison with the global optimum (dashed line)
for different curvature estimators and in different scales. The last figure summarizes
the digital elastica evolution value for all shapes using the II-5 estimator and grid
step h = 0.25.
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Figure 5.4: Free elastica evolution plots for (α = 0.001, β = 1). Minimum
value attained for the digial elastica in comparison with the global optimum (dashed
line) for different curvature estimators and in different scales. The last figure sum-
marizes the digital elastica evolution value for all shapes using the II-5 estimator
and grid step h = 0.25.
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h = 1.0 h = 0.5 h = 0.25

Figure 5.5: Free elastica results for (α = 0.01, β = 1).LocalSearch algorithm
evolutions for several shapes. The initial contour is colored in red; the final contour
is colored in blue; and the optimal contour is colored in green.
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Figure 5.6: Effects of an extended neighborhood in the MDCA evolution.In
the top row, the MDCA evolution for the neighborhood as presented in Algorithm 1.
In the bottom row, the flow using the extended neighborhood. The extended neigh-
borhood additionally includes the n-neighborhood of the dilation and the erosion
of the initial shape by a square of side 1.
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II-5 MDCA
Red 5.54 3.93
Blue 5.55 3.84

|∆E/∆D| 70 1400

Figure 5.7: MDCA sensitivity to noise. The ratio of change in energy value
(∆E) by change of the number of pixels (∆D) is much higher for the MDCA than
for the II estimator.

common issue in continuous models. Furthermore we have checked that this ap-
proach works indifferently with Integral Invariant curvature estimator and Maximal
Digital Circular Arc curvature estimator, given an appropriate neighborhood. So
the convergence of the digital curvature estimator seems to be the cornerstone to
get a digital curve behaving like a continuous elastica.

5.4 Global optimization

As observed in previous section, a global optimization method is important to re-
cover the completion property of curvature, which is useful in inpainting and seg-
mentation of thin and elongated objects. In this section we turn to a global op-
timization approach. However, instead of minimizing Equation (5.1) we focus on
a simplified version of it in which we do not compute the local length estimator.
This simplification reduces the order of the energy and will likely lead to a practical
model.

5.4.1 Simplified digital elastica

The simplified digital elastica is defined as

Êsimp
θ (Dh(S)) =

∑
ė∈∂hS

α + βκ̂2
r(Dh(S), ė, h). (5.2)
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α = 0.1 α = 0.01 α = 0.001

Figure 5.8: Constrained elastica results. In the first and second rows, the flow
obtained by forcing the green pixels to be part of the final solution; In the last two
rows, the flow obtained by forcing the orientation at the endpoints of the curves.
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h = 1.0 h = 0.5 h = 0.25
Pixels Time Pixels Time Pixels Time

Triangle 521 2s (0.07s/it) 2080 43s (0.81s/it) 8315 532s(4.8s/it)
Square 841 0.9s (0.09s/it) 3249 8s (0.3s/it) 12769 102s (2s/it)
Flower 1641 13s (0.24s/it) 6577 209s (1.68s/it) 26321 3534s (12.3s/it)
Bean 1574 7s (0.16s/it) 6278 88s (1.08s/it) 25130 1131s (6.4s/it)
Ellipse 626 1s (0.14s/it) 2506 16s (0.44s/it) 10038 286s (3.1s/it)

Table 5.1: Running time of LocalSearch. The running times for the free elastica
problem are displayed. Notice that even having a similar number of pixels, the
square (bean) shape evolves much faster than the triangle (flower).

We argue that Equation (5.2) is a reasonable approximation of Equation (5.1).
Indeed, executing Algorithm 1 to minimize this simplified digital elastica induces
very similar results to those for the digital elastica (see Figure 5.9).

5.4.2 Optimization model for simplified digital elastica

In contrast with the previous section, the model described here is designed for
the integral invariant estimator only. Let D ⊂

(
Z + 1

2

)2 be the digitization of
some shape S ⊂ R2 in half-integer coordinates space. We assume that D has m
pixels (located at integer coordinates denoted pj) and n linels (one and only one of
its coordinates is 1

2
denoted `i). Optimization variables are represented as column

vectors x ∈ {0, 1}m, y ∈ {0, 1}n and its i-th coefficients are denoted xi,yi. Further,
let A ∈ {0, 1}m×n the matrix defined as

Ai,j =

{
1, pj ∈ Br(`i)
0, otherwise.

In other words, the column vector Ai represents the pixels that are in the interior
of the disk Br(`i) of radius r centered at yi.

Esimp
θ (x,y) =

∑
yi∈y

yi
(
α + βκ̂2

r(D,yi)
)

(5.3)

=
∑
yi∈y

yi

(
α + β

( 3

r3
(
π

r2
− |Br(`i)|)

)2
)

=
∑
yi∈y

yi

(
α +

9

r6
β
(
c2 − 2cAT

i x+ xTAiA
T
i x
))
,

where c = πr2/2. We remark that linels and pixels in the solution must be topolog-
ically consistent, i.e., linels must form connected closed curves and the pixels must



112 CHAPTER 5. A COMBINATORIAL MODEL FOR DIGITAL ELASTICA

Figure 5.9: Simplified elastica results for (α = 0.01, β = 1). Experiments
of Section 5.2 for the simplified digital elastica.
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lie in the interior of those curves. This restriction is encoded in a set of topological
constraints T (x,y) detailed later. So far we have

min
x∈{0,1}m,y∈{0,1}n

Esimp
θ (x,y), subject to T (x,y). (P0)

Additionaly, in real applications involving the minimization of elastica, we have a
set of constraints R that plays the role of regularization. For example, we may
force some of the pixels in the original shape to be part of the solution; for imaging
problems, we may add a data attachment term, and so on. Finally, we can write
the general optimization problem as

min
x∈{0,1}m,y∈{0,1}n

Esimp
θ (x,y), subject to T (x,y), R(x) (P1)

Formulation P1 is a constrained binary non-convex third order problem and likely
difficult to be solved optimally. Nonetheless, we can use standard optimization
techniques in the hope to obtain a good approximation.

5.4.3 Topological constraints

The estimation disk should be applied in the digital contour of the shape, which
obliges us to impose topological constraints in the model to avoid inconsistent so-
lutions. In order to accomplish that, we set an arbitrary orientation for the faces
and another for the edges. We choose counter-clockwise for faces; left-to-right for
horizontal edges; and bottom-to-up for vertical edges. The topological constraints
are essentially the same as those implemented in the linear programming model
of [SKC09] and described in Section 3.4.

We create the vector z ∈ {0, 1}2n. We map each linel identified by variable yi to
components z2i, z2i+1, one for each possible orientation the linel may assume. Next,
we extend the linel incidence matrix defined in Appendix B to hold incidence with
respect to oriented edges. The new matrix T ∈ {0, 1}n×m+2n is defined as

0 ≤ j < m, Ti,j =


1, Pixel j is positively incident to linel i
−1, Pixel j is negatively incident to linel i
0, otherwise,

m ≤ j < m+ 2n, Ti,j =


1, Edge j is positively incident to linel i
−1, Edge j is negatively incident to linel i
0, otherwise.
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Rewriting formulation (P1)

min
∑
zi∈z

zi

(
α +

9

r6
β
(
c2 − 2cAT

i x+ xTAiA
T
i x
))

subject to

T ×
[
x
z

]
= 0

R(x),
x ∈ {0, 1}m, z ∈ {0, 1}2n.

We observe that for a linel identified by variable yi, constraints T forces at most
one of the variables z2i, z2i+1 to be evaluated to one.

5.4.4 Linear relaxation of P1

The simplest model we can derive from (P1) consists in the relaxation of the opti-
mization variables, i.e., we impose x ∈ [0, 1]m and z ∈ [0, 1]2n, and we linearize all
second and third order terms.

Consider the summation in (P1). An opt-term is an ordered sequence of opti-
mization variables, e.g., the opt-term z1x2x4 is encoded as the sequence (z1,x2,x4).
Let T the collection of opt-terms of order two or higher in (P1). To linearize (P1),
we associate a variable ui ∈ [0, 1] for each Ti ∈ T and we enforce |Ti| + 1 new
constraints. In other words, we add the following set of linearization constraints.

L(u) =

{{
ui ≤ t, ∀t ∈ Ti

}
∪
{
ui ≥

∑
t∈Ti

t− |Ti|+ 1
} ∣∣∣ ∀Ti ∈ T }

For example, let ui be the auxiliar variable associated with the opt-term z1x2x4.
Then, we are going to add the following constraints

ui ≤ z1

ui ≤ x2

ui ≤ x4

ui ≥ z1 + x2 + x4 − 2.
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The linearization of (P1) is written as

min
∑
zi∈z

zi

(
α +

9

r6
β
(
c2 − 2cAT

i x+ xTAiA
T
i x
))

subject to

T ×
[
x
z

]
= 0

R(x),
L(u),
x ∈ [0, 1]m, z ∈ [0, 1]2n,u ∈ [0, 1]|T |

Finally, to obtain a binary vector we round the partial solution vector x? ∈ [0, 1]m.
For an instance with m pixels we have about 2m linels. After linearization, we
can expect to have up to O(m3) variables, dampening our attempts to solve it
globally even for low resolution images. One can also try quadratic formulations by
linearizing only the third order terms. Unfortunately, the matrix of quadratic terms
is not semi-definite positive, a fundamental condition for efficient optimization of
the model.

