Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète

Jacques-Olivier Lachaud¹

¹LaBRI - Université Bordeaux 1

soutenance d'HdR - 6 décembre 2006

HdR

1 / 56

Domaine de recherche

Contexte et motivations : modèles déformables

2 Modèle déformable en géométrie riemannienne

Modèle déformable en géométrie discrète

Surfaces discrètes : représentation, géométrie, topologie

(日) (同) (日) (日)

1 Contexte et motivations : modèles déformables

- 2 Modèle déformable en géométrie riemannienne
- 3 Modèle déformable en géométrie discrète
- ④ Surfaces discrètes : représentation, géométrie, topologie
- 5 Géométrie discrète asymptotique

Segmentation d'image par modèles déformables

- recherche d'une composante significative dans une image I
- approche basée contours, sans a priori sur la forme finale
- \Rightarrow problème assez difficile

Segmentation d'image par modèles déformables

Segmentation d'image par modèles déformables

Modèle déformable

Approche variationnelle = Famille de formes + critère(forme,*I*) + optimisation

Critère

balance adéquation avec l'image et régularité de la forme critère(forme, *I*) = adéquation(forme,*I*) + régularité(forme)

Applications en vision, imagerie médicale, vidéo, synthèse d'image, ...

(日) (同) (三) (三)

[Kass et. al. 87, Terzopoulos et. al. 88, Cohen 91,...]

<ロト < 部 > < 注 > < 注 > 二 注

catégorie	Implicite (level-sets)		
	courbe/surface implicite échantillonnée		
Formes (2D)	$\Phi : \mathbb{R}^2 \to \mathbb{R}, S = \{\Phi = 0\}$		
Exemple	$\phi < 0$ $\phi < 0$ $\phi < 0$ $\phi < 0$		
Critère	(contour actif géodésique) $\underbrace{\int_{S} \underbrace{g(I,S)}_{régularisation} ds}_{régularisation}$		
Optimisation	$\Phi_t = g(I, \cdot)(c_0 + \kappa) \nabla \Phi + \nabla g \cdot \nabla \Phi$		
	régularisation		

Image I, de taille N^d. Forme C d'aire |C|. Pas h. $P = \frac{|C|}{h^{d-1}}$.

catégorie	explicite (snakes, etc.)	implicite (level-sets)
nb de variables	$P pprox \Theta(N^{d-1})$	N ^d
déplacement	Р	N^d [Osher Sethian88]
		K_1P [Adalsteinson95]
		$K_2P\log P$ [Strain99]
changement de topologie	N ^d (T-snake, [McIT95,97])	naturel
	P (2D, maille simplexe [DM99])	
	$P \log P$ (2-3D δ -snake [LM99])	
	$P \log P$ (2-4D simpliciale [BLS03])	
En résumé	au mieux $\Theta(N^{d-1})$	au mieux $\Theta(N^{d-1})$

イロト イ団ト イヨト イヨト 二連

- complexité / itération : fct nb de variables
- × nb d'itérations : fct init., vitesse déplacement
- = complexité segmentation

Comment rendre cette complexité plus indépendante de celle de l'image?

- meilleure initialisation (spécifique à l'application)
- approche multirésolution [Elomary 94, Ronfard 94,...]
- adaptabilité locale [Delingette 94,Bredno et. al. 03,...]
- augmentation pas d'intégration [Weickert et. al. 03,...]
- amélioration des forces [Xu Prince 98,...]

Conclusion : nb de variables \propto résolution de *I*, déplacement max $< \frac{h}{2}$ \Rightarrow complexité très dépendante de la résolution de *I*

Deuxième problématique : minimum local \neq optimum

Comment espérer trouver l'optimum dans l'espace des formes ?

- initialisation (spécifique à l'application)
- « convexification » fonctionnelle [Zhu Yuille 96, Jehan-Besson et. al. 03,...]
- optimum dans des cas particuliers [Cohen Kimmel 97, Deschamps Cohen 01, Ardon Cohen 05]
- discrétisation partielle + programmation dynamique [Amini et. al. 90, Tagare 97, Gunn 97,...]
- méthodes combinatoires de segmentation : qqs résultats d'optimalité Conclusion : version combinatoire des modèles déformables ?

イロト 不得下 イヨト イヨト

Démarche : changement de la géométrie

Indépendance complexité résolution ?

> Géométrie riemannienne

Géométrie euclidienne Analogue combinatoire des modèles déformables ?