5.4.5 Unconstrained version of P1

We can use the pixel incidence matrix defined in Appendix B to define an uncon-
strained version of P1. The pixel incidence vector q ∈ Zm for pixels x ∈ {0, 1}m
is

q = P TPx

In order to suppress the sign, we define diagonal matrix Q ∈ Rm×m as

Q = diag(q)diag(q)

Let B ∈ {0, 1}m×m such that column vector Bj represents the pixels in the interior
of a disk of radius R centered at pixel j. Finally, we search for solutions of

min
x

9

R6

m∑
j

(
πR2

2
− 1

2
1TQBj

)2

, (5.4)

where 1 = (1, 1, · · · , 1)T ∈ Rm. Equation (5.4) involves the minimization of a
fourth order equation and is therefore hard to optimize.
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5.5 Conclusion
We have defined a local combinatorial scheme and provided an algorithm to min-
imize the digital elastica. We have shown experimental results of the LocalSearch
algorithm for shapes with different geometries and we observed that the method
converges to the expected global optimum in the free elastica problem, justifying
the interest for multigrid convergent estimators. The same model can also be used
to solve the constrained elastica problem, but is more likely to stop in a local min-
imum.

We observed that a global optimization method is important to recover the
completion property of curvature. However, the high order of the elastica energy
makes it a challenging energy to be globally optimized. We sketched some global
optimization models for minimizing the simplified elastica (of lower order) using
standard techniques of optimization. The difficulties we pointed out suggest that a
practical global optimization model using the II estimator, if it exists, should make
use of ingenious techniques.

Nonetheless, we believe it is still possible to partially recover the completion
effect based on local approaches, more likely to have practical implementations. In
the next chapter, we describe a second local model faster than the one proposed in
this chapter.



Chapter 6

A 2-step evolution model driven by
digital elastica minimization

In the previous chapter we have presented a local combinatorial model using multi-
grid convergent estimator that proved to be very successful in optimizing the digital
elastica but too slow to be used in practice. We have also attempted to derive a
global optimization model, but unfortunately such model is unlikely to be solved
in the current state of art of binary optimization techniques. In this chapter we
present a second local optimization model that is much faster than Algorithm 1 but
with fewer guarantees of optimality.

We describe the non-submodular binary energy FlipFlow and we discuss some
curious aspects of it in Section 6.1. Optimization strategies are presented in Sec-
tions 6.2 and 6.3. Finally, we describe an application of the FlipFlow model to
image segmentation in Section 6.4.

6.1 FlipFlow model

In this section we describe the FlipFlow model that aims to evolve an initial digital
shapeD into another of lower digital elastica value. The FlipFlow algorithm consists
in deciding, at each iteration k, which pixels in the inner boundary of D(k) are to
be removed and which are to be kept.

6.1.1 Definitions

LetD be a digital shape with domain Ω ⊂ Z2. We describe a flow
{
D(k) | k ≥ 0, D0 = D

}
intended to decrease the digital elastica energy of D.

We assume an ordering in Ω, i.e., there exists a bijective function ω : Ω →
{1 · · · |Ω|}. Moreover, let Xω : Ω → 2{0,1} be an operator that transforms digital

117
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sets in its corresponding set of binary variables, i.e.,

Xω(Ω) :=
{
xω(p) ∈ {0, 1} | p ∈ Ω

}
.

We will simply write X(Ω), assuming that exists an underlying ordering function
ω.

A {0, 1} assignment of the variables in X(Ω) is denoted x(Ω). We define the
sum of a digital set D and an assignment x(Ω) as

D + x(Ω) = D ∪
{
p | p ∈ P, xω(p) = 1

}
.

Next, we define the set of optimization variables. In order to guarantee connectiv-
ity and thus avoid the enforcement of the topological constraints discussed in Sec-
tion 5.4.3, we limit the optimization region to a subset of Ω, namely the inner pixel
boundary of D(k). We recall the definition given in Chapter 5.

I(D) := { p | p ∈ D, |N4(x) ∩D| < 4 } ,

To simplify notation, the inner pixel boundary of D(k) is simply denoted I(k). At
each iteration, the set X(k) of optimization variables is defined as

X(k) := X(I(k)).

In the case we optimize the complement ofD, we writeX(k), i.e., X(k)
= X(I(D

(k)
)).

An assignment of X(k) is simply denoted x(k).

6.1.2 Model and algorithm

We recall the definition of the II digital curvature estimator (see Section 4.2 for
details):

κ̂2(p) = c1

(
c2 − |Br(p) ∩D(k)|

)2

, (6.1)

where c1 = 9/r6 and c2 = πr2/2. The following sets are important in the expansion
of Equation (6.1).

F (k) := D(k) \ I(k) (Invariant foreground)
F

(k)
r (p) := F (k) ∩Br(p)

I
(k)
r (p) := I(k) ∩Br(p)

X
(k)
r (p) := X

(
I

(k)
r (p)

)
.
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Expanding Equation (6.1), we get

κ̂2(p) = c1

(
c2 − |F (k)

r (p)| −
∑

xj∈X
(k)
r (p)

xj

)2

= c1

(
C + 2

(
|F (k)
r (p)| − c2

) ∑
xj∈X

(k)
r (p)

xj +
∑

xj∈X
(k)
r (p)

x2
j +

∑
xj ,xl∈X

(k)
r (p)

j<l

2xjxl

)
, (6.2)

where C = c2
2− 2c2 · |F (k)

r (p)|+ |F (k)
r (p)|2 is a constant. As Equation (6.2) is a term

to be optimized, we can ignore constants and multiplication factors. Moreover, as
we are in a binary optimization setting, we can further simplify Equation (6.2) by
exploiting the binary character of variables and eliminating monomials of second
order. We define the following family of energies for given parameters θ = (α, β) ≥ 0
and m ≥ 0

Eflip
(θ,m)(D

(k), X(k)) =
∑

xj∈X(k)

αs(xj)+

∑
p∈

Rm(D(k))

2c1β
(

(1/2 + |F (k)
r (p)| − c2) ·

∑
xj∈

X
(k)
r (p)

xj +
∑
j<l,
xj ,xl∈
X

(k)
r (p)

xjxl

)
,

(6.3)

where s(·) denotes the length penalization term, written as

s(xw(p)) =
∑

q∈N4(p)

t(q), where t(q) =


(xw(p) − xw(q))

2, if q ∈ I(k)

(xw(p) − 1)2, if q ∈ F (k)

(xw(p) − 0)2, otherwise.
(6.4)

We recall that Rm refers to the m-ring defined in Section 5.2. Each choice of m
generates a different flow, which is generally described in the FlipFlow Algorithm 2.
To optimize Equation (6.3) we use the QPBOI algorithm [Rot+07].

6.1.3 Algorithm discussion

We are going to justify Algorithm 2 considering the case in which m = 0, i.e., for
energy Eflip

θ,0 . As discussed in Section 5.4, the topological constraints are a funda-
mental part in a global optimization model for the digital elastica but the complexity
added to it dampens any hope of optimizing it efficiently. In the proposed FlipFlow
model, we exclude topological constraints and we end up with the tractable binary
second order Equation (6.3). However, due the lack of contour information, the
minimization of Equation (6.3) for D(k) results in undesirable shapes of even higher
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input : A digital set D; The ring number m; Length(α), curvature(β)
grouped in parameter vector θ; the maximum number of
iterations maxIt;estimation disk radius r

D(0) ←− D;
k ←− 1;
while k < maxIt do

//Shrink mode
if k is even then

x(k−1) ←− arg min
X(k−1)

Eflip
(θ,m)(D

(k−1), 1−X(k−1));

D(k) ←− F (k−1) + x(k−1);
end
//Expansion mode
else

x(k−1) ←− arg min
X

(k−1)

Eflip
(θ,m)(D

(k−1), 1−X(k−1)
);

D(k) ←− F
(k−1)

+ x(k−1);
end
k ←− k +1;

end
Algorithm 2: FlipFlow algorithm.

Figure 6.1: Fixed boundary evaluation. The proposed model does not take
contour information into account, thus the II curvature estimator is evaluated and
optimized with respect the initial boundary. In the left, the initial shape and the
optimization variables colored in yellow. In the right, the final shape without taking
the complementary solution.
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shrink mode κ� 0 κ ≥ 0 κ < 0

x(k) xj = 1 xj ∈ {0, 1} xj = 0

D(k+1) ← F (k) + x(k) eroded prob. eroded unchanged

expansion mode κ� 0 κ ≥ 0 κ < 0

x(k) xj = 1 xj ∈ {0, 1} xj = 0

D(k+1) ← F
(k)

+ x(k) dilated prob. dilated unchanged

Table 6.1: Shrink and expansion modes. Since the curvature is negated when
reversing the curve (i.e. κ = −κ), this process can only shrink convex parts in
shrink mode and expand concave parts in expansion mode.

digital elastica energy values (see Figure 6.1). Interestingly, by using the inverse
of the optimal assignement, we can derive a shape of lower digital elastica energy.
Therefore, the next shape is given by

D(k+1) = F (k)+ arg minEflip
(θ,m)

(
D(k), 1−X(k)

)
.

Recall that the integral invariant estimator approaches curvature by computing the
difference between half of the area of a chosen disk and the area of the intersection
of this disk with the shape. In particular, regions of positive curvature have fewer
pixels in their intersection set than on its complement w.r.t the estimation disk.
This implies that variables in such regions are labeled with 1, as the unbalance
grows otherwise. We attenuate curvature if we shift the center of the estimation
disk towards the interior of the shape, which means to remove the 1-labeled pixels.
That is why we take the complement of the optimization solution.

The explanation above covers the treatment of convex parts, but the way to
treat concavities is not much different. Indeed, concave regions are convex in the
shape complement. The FlipFlow Algorithm 2 is made of two modes: shrink and
expansion. The shrink mode handles convexities and its reasoning is explained in
the previous paragraph. The expansion mode operates exactly in the same way, but
on the image complement, and by doing this we are able to handle concavities. It
is called expansion mode because the optimization region, in this case, is the outer
pixel boundary of the original shape. Table Table 6.1 sums up these arguments.

In Figure 6.2 we show the results of the FlipFlow algorithm for (m = 0, α =
{0, 0.5}, β = 1). We observe a global evolution towards rounder shapes, but several
artifacts are formed along the boundary. An estimation disk of higher radius evolves
the shapes faster, but the contours become noisier. Setting α > 0 attenuates the
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problem for lower radius but the produced shapes does not match with our intuition
of what a flow driven by the squared curvature must be like. In the next section we
investigate how the energy properties and optimization method used can explain
this behavior.

6.2 Optimization method
Let f be a function of n binary variables with unary and pairwise terms, i.e.

f(y1, · · · , yn) =
∑
j

fj(yj) +
∑
j<k

fj,k(yj, yk).

As observed in Section 2.2, function f is submodular if and only if the following
inequality holds for each pairwise term fj,k:

fj,k(0, 0) + fj,k(1, 1) ≤ fj,k(0, 1) + fj,k(1, 0).

The energy Eflip
(θ,m) is non-submodular and optimizing it is a difficult problem, which

constrains us to use heuristics and approximation algorithms. The QPBO method
[HHS84] transforms the original problem in a max-flow/min-cut formulation and
yields a full optimal labeling for submodular energies. For non-submodular energies
the method is guaranteed to return a partial labeling with the property that the set
of labeled variables is part of an optimal solution. That property is called partial
optimality.

In practice, QPBO can leave many pixels unlabeled. There exist two extensions
to QPBO that alleviate this limitation: QPBOI (improve) and QPBOP (probe)
[Rot+07]. The first is an approximation method that is guaranteed to not increase
the energy, but loses the property of partial optimality. The second is an exact
method which is reported to label more variables than QPBO.

The percentage of unlabeled pixels by QPBOP for Eflip
(θ,m) is quite high, but the

percentage decreases to zero as we set m to a value closer to r, the estimation
disk radius. Therefore, we are more confident in taking the solution for values of
m close to r. However, the way it varies across values of m differs from shape to
shape, as is illustrated in Figure 6.4. We also noticed that, for m = r, all the pixels
were labeled, which indicates that Eflip

(θ,r) is an easy instance of the general non-
submodular energy Eflip

(θ,m), but this remains to be proved. The number of pairwise
terms in Eflip

(θ,r) is roughly half of those in Eflip
(θ,1) (see Figure 6.3), which also explains

the higher number of labeled variables.
We have used QPBOI to solve Eflip

(θ,m). Naturally, in the case where all pixels
are labeled by QPBOP, QPBOI returns the same labeling as QPBOP. In the next
section we show that by evaluating the estimation disk at outer rings, we eliminate
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r = 3 r = 5 r = 9

α = 0

α = 0.5

Figure 6.2: FlipFlow results for m = 0, β = 1. The algorithm is very sensitive to
the little variations of the estimator, which are particularly important in regions of
low squared curvature. Artifacts are somewhat reduced with a length penalization
but increases if we use a higher disk radius. For better visualization, curves are
displayed every 1/10 of the number of iterations.
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Figure 6.3: Pairwise terms ratio.We plot the ratio of pairwise terms among all(|X(k)|
2

)
combinations. The highest ring has roughly half the number of pairwise

terms as the lowest ring.

the artifacts and we produce smoother flows while preserving a qualitative measure
of curvature.

We postpone the comparison of the proposed methods in this thesis to Chapter 9.
At this point, we observe that the FlipFlow performs up to 10x faster than the
LocalSearch algorithm.

6.3 Evaluation across m-rings

The QPBOP method leaves many pixels unlabeled form = 0, but in some occasions,
the ratio of unlabeled pixels decreases as we take values of m closer to r. In this
section, we argue that by evaluating the estimation disk along outer rings we obtain
smoother evolutions by focusing the optimization process only on regions of high
squared curvature value.

In Figures 6.5 and 6.6 we evaluate several flows for different energies Eflip
(θ,m).

As expected, the number of artifacts decrease as the value of m increases, while
the process still tends to shrink the shape to a single point, resembling the curve
shortening flow discussed in Section 3.1.

We confirm the stability of the model by looking at the plots of the digital
elastica energy values for the produced shapes. Moreover, the produced flow has



6.3. EVALUATION ACROSS M -RINGS 125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90

U
n
la

b
e
le

d
 R

a
ti
o

Iterations

Triangle(r=5)

m=1
m=2
m=3
m=4
m=5

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

U
n
la

b
e
le

d
 R

a
ti
o

Iterations

Triangle(r=9)

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100
U

n
la

b
e
le

d
 R

a
ti
o

Iterations

Flower(r=5)

m=1
m=2
m=3
m=4
m=5

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

U
n
la

b
e
le

d
 R

a
ti
o

Iterations

Flower(r=9)

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

(d)

Figure 6.4: Unlabeled variables ratio across m-rings.For each plot, we first
produce the sequence of shapes

{
D(k)

}
executing FlipFlow with m = r. Then, for

each shape in
{
D(k)

}
, we execute one iteration of FlipFlow for different values of

m and we count the unlabeled pixels. The number of unlabeled pixels by QPBOP
remains high for small values of m, and goes to zero when m = r.
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m = 1 m = 4 m = 5

Figure 6.5: FlipFlow results for r = 5. By positioning the estimation disk on
outer rings, we minimize the apparition of sharp artifacts.

m = 1 m = 6 m = 9

Figure 6.6: FlipFlow results for r = 9. By positioning the estimation disk on
outer rings, we minimize the apparition of sharp artifacts.
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Figure 6.7: Digital elastica evaluation. We present the results of the FlipFlow
model for different values of m. In the left column, we use FlipFlow radius 5 and
in the right column we use FlipFlow radius 9.
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(a)

(b)

Figure 6.8: Evolution speed and topology changes. The flow evolves regions of
high curvature faster, as illustrated in figure (a). Figure (b) illustrates the property
of the FlipFlow algorithm to handle changes in topology.

Seeds Graph cut α = 0.5, β = 0.0, α = 0.5, β = 1.0,
γ = 0.5 γ = 0.5

Figure 6.9: FlipFlow results for segmentation.Given foreground (green) and
background (blue) seeds at picture (a); Graph cut produces picture (b) which is
used as input of the Contour Correction algorithm; in pictures (c) and (d) we display
the output of Contour Correction algorithm with and without squared curvature
regularization.
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no difficulties in handling changes on topology, and it presents different speeds for
regions with low and high curvature values, as illustrated in Figure 6.8.

The computation of estimation disks at outer rings raises the question about its
validity as a curvature estimator. In fact, one can estimate the curvature using outer
disks (see Appendix A), but we were not able to prove its multigrid convergence.
However, this relation suggests that curvature information is at least qualitatively
present in the outer disks computation, and this computation is preferred, as it is
easier to optimize accordingly to the experiments illustrated in Figures 6.4 to 6.7.

6.4 Data term and image segmentation

We present an application of the FlipFlow algorithm to supervised image segmen-
tation. The FlipFlow acts as a contour correction method. Here we use a data
fidelity term in order to characterize the object of interest. Given foreground and
background seeds selected by the user, we derive mixed Gaussian distributions of
color intensities Hf ,Hb, and we define the data fidelity term as the cross-entropy,
i.e.

g(xw(p)) = −xw(p) logHf (p)− (1− xw(p)) logHb(p) (6.5)

We use the FlipFlow algorithm to regularize an initial contour output by some
segmentation algorithm or delineated by the user. In this application, the data
term of the FlipFlow is set to the data fidelity term Equation (6.5).

The algorithm can be initialized by a collection of compact sets, or with the
result of a third-party segmentation algorithm, as Graph cut [BJ01]. We include an
additional parameter d that dilates the initial sets using a square of side one before
executing the flow.

An illustration of the application of the FlipFlow model in image segmentation
is presented in Figure 6.9. We present a more exhaustive list of experiments and
comparisons with other methods in Chapter 9.

6.5 Conclusion

We proposed the FlipFlow algorithm, an evolution process based on the minimiza-
tion of a second-order non-submodular energy that produces shapes of decreasing
digital elastica until a certain inflexion point. We point out the submodularization
effect of evaluating the FlipFlow model at outer m-rings and we observed that the
model evolves the shapes in a similar fashion to the curve-shortening flow for an
appropriate choice of parameters.
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input : An image I; seeds mask M ; the estimation disk radius r;
parameter vector θ = (α, β); data term weight (γ) ; initial dilation
d; stop condition value tolerance; the maximum number of
iterations maxIt;

D ←− Graph cut(I,M);
D(0) ←− dilate(D,d);
delta ←− +∞;
k ←− 0;
while k < maxIt and delta > tolerance do

//Shrink mode
if k is even then

x(k−1) ←− arg min
X(k−1)

Eflip
(θ,m)(D

(k−1), 1−X(k−1)) + γg(X(k−1));

D(k) ←− F (k−1) + x(k−1);
end
//Expansion mode
else

x(k−1) ←− arg min
X

(k−1)

Eflip
(θ,m)(D

(k−1), 1−X(k−1)
) + γg(X

(k−1)
);

D(k) ←− F
(k−1)

+ x(k−1);
end
delta ←− |D(k) \D(k+1)|;
k ←− k +1;

end
Algorithm 3: FlipFlow algorithm for segmentation.
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The FlipFlow algorithm operates in two distinct modes: the shrink and the
expansion modes. They are responsible for the treatment of convex and concave
regions, respectively. The model handles changes in topology and can be extended
to include extra terms as data regularization term. In particular, we described an
application of the FlipFlow model to image segmentation.