> Géométrie discrète

J.-O. Lachaud (LaBRI)

HdR 10 / 56

Démarche : changement de la géométrie

Géométrie riemannienne

Déformer l'espace pour densité adaptée à l'information image.

Démarche : changement de la géométrie

Géométrie discrète

Estimateurs géométriques discrets pour approcher formulation variationnelle.

1 Contexte et motivations : modèles déformables

2 Modèle déformable en géométrie riemannienne

3) Modèle déformable en géométrie discrète

4 Surfaces discrètes : représentation, géométrie, topologie

5 Géométrie discrète asymptotique

(日) (同) (三) (

Modèle déformable riemannien : principe

Problématique

Réduire le nombre de variables, diminuer le nombre d'itérations.

Idée directrice

- concentrer l'effort de calcul au voisinage des zones d'intérêt
- adapter la densité des variables selon la position dans l'image
- utiliser la géométrie riemannienne, qui peut déformer l'espace

< □ > < 同

HdR

12 / 56

densité de variables uniforme dans l'espace euclidien

Problématique

Réduire le nombre de variables, diminuer le nombre d'itérations.

Idée directrice

- concentrer l'effort de calcul au voisinage des zones d'intérêt
- adapter la densité des variables selon la position dans l'image
- utiliser la géométrie riemannienne, qui peut déformer l'espace

Géométrie riemannienne : déformer l'espace

où la matrice G, symétrique, définie positive, dépend de l'origine x du déplacement, de valeurs/vecteurs propres (μ_i, \mathbf{v}_i) .

- application $\mathbf{x} \mapsto G(\mathbf{x})$ appelée métrique
- longueur chemin γ : $L_R(\gamma) = \int_{t_0}^{t_1} \sqrt{\tau \gamma'(t) \times G(\gamma(t)) \times \gamma'(t)} dt$
- distance de u à v $d_R(u, v)$: plus court chemin riemannien

Géométrie riemannienne : déformer l'espace

MD sensible à une métrique

• Modèle déformable initial [Lachaud Montanvert 99]

 Adaptation de topologie basée distance euclidienne d_E sommets contrainte si non-satisfaite

(u, v) voisins $\delta \leq d_E(u, v) \leq \zeta \delta$

(u, v) non-voisins $\lambda \zeta \delta \leq d_E(u, v)$

Substitution de d_E par une mesure riemannienne d_R

- sur-estimer distances autour des zones d'intérêt \Rightarrow densité plus grande
- sous-estimer distances partout ailleurs ⇒ densité plus faible

- Construction automatique de la métrique
- Approche contour : structures pertinentes autour contours forts

 $\forall x$, calculer gradient sn et courbures $\kappa_1 t_1$ et $\kappa_2 t_2$ de l'isophote passant par x sur l'image *I*.

- classiquement filtres dérivatifs [Monga et. al. 95, Rieger et. al. 02]
- diagonalisation tenseur de structure [Kass Witkin 87] $Q_{\rho,\sigma} : \mathbf{v} \longmapsto g_{\rho} * (\mathbf{v} \cdot \nabla(g_{\sigma} * I))^2$ vecteurs / valeurs propres $Q_{\rho,\sigma} : \mathbf{v} \longmapsto {}^{T}\mathbf{v} \times J_{\rho,\sigma} \times \mathbf{v}$ $(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)/(\xi_1, \xi_2, \xi_3)$

Theorem (Courbures par diagonalisation)

contour idéal de tenseur $J_{\rho,\sigma}$ alors

• directions principales $(n, t_1, t_2) = vecteurs propres$

 $\begin{array}{l} \bullet \quad \text{intensité } s, \text{ courbures principales } \kappa_1 \text{ et } \kappa_2 \\ \xi_1 = s^2 \qquad \xi_2 = \rho^2 s^2 \kappa_1^2 \qquad \xi_3 = \rho^2 s^2 \kappa_2^2 \end{array}$

Expérimentations

Réduction du nombre de sommets et du nombre d'itérations

Influence de la résolution

• Même image, échantillonnée à des fréquences croissantes.