It is remarkable that curvature regularization is achieved by evaluating the es-
timation disks at outer rings. Another surprising fact is that we are using a quite
non-standard operation of taking the solution complement. We have developed an
heuristic reasoning to explain the latter and we argue in Appendix A that curva-
ture can still be measured evaluating disks at outer rings. Nonetheless, we may have
taken an unnecessary tortuous path and missed the fundamental concept behind
it. In the next chapter, we identify the key concept behind the FlipFlow model to
define a variant of this algorithm which is easier to implement.
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Chapter 7

A single step evolution model driven
by digital elastica minimization

In this chapter we introduce the balance coefficient, a value that indicates how far
the intersection of some disk and a digital shape is from half of the disk area. This
value motivates the definition of a new family of energies to regularize the squared
curvature: the m-BalanceFlow. We are going to show that the BalanceFlow is
closely related to the FlipFlow energy, but the former has an easier interpretation
and leads to a simpler algorithm.

7.1 BalanceFlow model
In Section 6.1.3, we have argued that inverting the solution was necessary to reduce
the squared curvature estimation in the next shape of the flow. In this section, we
investigate further the reasons involved in this unusual inversion step.

7.1.1 Definitions

In the FlipFlow model, no contour information is given and the strategy was to
label the pixels such that the next shape has a boundary in which the estimation
disks were more balanced than in the previous shape, i.e., the difference |Br(p) ∩
D| − |Br(p)∩D| is closer to zero for every pixel p ∈ ∂D. We formalize this idea by
defining the balance coefficient.

Definition 1(Balance coefficent): Given digital shape D ∈ Ω, positive number
r and point p ∈ Ω, the balance coefficient of D at p is defined as

ur(D, p) =

(
πr2

2
− |Br(p) ∩D|

)2

.

133
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Figure 7.1: The balance coefficient (r = 5) of equidistant points from the
corner of a square shape contour. The balance coefficient for the outer (inner)
disk is colored in blue (orange). The red curve indicates the difference between
the blue and the orange curve. The green point marks the point p in which the
difference between the balance coefficients is the greatest.

The balance coefficient definition is very similar to the II squared curvature
estimator. Nonetheless, we have decided to make a new definition since we do not
have the scaling factor 9

r6
and that the balance coefficient is defined everywhere and

not only in the digital boundary of the shape. Let F = Br(p)∩D and G = Br(p)\F .
The balance coefficient is symmetric with respect to F and G.

ur(D, p) =

(
πr2

2
− |F |

)2

=

(
−πr

2

2
+ |G|

)2

=

(
πr2

2
− |G|

)2

.

The balance coefficient is used to estimate the effect of moving the estimation disk
center towards the interior or the exterior of the shape. For example, consider Fig-
ure 7.1 in which we plot the balance coefficients of points along the diagonal of a
square shape.

The balance coefficient grows if the estimation disk is moved towards the exterior
and decreases if the estimation disk is moved towards the interior of the shape. That
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is an indication that we should remove point p from D to decrease the squared
curvature of the shape at point p ∈ ∂D. The same point p may be touched by
several disks, each of them contributing with some value for the ultimate decision
of keeping or removing point p of D.

We are going to consider the inner and outer pixel boundary simultaneously as
the optimization variables. We recall that D(k) corresponds to the digital shape D
after the k-th iteration of the flow and that dD(k) is its signed distance transform.
We list the sets needed to define the new family of energies:

O(k) := {p ∈ Ω | − 1 ≤ dD(k)(p) ≤ 1}
X(k) := X(O(k))

F (k) := D(k) \O(k)

F (k)
r (p) := F (k) ∩Br(p)

O(k)
r (p) := O(k) ∩Br(p)

X(k)
r (p) := X

(
O(k)
r (p)

)
.

We recall that an assignment of variables X(Ω) is denoted x(Ω). In case the shape
is described in terms of a set of variables X(Ω), i.e., D = F ∪ x(Ω), the balance
coefficient is written as

ur(F,X, p) =
(πr2

2
− |Fr(p)| −

∑
xj∈Xr(p)

xj

)2

.

7.1.2 Algorithm

Let pi, po ∈ Rm(D) the inner and outer disk centers in the m-ring of D, respectively.
We assume k = 0 if omitted, i.e., D = D(0). We define the term T balm (D) as

T balm (D,X) =
∑

pi,po∈Rm(D)

ur(F, 1−X, po)− ur(F,X, pi)

=
∑

pi,po∈Rm(D)

(
πr2

2
−
(
|Fo|+

∑
xj∈Xo

1− xj
))2

−

∑
pi,po∈Rm(D)

(
πr2

2
−
(
|Fi|+

∑
xj∈Xi

xj

))2

, (7.1)

where Xo = Xr(po), Xi = Xr(pi), Fo = Fr(po), Fi = Fr(pi).
Equation (7.1) is conceived to implement the reasoning described in Section 6.1.3.

In convex regions, the outer disk has a higher balance coefficient than the inner disk,
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and minimization of Equation (7.1) tends to set xj = 0, i.e., the shape shrinks. On
the other hand, if we have a concave region, the inner disk has a higher balance
coefficient, and minimization of Equation (7.1) tends to set xj = 1 (the shape
dilates).

The m-balance energy family is defined as

Ebal
(θ,m)(D

(k), X(k)) =
∑

xj∈X(k)

αs(xj) + βT balm (D(k), X(k)). (7.2)

We follow the same notation as in Chapter 6 to denote the data term g(D, x) and
the length penalization term s(x) that are defined as in Equations (6.4) and (6.5),
respectively. The BalanceFlow algorithm is summarized in Algorithm 4 and an
illustration is shown in Figure 7.2.

input : A digital set D; The ring number m; parameter vector θ = α, β);
data term coefficient γ; the maximum number of iterations maxIt;

D(0) ←− D;
k ←− 1;
while k < maxIt do

x(k−1) ←− arg minX(k−1) Ebal
(θ,m)(D

(k−1), X(k−1)) + γg(X(k−1));
D(k) ←− F (k−1) + x(k−1);
k ←− k +1;

end
Algorithm 4: BalanceFlow algorithm.

7.2 Relation with FlipFlow

The BalanceFlow returns similar solutions to the FlipFlow algorithm, as the ex-
periments in Chapter 9 illustrates. Indeed, they are closely related. We recall the
curvature regularization term of the FlipFlow Equation (6.3) for some digital shape
D before proving the proposition that establishes this link.

T flipm (D,X) =
∑

pi,po∈Rm(D)

(πr2

2
− |Fo| −

∑
xj∈Xo

xj

)2

+
(πr2

2
− |Fi| −

∑
xj∈Xi

xj

)2

(7.3)
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Seeds Graph cut α = 0.5, β = 0.0, α = 0.5, β = 1.0,
γ = 2.0 γ = 2.0

Figure 7.2: Segmentation using the BalanceFlow model. Given foreground
(green) and background (gray) seeds at picture (a); Graph cut produces picture (b)
which is used as input of the BalanceFlow algorithm; in pictures (c) and (d) we
display the output of BalanceFlow algorithm with and without squared curvature
regularization.

Proposition 1(FlipFlow and BalanceFlow relation): The curvature terms of
FlipFlow and BalanceFlow are related by the equality

T flipm (D, 1−X) = T balm (D,X) + P1(Xi) + c,

where P1(Xi) = (
∑

Xi
1− xj)2 + (

∑
Xi
xj)

2 and c is a constant.

Proof:

We replace xj by (1−xj) in Equation (7.3), which corresponds to the complement
of the solution in the FlipFlow model. To simplify notation, we are going to omit
the radius r and replace points pi, po by underscored i, o, i.e., Fi := Fr(pi). We
rewrite Equation (7.3) as

T flipm (D, 1−X) =
∑

pi,po∈Rm(D)

(πr2

2
− |Fo| −

∑
xj∈Xo

1− xj
)2

+
(πr2

2
− |Fi| −

∑
xj∈Xi

1− xj
)2

(7.4)
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Next, let Ai = πr2/2− |Fi|. We rewrite the second term of Equation (7.4) as(
Ai −

∑
xj∈Xi

(1− xj)
)2

=
(
Ai − |Xi|+

∑
xj∈Xi

xj

)2

= (Ai − |Xi|)2 + 2(Ai − |Xi|)
∑
xj∈Xi

xj +
( ∑
xj∈Xi

xj

)2

= A2
i − 2Ai|Xi|+ |Xi|2 + 2(Ai − |Xi|)

∑
xj∈Xi

xj +
( ∑
xj∈Xi

xj

)2

= A2
i + 2Ai

∑
xj∈Xi

xj +
( ∑
xj∈Xi

xj

)2

− 2Ai|Xi|+ |Xi|2 − 2|Xi|
∑
xj∈Xi

xj

= 2A2
i −

(
Ai −

∑
xj∈Xi

xj

)2

+ 2
( ∑
xj∈Xi

xj

)2

− 2Ai|Xi|+ |Xi|2

− 2|Xi|
∑
xj∈Xi

xj

We group the constants into the constant term c = 2A2
i − 2Ai|Xi| to obtain(

Ai −
∑
xj∈Xi

(1− xj)
)2

= −
(
Ai −

∑
xj

)2

+
(
|Xi| −

∑
xj∈Xi

xj

)2

+
( ∑
xj∈Xi

xj

)2

+ c

= −
(
Ai −

∑
xj∈Xi

xj

)2

+ P1(Xi) + c

= −
(πr2

2
− (|Fi|+

∑
xj∈Xi

xj)
)2

+ P1(Xi) + c (7.5)

Finally, we replace Equation (7.5) in Equation (7.4) to obtain

T flipm (D, 1−X) =

(
πr2

2
−
(
|Fo|+

∑
xj∈Xo

1− xj
))2

−

(
πr2

2
−
(
|Fi|+

∑
xj∈Xi

xj

))2

+ P1(Xi) + c

= T balm (D) + P1(Xi) + c. (7.6)

�

Proposition 1 tell us that, apart from a constant, the two energies differ in
the penalty term P1(Xi). Locally, such term favors solutions in which half of the
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Figure 7.3: Balance coefficient map. We display the balance coefficients of radius
12 for the flower shape (contour in white) in every point of the given domain. The
pixels in magenta have balance coefficient smaller than 169, and indicates the region
in which points with zero balance coefficient are located.

variables touched by the inner disk are labeled one. Indeed, the FlipFlow and Bal-
anceFlow behave similarly. In Chapter 9 we make extensive comparisons between
them.

7.3 Conclusion
We proposed the BalanceFlow model for digital elastica minimization, which was
inspired by the definition of the balance coefficient, and we proved a link between
the BalanceFlow and FlipFlow algorithm. The models present similar results, but
the BalanceFlow has an easier implementation.

Looking at Figure 7.1, it would be interesting to find the point in which the
inner or outer disk reaches the zero balance. In Figure 7.3 each color represents
the balance coefficient u12 of the closed shape with contour colored in white. We
highlighted in magenta the pixels p for which u12(D, p) ≤ 169. Figure 7.3 suggests
that an evolution based on the zero level set of the balance coefficient may decrease
the digital Elastica energy. In the next chapter we describe a graph cut model in
which the cost function is given by a function of the balance coefficients.
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Chapter 8

Digital elastica minimization via
graph cuts

In the previous chapter we have defined the concept of balance coefficient that
motivates us to introduce the BalanceFlow model. In fact, the balance coefficient
is also present in the FlipFlow energy and it seems that its computation is in the
core of the evolution processes described so far. We confirm this hypothesis once
more in this chapter. We present a graph cut model that converges to the optimum
digital shape for the free digital elastica problem. Moreover, the model is easily
adapted to image segmentation tasks.

8.1 GraphFlow model

The model presented in this chapter is highly influenced by the graph cut model
described in Section 2.3 [BJ01]. We recall that this model constructs a cost function
on the edges of the image grid graph such that the minimum cut of the graph
minimizes the segmentation energy. The model is very attractive because minimum
cuts are quickly computed for sparse graphs.

Let I ∈ Fm×n a discrete image and its capacitated grid graph GI+(V+, E+, c) as
defined in Section 2.3. Given a cut E ′ of GI+ that partitions the graph in disjoint
sets S and T , we recall that the energy minimized by the graph cut model is written
as

Egcut
γ (GI+, E ′) = γr

∑
vp∈S

ψ1(1) +
∑
vp∈T

ψ1(0)

+ γb
∑

(vp,vq)∈E ′
ψ2(0, 1),

where γr ≥ 0 and γb ≥ 0 are parameters controlling the influence of the data and
space coherence terms, respectively. Given a neighborhood cardinality k (e.g. 8),

141
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data and space coherence terms are defined as

ψ1(xp) =

 − lnHbg

(
I(p)

)
, if xp = 0

− lnHfg

(
I(p)

)
, if xp = 1,

ψ2(xp, xq) =

 exp

(
− 1

dE(p, q)

(I(p)− I(q))2

2σ2

)
, q ∈ Nk(p)

0, otherwise.

Let D(0) the digital set induced from the foreground component returned by the
standard graph cut algorithm. The GraphFlow model produces a sequence of digital
shapes D(k) and is composed of two steps

Candidate selection: We associate to D(k) a set of neighbor shapes P(D(k)).
For each D′ ∈ P(D(k)) we construct its candidate graph GD′ and we compute
its minimum cut Q according to energy

Egflow
γ (GD′ , Q,D′) =

∑
(vp,vq)∈Q

(
u(D′, p) + u(D′, q)

)
+ Egcut

γ (GD′ , Q). (8.1)

Validation: Each minimum cut Q computed in the previous step induces a
solution candidate DQ. We group minimum cuts and solution candidates in
the solution candidates set sol(D(k)). We choose among the solution candi-
dates the one that minimizes

Eval
(θ,γ)(GI , Q,DQ) = Êθ(DQ) + Egcut

γ (GI+, Q). (8.2)

We recall that Êθ stands for the digital elastica energy Equation (5.1). We observe
that, in the validation step, we consider the image grid graph and not the candi-
date graph. The validation step plays an important role in the emulation of the
completion property associated with the squared curvature term.

The GraphFlow model is suitable for the free, constrained elastica and image
segmentation problems and can be seen as a simple extension of the graph cut
segmentation model with a regularization term based on squared curvature.
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8.1.1 Candidate graphs and solution candidates set

The set of candidate graphs of D are derived from some neighborhood of shapes
with respect to D. We define the a-probe set as an example of such neighborhood.

Definition 1(a-probe set): Let D ⊂ Ω ⊂ Z2 a digital set and a a natural number.
The a-probe set of D is defined as

Pa(D) = D ∪
⋃
a′<a

D+a′ ∪D−a′ ,

where D+a(D−a) denotes a dilation(erosion) by a disk of radius a.

We are going to construct a candidate graph for each member of Pa(D), but we
are going to consider only the pixels of D contained in a band around its contour.

Definition 2(Optimization band): Let D ⊂ Ω ⊂ Z2 a digital set and n > 0.
The optimization band On(D) is defined as

On(D) := {p ∈ Ω | − n ≤ dD(p) ≤ n} .

For each D′ ∈ Pa(D) we construct the capacited graph GD′(V , E , c) with vertex
and edge sets defined as

V = {vp | p ∈ On(D′)} ∪ {s, t}
E = Est ∪ EN ,

where s, t are the source and target vertices, respectively, and

Est = {(s, vp), (vp, t) | p ∈ On(D′)}
ENk = {{vp, vq} | p ∈ On(D′) and q ∈ Nk(p)}.

In case of image segmentation, we assume that there exist sets Vfg,Vbg ⊂ V
corresponding to foreground and background seeds furnished by the user. The cost
function c : E → R is defined as
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edge e c(e) for

{vp, vq} β ·
(
u(D′, p) + u(D′, q)

)
+ γb · ψ2(0, 1) {vp, vq} ∈ EN

{vp, s}
γr · ψ1(0) p ∈ On(D′), vp /∈ Vfg ∪ Vbg

M vp ∈ Vfg

0 vp ∈ Vbg

{vp, t}
γr · ψ1(1) p ∈ On(D′), vp /∈ Vfg ∪ Vbg

0 vp ∈ Vfg

M vp ∈ Vbg

where the constant M is given by

M = 1 + max
p∈On(D′)

β ·
(
u(D′, p) + u(D′, q)

)
+ γb · ψ2(0, 1).

Let mincut(Q,G) a predicate indicating that Q is a minimum cut set of some
capacited graph G(V , E , c). We define the solution candidates set of digital set D as

sol(D) =
⋃

D′∈Pa(D)

{(
Q,DQ

)
| mincut(Q,GD′)

}
.

8.1.2 GraphFlow algorithm

The GraphFlow algorithm implements a local-search strategy to minimize Equa-
tion (8.2) with search space given by the solution candidates set defined in the
previous section. We opted to not stop the method in the case that shape D(k+1)

has higher energy than D(k) as a strategy to escape local minimum. In the imple-
mentation presented here, the unique stop condition is the number of iterations.
Clearly, this strategy can be reviewed depending on the application.

We remark that the GraphFlow algorithm has two fundamental steps. In the
candidate selection, we build the solution candidates set from the minimum cuts
of the candidate graphs. Next, in the validation step, we choose the digital set
with minimum value for Equation (8.2). If we interpret the balance coefficient
minimization as the best move one can make towards digital elastica minimization,
the solution candidates set can be seen as the neighboring shapes with highest
potential to minimize the elastica energy for the given a-probe set.
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input : An image I or a digital set D; the optimization band n; the probe
set parameter a; parameter vector θ = (α, β); parameter vector
γ = (γr, γb); the maximum number of iterations maxIt;

if Image I is given then
D(0) ←− graphcut(I);

end
else

D(0) ←− D;
(γr, γb)←− (0, 0);

end

k ←− 0;
while k < maxIt do

//Candidate selection

sol(D(k))←−
⋃
D′∈Pa(D(k))

{(
Q,DQ

)
| mincut(Q,GD′)

}
;

//Candidate validation
(Q(k+1), D(k+1))←− arg min

(Q,S)∈sol(D(k))

Êθ(S) + Egcut
γ (GI , Q);

k ←− k +1;
end

Algorithm 5: GraphFlow algorithm.
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The GraphFlow algorithm produces a flow that is much more in accordance with
our expectations for a flow guided by the elastica energy than the previous models.
We recall that both FlipFlow and BalanceFlow have a shrinking bias that let them
behave in a similar fashion to the curve-shortening flow. On the other hand, the
GraphFlow grows and shrinks in accordance with the α coefficient in the digital
elastica (see Figure 8.1). If we use a 0-probe set, we recover the convergence to a
single point behavior, confirming the linking between the previous models.

In fact, the solution for the free elastica problem is very similar to those given
by the enumerative process of Chapter 5, i.e., the shapes converge to the expected
global optimum, but with the advantage of producing smoother flows and much
faster than the LocalSearch algorithm (up to 100× faster). However, for the con-
strained elastica problem, the GraphFlow encounters some difficulties to evolve
(see Figure 8.1), in particular for the fixed endpoints’ orientation instances. We
believe that a larger neighborhood, possibly random, could solve this issue. The
results are explored in more details in Chapter 9.

Some preliminar results of Algorithm 5 applied to image segmentation are shown
in Figures 8.2 and 8.3. In particular, we can observe that the GraphFlow presents
the completion property, i.e., it tends to return a segmentation with fewer discon-
nected components.