Comparaison avec l'approche multi-résolution

 approche classique (densité uniforme, résolution fine) : 10,14s, 458 sommets

- approche multi-résolution (densité uniforme, résolution progressive) : 9,23s, 392 sommets
- approche riemannienne (densité adaptative) : 1,73s, 150 sommets

Image: A matrix

Comparaison avec l'approche multi-résolution

- approche classique (densité uniforme, résolution fine) : 10,14s, 458 sommets
- approche multi-résolution (densité uniforme, résolution progressive) : 9,23s, 392 sommets

• approche riemannienne (densité adaptative) : 1,73s, 150 sommets

(日) (同) (三) (

Comparaison avec l'approche multi-résolution

- approche classique (densité uniforme, résolution fine) : 10,14s, 458 sommets
- approche multi-résolution (densité uniforme, résolution progressive) : 9,23s, 392 sommets
- approche riemannienne (densité adaptative) : 1,73s, 150 sommets

Evaluation sur scanner

Uniforme fin

Adaptatif

(日) (四) (三) (三) (三)

Evaluation sur scanner

Vue latérale de l'oreille

Vue inférieure de la mâchoire

	Uniforme	Adaptatif
Sommets	142.340	15.936
ltérations	900	500
Temps de calcul	3h22min	22min (+3min 49s)

(日) (同) (三) (三)

Discussion

- modèle hautement déformable à densité adaptative : $\approx 10 \times$ moins de sommets, $\approx 5 \times$ moins d'itérations, entre 3 à 10 fois + rapide
- complexité dépendante de la géométrie de l'image
- nouvel estimateur de courbure(s) image : robuste, précis, comparativement rapide

Thèse de Benjamin Taton [2004] [Computer Vision Image Understanding 2005] [ECCV02,3DIM03,ICPR04]

イロト 不得下 イヨト イヨト

Contexte et motivations : modèles déformables

2 Modèle déformable en géométrie riemannienne

Modèle déformable en géométrie discrète

④ Surfaces discrètes : représentation, géométrie, topologie

5 Géométrie discrète asymptotique

(日) (同) (三) (

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- segmentation = étiquetage f en N classes
- partitions f (nb fini) + critère(partition,l)
 + optimisation

- discrétisation d'approx. par morceaux [Mumford Shah 89] optimum sur pyramide causale [Guigues et. al. 03]
- division-fusion, pyramides adaptatives, ligne de partage des eaux, variantes discrètes des modèles déformables,

(日) (同) (三) (

Approches combinatoires / variationnelles : optimalité

Plusieurs algorithmes intéressants vis-à-vis optimalité

Processus de discrétisation Dig

Peut-on garantir que l'énergie discrète tende vers l'énergie continue lorsque le pas de grille h tend vers 0?

Modèle déformable discret

• Energie d'un modèle déformable type snake courbe param. C $E(C) = \int_C \alpha |C'(u)|^2 + \beta |C''(u)|^2 + P(I, C(u)) du$ sous-ensemble $X \subset \mathbb{R}^2$ $E(X) = \int_{bd, X} \alpha + \beta \kappa^2(s) + P(I, s) ds$

Modèle déformable discret 2D

Famille de formes $\mathcal{O} = \mathcal{P}(\mathbb{Z}^2)$ Forme discrète $\mathcal{O} \in \mathcal{O} : E(\mathcal{O}) = \sum_{\sigma \in \partial \mathcal{O}} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma))\hat{l}(\sigma)$

- $\hat{l}(\sigma)$: longueur élémentaire estimée
- $\hat{\kappa}(\sigma)$: courbure estimée

Projection et rétro-projection

• Application continue entre $\operatorname{bd} X$ et $\operatorname{bd} \operatorname{Dig}_{\mathrm{G}}(X,h)$?

Lemma (extension à Dig_{G} de [Latecki et. al. 98]) Si X est par(r)-régulier, \exists homéomorphisme pour $h < \frac{\sqrt{10}}{5}r$

• projection de bd X sur bd $\operatorname{Dig}_{\mathrm{G}}(X,h)$?

non

• rétro-projection π de $\operatorname{bd}\,\operatorname{Dig_G}(X,h)$ sur $\operatorname{bd}\,X$: continue, surjective

Projection et rétro-projection

• Application continue entre $\operatorname{bd} X$ et $\operatorname{bd} \operatorname{Dig}_{G}(X, h)$?

• rétro-projection π de bd $\operatorname{Dig}_{\mathrm{G}}(X,h)$ sur bd X : continue, surjective

Projection et rétro-projection

• Application continue entre $\operatorname{bd} X$ et $\operatorname{bd} \operatorname{Dig}_{\mathrm{G}}(X, h)$?

• projection de bd X sur bd $\text{Dig}_{G}(X,h)$?