8.2 Conclusion
We described a graph cut model that regularizes the squared curvature and it is
suitable for image segmentation. The evolution produced by the GraphFlow re-
sponds to the length penalization term α, i.e., the shape tends to grow (shrink)
for lower (higher) values of α and we observe a convergence to a shape closer to
the global optimum in the free elastica problem. In the constrained elastica, we
believe that a larger neighborhood is necessary to produce better results. Finally,
the GraphFlow Algorithm 5 is faster and simpler to implement than the previous
models presented in this thesis.
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(n = 2, a = 0, α = 0.01) (n = 2, a = 2, α = 0.01) (n = 2, a = 2, α = 0.001)

(a)

(b) (n = 2, a = 2, α = 0.001)

Figure 8.1: GraphFlow results. The GraphFlow algorithm can shrink and grow in
accordance with length penalization and it converges to a shape closer to the global
optimum (green curve) in the free elastica problem. In the constrained elastica,
we believe that we can improve the results by using a larger, possibly random,
neighborhood. We are using n = 2, a = 2 and shapes are displayed at every 10
iterations.

Seeds Graph cut α = 0.05,β = 0, α = 0.05,β = 0.5,
γr = γb = 1.0 γr = γb = 1.0

Figure 8.2: GraphFlow segmentation. Given foreground (green) and background
(gray) seeds at picture (a); Graph cut produces picture (b) which is used as input of
the GraphFlow algorithm; in pictures (c) and (d) we display the output of Graph-
Flow algorithm with and without squared curvature regularization.



148 CHAPTER 8. DIGITAL ELASTICA MINIMIZATION VIA GRAPH CUTS

α = 0,β = 0 α = 0,β = 1
γr = 3, γb = 3 γr = 3, γb = 3

Figure 8.3: GraphFlow and completion property. The oversegmented picture
in the left was obtained with no squared curvature regularization, while the picture
in the right was obtained by setting β = 1.0.



Chapter 9

Experimental analysis

In this chapter we analyse the results produced by the four models developed in
this thesis. We are going to compare their outputs for each of the three problems
considered: free elastica, constrained elastica and image segmentation. Table 9.1
summarizes the models properties.

In the image segmentation section, we compare our results with the linear model
for curvature regularization of [SKC09].

Model Implementation Running Free Constrained Image
Time Elastica Elastica Segmentation

LocalSearch (LS) medium slow yes(opt) yes no
FlipFlow (FF) hard acceptable yes no yes

BalanceFlow (BF) medium acceptable yes no yes
GraphFlow (GF) easy fast yes(opt) yes yes

Table 9.1: Models summary. The qualitative attributes are relative, e.g., the
GraphFlow presents the lowest running time while LocalSearch presents the highest.

9.1 Free elastica
The free elastica problem consists in finding a shape with the lowest digital elastica.
The approach to solve this problem, as well the two others that follow, is to itera-
tively evolve an initial shape to another with lower digital elastica value. We have
ran two experiments, summarized in Table 9.2, to illustrate the evolution process
behavior for each of the models described in this thesis.

We make a distinction between the radius used to compute the balance coef-
ficient (bRadius) and the one used to estimate curvature using the II-estimator
(vRadius) in the validation function of GraphFlow and LocalSearch. In particular,
the vRadius is the one used to plot the graphs in Figures 9.2 and 9.4. Moreover,
the vRadius is always scaled by the grid step, while the bRadius is never scaled.
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FF,BF GF
Experiment maxIt vRadius bRadius h α β m a n
Exp-General 400 5 7 0.25 0.01 1 5 2 3

Exp-Radius 400 5
7

0.25 0.001 1
5

2 3
12 10

Table 9.2: Parameter settings for the free elastica experiments. The headers
FF,BF,GF identifies specific parameters for the FlipFlow, BalanceFlow and Graph-
Flow models, respectively.

Pixels (initial shape) LocalSearch FlipFlow BalanceFlow GraphFlow
Triangle 8315 4.8s/it 0.4s/it 0.38s/it 0.14s/it
Square 12769 2s/it 0.51s/it 0.47s/it 0.12s/it
Ellipse 10038 3.1s/it 0.64s/it 0.57s/it 0.1s/it
Flower 26321 12.3s/it 1.23s/it 0.94s/it 0.14s/it
Bean 25130 6.4s/it 1.2s/it 1.17s/it 0.16s/it

Table 9.3: Exp-General summary. Running time and input size of Exp-General
experiment for the free elastica.

9.1.1 Exp-General

The Exp-General experiment executes each model using the listed parameters in Ta-
ble 9.2 for 5 different parametric shapes. The results for the Exp-General experiment
are shown in Figure 9.1. One can check in the plots of Figure 9.2 how the digital
elastica value evolves at each iteration. For this experiment we also provide Ta-
ble 9.3 with the model’s respective running times.

We observe that both LocalSearch and GraphFlow evolves the initial shape to
another shape closer to the optimal one, e.g., for α = 0.01, the model evolves to
the disk of radius 10. However, the GraphFlow model is simpler to implement and
much faster than LocalSearch (see Table 9.3). Even with a smaller neighborhood,
the GraphFlow achieves its convergence before LocalSearch in two occasions, one
in the square and another in the flower evolution.

At the first iterations, FlipFlow and BalanceFlow produce shapes with lower
digital elastica energy. However, the models do not stop to evolve even if a shape of
smaller perimeter and lower digital elastica ceases to exist, and starting from this
point, the digital elastica value increases.

9.1.2 Exp-Radius

In the Exp-Radius experiment, we set the length penalization parameter to α =
0.001. Compared to the Exp-General, the expected behavior is that the shapes will
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LocalSearch FlipFlow BalanceFlow GraphFlow

Figure 9.1: Exp-General results for the free elastica.. Initial contour is colored
in red, final contour is colored in blue and optimal contour is colored in green.
Curves are drawn every 10 iterations.
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Figure 9.2: Exp-General plots for free elastica. LocalSearch and GraphFlow
converges to values closer to the global optimum. The dashed line marks the opti-
mum value.
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grow till reach the optimal disk of radius 1/0.0010.5 ≈ 31. This experiment confirms
the natural observation that the choice of the bRadius parameter influences the
produced flows. The experiment was not executed for the LocalSearch model as
this model is not sensitive to the bRadius parameter.

In the case of FlipFlow and BalanceFlow, the evolution goes faster with a larger
radius, and, as mentioned before, the shape never grows, it only shrinks. On the
other hand, GraphFlow is sensitive to the value of α and the shapes can grow or
shrink acoordingly. Moreover, the choice of bRadius defines how closer the solution
will be from the optimum in the case of the GraphFlow.

We recall that the II estimator measures curvature by using a disk of a given
radius. The radius parameter defines the range of values estimated by the estimator.
At first glance, a larger radius returns a more precise estimation, but we should be
careful in not using a radius larger than the reach of the shape at the point of
estimation (see Figure 9.5). A value of bRadius = 7 is too small to identify the
small variations that a shape growing to a disk of radius 31 suffers. Therefore, when
we set bRadius = 12, the GraphFlow returns solutions closer to the optimal, as we
can check in Figures 9.3 and 9.4. The results suggests that the bRadius should be
dynamically set in order to escape local optimum solutions.

9.2 Constrained elastica

The constrained elastica problem consists in finding the shape of minimum digital
elastica that respects some set of constraints. We ran experiments for two sets of
constraints: in the first, we impose that a set of pixels in the digital boundary of
the initial shape must persist in the final shape; in the second, we evolve a curve
whose endpoints’ orientations are fixed.

For the constrained elastica, only LocalSearch and GraphFlow were evaluated.
We believe that both FlipFlow and BalanceFlow can be modified to evolve the con-
strained elastica, but such modifications were not implemented in this thesis. Ta-
ble 9.4 lists the parameters used in the experiments and Table 9.5 the running time
of Exp-α experiment.

We remark that for every experiment in this section the grid step is set to
h = 1.0, i.e., the Euclidean and digital radius are the same. In contrast with the
previous section, where all the shapes had a closed parametric formula, some of the
tested shapes in this section are created ad-hoc and a decision about the grid step
in this case becomes arbitrary.
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FlipFlow BalanceFlow GraphFlow

r = 7

r = 12

r = 7

r = 12

Figure 9.3: Exp-Radius results for the free elastica. A small value of bRadius
may not be sufficient to identify small variations in smooth shapes, resulting in a
premature on a local minimum. We clearly observe this behavior in the GraphFlow
model. Initial contour is colored in red, final contour is colored in blue and optimal
contour is colored in green. Curves are drawn every 10 iterations.
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Figure 9.4: Exp-Radius plots for the free elastica. The GraphFlow approaches
values closer to the global optimum when choosing a higher value for bRadius in
the case α = 0.001.

GF
Experiment maxIt vRadius bRadius h α β a n

Exp-α 400 7 7 1.0
0.002

1 1 2
0.0002

Exp-Radius 400
15 15

1.0 0.002 1 1 2
50 50

Table 9.4: Parameter settings for the constrained elastica experiments.
The headers LS,GF identifies parameters that are exclusive for the LocalSearch and
GraphFlow models, respectively.
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Note about implementation

In the LocalSearch model, we simply ignore the solutions which do not respect
the constraints. In the GraphFlow model, we judiciously set the cost function to
guarantee that pixels marked fixed will belong to the source component of the cut
and will remain a pixel of the digital contour.

Let A ⊂ D be the set of fixed pixels of digital set D and A′ 6⊂ D their neighbors
not contained in D. Next, we set the following edge capacities

c((s, va)) = M, ∀a ∈ A
c((va′ , t)) = M, ∀a′ ∈ A′,

where M is set as the highest capacity of the graph.

9.2.1 Discussion

The results show that the GF model is not appropriate to solve the constrained
elastica problem and we identify two reasons for that.

Poor shape neighborhood. The a-probe set promotes quite rough and
simple transformations to capture the fine information around the fixed pixels,
and we confirm this hypothesis by comparing the GF results with those of the
LS model, much more suitable for this kind of task because of its heterogeneous
neighborhood.