• rétro-projection π de $\operatorname{bd}\,\operatorname{Dig_G}(X,h)$ sur $\operatorname{bd}\,X$: continue, surjective

Modèle déformable discret asymptotiquement euclidien

Theorem

Le MD d'énergie $E(O) = \sum_{\sigma \in \partial O} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma))\hat{I}(\sigma)$ est asymptotiquement euclidien ssi

• longueur élémentaire $\hat{l}(\sigma)/h$ tend vers $|\cos(\theta(\sigma))|$

2) courbure
$$\hat{\kappa}(\sigma)$$
 tend vers $\kappa(\pi(\sigma))$

Peut-on construire un modèle déformable asymptotiquement euclidien ?

- onvergence longueur élémentaire ⇔ convergence estimateur de tangente
- \hat{l} :tangente symétrique $\hat{\theta}^{ST}$
- $\hat{\kappa}$: courbure par cercle circonscrit aux demi-tangentes $\hat{\kappa}^{CC}$
- estimateurs admis convergents dans un premier temps [Coeurjolly02]
- validation expérimentale

Validation expérimentale l Test du MD discret à échelle fixée

• Algorithme de minimisation *a posteriori* (bulle déformable [Elomary Chassery 94])

expansion progressive dans la direction d'énergie minimale

2 à la fin, extraction de la position intermédiaire optimale.

Validation expérimentale II Test du MD discret à échelle fixée

1. Segmentation de composantes inhomogènes : $\alpha = 0.5$

2. Robustesse au bruit Gaussien : $\alpha = 0.5$, bruit Gaussien d'écart-type 12.8

< < >>

Validation expérimentale III Test du MD discret à échelle fixée

3. Robustesse à l'initialisation (IRM cœur diastole)

Image: A matrix

→ Ξ →

Synthèse et problématiques induites

- discrétisation valide d'un modèle déformable géométrique
- extension *n*D naturelle
- approximation d'intégrales curvilignes sur des contours discrets

Représentation efficace des surfaces discrètes de \mathbb{Z}^n et calcul rapide d'estimations géométriques ?

Convergence d'estimateurs géométriques discrets de quantités géométriques locales ? Vitesse de convergence ?

・ロト ・四ト ・ヨト

HdR

33 / 56

collaboration avec Anne Vialard projet Jeunes chercheurs GdR-ISIS avec David Cœurjolly et Laure Tougne (LIRIS) [IWVF01],[HdR06]

J.-O. Lachaud (LaBRI)

Contexte et motivations : modèles déformables

2 Modèle déformable en géométrie riemannienne

3) Modèle déformable en géométrie discrète

Surfaces discrètes : représentation, géométrie, topologie

5) Géométrie discrète asymptotique

(日) (同) (三) (

Surface discrètes *n*D : représentation, suivi, codage

• grille cellulaire \mathbb{C}^n : identification avec Khalimsky + topologie algébrique

cellule = n coord. entières

• voisinage, suivi de surface *n*D

[IWCIA03], Cours EJC Algo. Calc. Formel 2005

J.-O. Lachaud (LaBRI)

Géométrie des courbes 2D et surfaces discrètes nD

• estimateurs géométriques discrets basés segments de droites discrètes

forme de \mathbb{R}^2 segments maximaux tangente $\hat{\theta} = \text{comb. convexe directions}$ Propriétés : précis, convexité respectée, isotrope, convergent, calcul en temps optimal

• estimateurs nD par croisement de géométries 2D

n-1 chemins par surfel

normale $\hat{\mathbf{n}}$ orth. aux $(\hat{\theta}_i)$

Aire = $\sum_{\sigma} |\hat{\mathbf{n}} \cdot \mathbf{e}_{\perp \sigma}|$

Collaboration avec Anne Vialard, thèse de François de Vieilleville [DGCI03,DGCI05], [Image and Vision Computing 2006]

J.-O. Lachaud (LaBRI)

HdR 36 / 56

Topologie des surfaces combinatoires *n*D

- Surfaces nD? : modèles combinatoires de subdivision de variétés
- résultats d'équivalences de modèles topologiques

• calcul d'invariants topologiques sur les complexes cellulaires ($\Delta \Delta = 0$) groupes d'homologie par mise en forme de Smith/Agoston [Agoston76]

Bande de Möbius

Tore

Cube avec cavité

イロト イポト イヨト イヨト

thèse de Sylvie Alyrangues [2005] Collaboration avec Pascal Lienhardt (SIC), Xavier Daragon (ESIEE), Laurent Fuchs (SIC) et Samuel Peltier (SIC/PRIP) [CVWW02,IWCIA04,DGCI05], [Computers & Graphics 2006] D Contexte et motivations : modèles déformables