Unresponsiveness of balance coefficient to fixed pixels. The balance
coefficient computation ignores that some of the pixels will stay fixed and
encourage movements that increases the elastica instead of decreasing. That
is particularly clear in Figure 9.6c of Curve-1. The region around the right
endpoint is convex, and the balance coefficient encourages a contraction move-
ment on the non-fixed pixels. Because of fixed pixel constraint, an expansion
movement should be expected.

Exp-α

We present results for two different values of length coefficient of the digital elastica.
The LS model behaves as expected, producing longer and smoother shapes for
higher values of α. That is particularly clear in Figures 9.6a, 9.6b, 9.6e and 9.6f.
Nonetheless, we observe that the proposed neighborhood is no more sufficient to
escape bad local optimum solutions (Figures 9.6i, 9.6j, 9.6m and 9.6n).

The GF model, on the other hand, fails to decrease the digital elastica for
the curves examples of Figures 9.6c, 9.6d, 9.6g and 9.6h and it has shown to be
insensitive to the length coefficient for the tested cases.
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(a) Curve-1 (b) Curve-2 (c) Too large radius

Figure 9.5: Constrained elastica curves and radius value. The underlying
shapes of Curve-1 and Curve-2 for constrained elastica experiments are shown in
figures (a) and (b). Pixels in red are forced to persist in the solution. In figure (c),
an example of a too large radius value (50), larger than the shape reach.

Exp-Radius

In this experiment we evaluate the results for different values of vRadius and
bRadius. We observe that a larger radius may be beneficial because a larger disk
is sensitive to a higher range of curvature values, and consequently, it produces
smoother shapes (see Figures 9.7a, 9.7e, 9.7i and 9.7m). However, one should not
set the radius to a value larger than the reach of the shape, as the curvature estima-
tion becomes compromised Figures 9.7b and 9.7f. We observe, once again, that a
dynamic setting of the radius of the estimation disk is a more appropriate strategy.

The GF model repeats the bad results of the last experiment, and even create
disconnected components Figures 9.7k and 9.7o.

9.3 Image segmentation

The FlipFlow,BalanceFlow and GraphFlow can be extended to do image segmenta-
tion. In this section we show the results of several experiments that illustrates the
influence of each of the weight parameters (length,curvature,data) and the radius of
the estimation disk in the produced segmentation. In the last section we compare
our results with the linear programming model for squared curvature regularization
SLCR [SKC09].

All three models (FF,BF,GF) need an initial segmentation as input. This seg-
mentation is given by the graph cut algorithm [BJ01]. Table 9.6 lists the parameters
configuration for each experiment and Table 9.8 summarizes their running times.

The experiments are divided in two sections. In the first, we study the influence
of each parameter in the produced segmentation and in the second we compare our
results with those produced by SLCR. For the same reason described in the previous
section, the grid step in all experiments is set to h = 1.0.
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LocalSearch GraphFlow
α = 0.002 α = 0.0002 α = 0.002 α = 0.0002

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 9.6: Results of Exp-α for the constrained elastica. Initial contour is
colored in red and final contour is colored in blue. The green pixels indicates pixels
forced to persist in the final contour, or a forced orientation. Curves are drawn
every 10 iterations.
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LocalSearch GraphFlow
r = 15 r = 50 r = 15 r = 50

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 9.7: Results of Exp-Radius for the constrained elastica. Initial con-
tour is colored in red and final contour is colored in blue. The green pixels indicates
pixels forced to persist in the final contour, or a forced orientation. Curves are
drawn every 10 iterations.
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Pixels (initial shape) LocalSearch GraphFlow
Curve-1 12306 4.7s/it 1s/it
Curve-2 11527 6.2s/it 1s/it
Flower-1 7481 4.5s/it 0.3s/it
Flower-2 7481 2.5s/it 0.21s/it

Table 9.5: Running time and input size of the Exp-α experiment for the
constrained elastica. The pixels columns is with respect the number of pixels in
the shape. In the case of the curves, it is with respect to the underlying shapes
of Figure 9.5

FF,BF GF
Experiment maxIt vRadius bRadius h α β γ d a n γr γb

Exp-α 200 7 7 1.0
0

0 1 0 2 2 1 00.5
3.0

Exp-β 200 7 7 1.0 0
0.1

1 0 2 2 1 11
2

Exp-γ 200 7 7 1.0 0 1
1

0 2 2
1 1

2 2 2
5 5 5

Exp-rbRadius 200
3 3

1.0 0 3 1 0 2 2 1 17 7
12 12

Table 9.6: Parameter settings for the image segmentation experiments.
The headers FF,BF,GF identifies parameters that are exclusive of FlipFlow, Bal-
anceFlow and GraphFlow models, respectively.

Exp-Comparison
Model maxIt vRadius bRadius h α β(λ) γ d a ob γr γb
FF,BF 200 7 7 1.0 0.5 1.0 1.0 0 - - - -

GF 200 7 7 1.0 0.0002 1.0 - - 2 2 3 3

SCLR - - - - - 2.0 1.0 - - - - -

Table 9.7: Parameter settings for the comparison experiments. The β
parameter in FF,BF,GF corresponds to the λ parameter in SCLR.
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Exp-Comparison Running time
Model Minimum Maximum Average

FlipFlow 60s 297s 156s
BalanceFlow 37s 184s 93.7s
GraphFlow 11s 150s 75s

SLCR 2.87min 52.24min 18.4min

Table 9.8: Running time and input size of Exp-bRadius for the image segmentation
problem and bRadius = 7.

9.3.1 Influence of parameters

The models offer parameters to control the relative weight of length (α), curvature
(β) and data (γ, γr, γb). We recall that FF and BF accept a single regional parameter
γ for data, while GF accepts γr to ponderate a regional term and γb to weight a
boundary term. The graph cut input and its result are shown in Figure 9.8. The
experiment results are displayed in Figures 9.9 to 9.12.

The FlipFlow and BalanceFlow present similar results for all experiments, as
expected. The Exp-α experiment regularizes only length, and we can observe that
the segmentations produced by all three models tend to be staircased. We remark
that in the GF model, length penalization is not present in the cost function of
the candidate graph, but only in the validation function. In particular, we need a
a-probe set with a > 0 so that length penalization has an influence in the produced
segmentation.

In experiment Exp-β, we vary the squared curvature weight coefficient. We
observe in Figure 9.10 that the produced segmentation smooths out for increasing
values of β. We recall that the shrink/growing behavior in the GF is controlled by
the value of α. The FF and BF grow in concavities, but unless a local optimum is
found, they tend to shrink.

The models’ response for the variation of data term is shown in Figure 9.11. A
higher value of γ tends to produce results similar to the initial segmentation given
by graph cut, i.e., with almost no length or curvature regularization.

Finally, Exp-bRadius illustrates how the choice of the estimation disk radius
influences the segmentation. In Figure 9.12 we observe that a small radius results
in contours with sharp changes of angle (first row), a consequence of the limited
number of different estimations that can be given by a disk of small radius. As the
radius increase, a richer variation of estimations is possible, and we have smoother
contours (second-row). However, a big radius may omit important details of the
object, as the coala’s ears in the last row of Figure 9.12. That suggests that a
multiradius approach may deliver improved segmentations.
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Figure 9.8: Foreground (green) and background (blue) seeds are shown in the left
and the resulting graph cut segmentation in the right.

9.3.2 Comparison

In Figures 9.13 to 9.16, we show the segmentation results of several images for the
three models developed in this thesis, the SLCR and graph cut models. We opt to
set the same parameters in all instances, although a better segmentation could be
obtained by setting them separately.

The curvature regularization in the FF,BF models are well perceived in the air-
plane, camel and man-in-white pictures, but those models are not able to correctly
segment the brown-snake in Figure 9.16. They also have a hard time to segment
the birds in Figure 9.14 due to the object large curvature range. Nonetheless, they
correctly segmented the green-snake in Figure 9.15 while the graph cut return three
disconnected components.

For the chosen parameters, the GraphFlow did not evolve the initial graph cut
segmentation to much, except for the brown-snake in Figure 9.16, for which GF and
SLCR presented the best segmentation. However, the GF has the second lowest
running time among the five models.

The SLCR tends to oversegment, notably in the man-in-white and the camel
pictures. We observe that the contours present sharp turns due to the low precision
of the curvature estimator. The precision could be improved by increasing the pixels
connectivity (set to 8), but this is likely to follow an increase in running time, which
is already the highest between the models tested.



9.3. IMAGE SEGMENTATION 163

FlipFlow BalanceFlow GraphFlow

(a) α = 0.0

(b) α = 0.5

(c) α = 3.0

Figure 9.9: Results of Exp-α for segmentation.
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FlipFlow BalanceFlow GraphFlow

(a) β = 0.1

(b) β = 1.0

(c) β = 2.0

Figure 9.10: Results of Exp-β for segmentation.
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FlipFlow BalanceFlow GraphFlow

(a) γ = 1.0

(b) γ = 2.0

(c) γ = 5.0

Figure 9.11: Results of Exp-γ for segmentation.
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FlipFlow BalanceFlow GraphFlow

(a) r = 3

(b) r = 7

(c) r = 12

Figure 9.12: Results of Exp-Radius for segmentation.
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Figure 9.13: Segmentation results comparison set 1
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Figure 9.14: Segmentation results comparison set 2.
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Figure 9.15: Segmentation results comparison set 3.



Graph cut SLCR FlipFlow BalanceFlow GraphFlow

Figure 9.16: Segmentation results comparison set 4
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9.4 Conclusion
All the four models described in this thesis can be used to produce shapes of lower
digital elastica. Moreover, the FlipFlow,BalanceFlow and GraphFlow can be ex-
tended to do image segmentation with curvature regularization. In particular, the
GraphFlow is a straightforward extension of the standard graph cut model, which
originally did not implement geometric regularization, and presents lower running
times than FF and BF. Additionally, we observe that the GraphFlow can recover
the completion property associated to the squared curvature regularization in some
occasions. Finally, our models are competitive with the SLCR segmentation algo-
rithm that employs curvature regularization.
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Chapter 10

Conclusion and perspectives

The goal of this thesis was to study and propose models for image processing prob-
lems using multigrid convergent estimators of geometric properties, in particular
the curvature and the minimization of the elastica energy. We argued that clas-
sical discretization schemes are based on the assumption that an exact sampling
is available, which is not the case for digital images. The idea that convergence
to the estimated value is achieved as the number of considered points increases is
no longer valid in the digital world. A trivial extension of the linear discretization
of Section 3.4 to the digital space would consider all the digital pixels, but in this
case, only angle variations of 90 degrees would be measured.

Our choice for the minimization of elastica was motivated by the completion
property and its applications to both inpainting and segmentation. It is a challeng-
ing problem and the current models are limited to the completion of small regions
and/or have strong metrication errors. One reason for that is that the completion
property is quite difficult to be recovered by local approaches. Nonetheless, we
have insisted on those since our attempts of global optimization happened to be
impractical.

Another difficulty is to inject the multigrid convergent estimators in an opti-
mization framework. Estimators such as MDCA and MDSS are based on the com-
putation of digital geometry primitives whose expression as an optimizable energy
is not straightforward. The most suitable to this task is indeed the II estimator, for
which we tested global optimization models, a constrained and an unconstrained
one, but without success.

The first model we studied, the LocalSearch model, had the goal to validate
the use of multigrid convergent estimators in an optimization framework. For this
purpose, we were successful. In the LS model, there is no restriction with respect
to the estimators used. We achieved the global optimum in several occasions for
the free elastica problem, and in the constrained elastica, the final curves resembled
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those minimizing the elastica. This model finds fewer applications due its high
running time, but it was used as a reference for the others that followed.

The BalanceFlow was developed for the II estimator and it is based on the
concept of balance coefficient. It builds up on the FlipFlow model and it can be
considered as an improvement of the latter, though the models are not exactly the
same. The running times are much faster and we have proposed an application
to image segmentation. However, the BalanceFlow algorithm presents a shrinking
bias that makes it resemble more to the curve-shortening flow than the elastica flow.
Consequently, the elastica is decreased until a certain inflection point.

Finally, the GraphFlow model exploits strategies present in all the previous
models to produce our fastest algorithm. The balance coefficient is used to ponder
the edges of the candidate graphs which are derived from a neighborhood of shapes:
the a-probe set. The flows produced in the free elastica problem behaves as expected
and, like the LocalSearch model, it achieves the global optimum in several occasions.
We demonstrated its use in image segmentation and we were able to recover the
completion property in many instances.

Perspectives

GraphFlow and perimeter. In the candidate selection step, the candidate
graphs are pondered with their balance coefficients and data term(s) from
image input in the case of segmentation, but we have not tested the addition
of a perimeter cost, for example, the costs proposed in [BK03].

GraphFlow and random neighborhood of shapes. The a-probe set is a
very simple neighborhood and may not be appropriate to some scenarios, as
demonstrated in the contrained elastica problem. We could take advantage of
the fact that the candidate graphs are relatively small and that the candidate
selection step could be implemented in parallel to devise a stronger algorithm
without significantly increase in running time.

Dynamic radius. We have seen that the radius of the estimation disk should
not be set to a value higher than the reach of the shape, but we also observe
that a too small radius is not sensitive enough to subtle variations in a region
of low curvature. A dynamic approach could be implemented with the help
of the MDCA estimator, for example, which is a parameter-free estimator.

Multiresolution. We can improve the running time of segmentation in large
images by employing a multiresolution approach. Moreover, the multigrid
convergence property give us more guarantees of estimation quality in different
resolutions and it could be very useful in strategies of this type.
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Global optimization and multigrid convergent estimators. A global
approach is crucial to recover the completion property in its totality, and a
discrete global model using multigrid convergent estimator of curvature is still
unknown.
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Appendix A

Curvature and distant disks

In Chapter 6 we present the FlipFlow algorithm and we remarked that the choice
of the ring number is of fundamental importance in order to derive a smooth flow.
This observation lead us to ask if there is any relation between curvature and outer
rings. In this appendix we give a positive answer for this question.

Let C an oriented curve in the plane. We center disks Bi and Bo of radius R+ ε
such that their centers are aligned with the normal direction of the curve at some
point p ∈ C. Moreover, the distance from disks center to p equals to R.

Let Θo(Θi) to denote the intersection of Bo(Bi) with the inner(outer) region of
the curve. We define the function gR : R× C → R as

gR(p) =
(

Θi(p)−Θo(p)
)2

.

Proposition 1(R-separated disks curvature): Let C ∈ R2 be a curve such that
for a point p ∈ C its curvature equals to κ. For ε = R/2 and for sufficiently small
values of R and κ, we can approximate gR by

gR(p) ≈125

144
R6k2 +O(R8κ4)

Proof: For every point p in C, consider its Frenet frame formed by the tangent
vector at p, T (p) and the normal vector at p, N(p). We assume the origin of the
frame is at point p. Let x be a variable in the axis defined by T (p). Expanding
C(x) around the origin we obtain

C(x) = C(0) +
dC

dx
x+

1

2

d2C

dx2
x2 +O(x3)

=
κ

2
x2 +O(x3).
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Figure A.1: disks of radius R+ε distant R units from p ∈ C in the normal direction.

In other words, the second order approximation for the curve C in the Frenet frame
is the parabola f(x) = κ/2x2 passing at the origin. We are going to use this parabola
to estimate Θo and Θi.

We proceed by computing the intersection area Θo.

h(x) = R + ε−
√

(R + ε)2 − x2

Θo = 2

∫ xo

0

f(x) + ε− h(x)

To compute the intersection point xo of the parabola with the disk, we use again
Pythagoras’ theorem.

(R + ε)2 = (R− κ

2
x2
o)

2 + x2
o

0 =
κ2

4
x4
o + (1−Rκ)x2

o +R2 − (R + ε)2

By setting zo = x2
o

∆o = (1−Rκ)2 + κ2(2Rε+ ε2)

zo =
2

κ2
(Rκ− 1 +

√
∆o)

xo =

√
2

κ

√
Rκ− 1 +

√
∆o



181

We proceed similarly for the inner disk.

Θi = 2

∫ xi

0

ε− f(x)− h(x)

The intersection point xi between the parabola and the inner disk is given by

(R + ε)2 = (R +
κ

2
x2
o)

2 + x2
i

0 =
κ2

4
x4
i + (1 +Rκ)x2

i +R2 − (R + ε)2

∆i = (1 +Rκ)2 + κ2(2Rε+ ε2)

xi =

√
2

κ

√
−Rκ− 1 +

√
∆i.

The claimed approximation is obtained by expanding gR with its 6th order Taylor
series around κ = 0, R = 0. �

Therefore, the squared curvature at point p can be estimated as

κ̂2
R−sep =

144

125R6
gR(p).
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(a)

(b)

Figure A.2: The yellow area equals Θo/2, the same value of the area under the
parabola from x = 0 until x = xo minus the orange area h(x).
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(a)

(b)

Figure A.3: The yellow area corresponds to Θi and it equals the area between the
parabola and the disk from x = 0 until x = xi.
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Appendix B

Pixel incidence matrix

In this chapter we present the pixel incidence matrix defined in the theory of discrete
calculus and we propose a curvature-based model using this concept.

We restrict our analysis to the integer plan because it’s where theory and ap-
plication is developped in this thesis, but it can be extended to higher dimensions.
In the plan Z2, we identify faces (pixels), edges (linels) and vertices (pointels). An
arbitrary (however coherent) orientation is set for faces and edges. For example, we
set faces counter-clockwise, vertical edges to point up and horizontal edges to point
right (see figure).

Definition 1(Pixel incidence matrix): Let Ω ∈ Z2 be a connected portion of
the integer plan with m faces and n edges. The pixel incidence matrix P ∈ Zn×m is
a matrix in which each column Pj represents the incidence relations between face
j and the edges of the domain.

A face is incident to an edge if the edge itself is part of the face’s boundary and
not incident otherwise. We say it is positive incident to an edge if besides incident,
the face orientation agrees with the orientation the edge, and negative incident in
the case it doesn’t agree.

Pi,j =


1, face j is positive incident to edge i
−1, face j is negative incident to edge i
0, otherwise
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Figure B.1: Figures (a) and (b) illustrates indices assignments and orientation;
figure (d) shows the result of applying the pixel incidence matrix for the active
pixels in figure (c).

Example 1: Consider a portion Ω of Z2 with 9 faces ,24 edges and orientation as
depicted in figures B.1a and B.1b. The pixel incidence matrix applied for vector
x ∈ Z9, representing the active pixels depicted in figure B.1c, results in vector y ∈
Z24 representing the active boundary depicted in figure B.1d. The linel incidence
matrix is simply defined as the transpose of the pixel incidence matrix. Applying
the former to a vector of active linels returns its set of incident pixels. For example,
PTP applied to vector x above results in [0,−1,−1,−1, 2, 3,−1, 3,−2]T . Positive
coefficients represents inner incident pixels, and negative coefficients outer incident
pixels. Moreover, the absolute value of each coefficient represents the number of
linels incident to the corresponding pixel. For example, pixel 6 is incident to three
linels, namely the linels 10, 14, 17.
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P =



−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 1 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 −1 0 0
0 0 0 0 1 0 0 −1 0
0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



, P



0
0
0
0
1
1
0
1
0


=



0
0
0
0
0
0
0
0
−1
−1
0
−1
0
1
0
0
1
0
−1
1
0
0
1
0
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