2 Modèle déformable en géométrie riemannienne

3) Modèle déformable en géométrie discrète

④ Surfaces discrètes : représentation, géométrie, topologie

5 Géométrie discrète asymptotique

(日) (同) (三) (

Definition (Estimateur géométrique discret)

Cherche à estimer une quantité géométrique de X à partir de sa seule discrétisation.

tangente symétrique (ST) direction du plus long segment de droite discrète symétrique autour du point •

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Convergence estimateur géométrique [Serra 82]

Soit une famille de formes F. L'estimateur géométrique $\hat{\epsilon}$ est multigrille-convergent pour F vers la mesure géométrique ϵ ssi

$$\forall X \in F, \lim_{h \to 0} |\hat{\epsilon}(\mathrm{Dig}_{\mathrm{G}}(X, h)) - \epsilon(X)| = 0$$

Résultats connus de convergence multigrille

Quantité	Forme de \mathbb{R}^2	technique	B. sup erreur	Ref
aire	C3-convexes	comptage	$O(h^{\frac{15}{11}+\epsilon})$	[Huxley90]
moments	C3-convexes	comptage	$O(h^{rac{15}{11}+\epsilon})$	[Klette,Žunić00]
longueur	poly. conv.	polygonalisation	pprox 4.5 h	[Kovalevsky, Fuchs92]
longueur	poly. conv.	"saucissonnage"	pprox 5.844 h	<i>[Klette</i> et. al. <i>98]</i>
longueur	C3-convexes	"Grid continuum"	pprox 8 h	[Sloboda,Zatko96]
longueur	convexe	\int normales	(non connu)	[Coeurjolly02]

Quantités géométriques locales? (tangentes θ , courbures κ)

- lien avec *croissance* segments discrets avec $h \rightarrow 0$ [Coeurjolly02]
- tangente symétrique $\hat{\theta}^{\bar{S}T}$ convergente vers tangente heta
 - ... si segments discrets grandissent partout
- \bullet courbure par cercle circonscrit $\hat{\kappa}^{CC}$ convergente vers courbure κ
 - ... si segments discrets grandissent en $O(\frac{1}{\sqrt{h}})$

Résultats connus de convergence multigrille

Quantité	Forme de \mathbb{R}^2	technique	B. sup erreur	Ref
aire	C3-convexes	comptage	$O(h^{\frac{15}{11}+\epsilon})$	[Huxley90]
moments	C3-convexes	comptage	$O(h^{\frac{15}{11}+\epsilon})$	[Klette,Žunić00]
longueur	poly. conv.	polygonalisation	pprox 4.5 h	[Kovalevsky, Fuchs92]
longueur	poly. conv.	"saucissonnage"	pprox 5.844 h	<i>[Klette</i> et. al. <i>98]</i>
longueur	C3-convexes	"Grid continuum"	pprox 8 h	[Sloboda,Zatko96]
longueur	convexe	\int normales	(non connu)	[Coeurjolly02]

Quantités géométriques locales? (tangentes θ , courbures κ)

• lien avec <i>croissance</i> segments discrets avec $h \rightarrow 0$ [Coeurjolly02]	
$ullet$ tangente symétrique $\hat{ heta}^{ extsf{ST}}$ convergente vers tangente $ heta$	
si segments discrets grandissent partout	faux
$ullet$ courbure par cercle circonscrit $\hat{\kappa}^{CC}$ convergente vers courbure κ	
\ldots si segments discrets grandissent en $O(rac{1}{\sqrt{h}})$	faux

(日) (四) (三) (三) (三)

Croissance asymptotique des segments discrets Méthodologie de preuve

Théorèmes de convergence d'estimateurs discrets

Preuves basées sur croissance asymptotique des segments de droites discrètes sur bord des discrétisés : segments maximaux

Croissance asymptotique des segments discrets Méthodologie de preuve

Théorèmes de convergence d'estimateurs discrets

Preuves basées sur croissance asymptotique des segments de droites discrètes sur bord des discrétisés : segments maximaux

Bornes asymptotiques en nombre et longueur des segments maximaux

- outils
 - (DSS) segments de droites discrètes approches arithmétique et combinatoire
 (MS) segments maximaux sur un contour discret
 (CDP) polygones convexes discrets
- propriétés des MS sur CDP
- propriétés asymptotiques $\mathsf{CDP} \Rightarrow \mathsf{propriétés}$ asymptotiques MS

イロト 不得下 イヨト イヨト

Segments de droites discrètes (DSS) Approche arithmétique [Reveillès 91]

Definition

Un ensemble fini C de points 4-connexes sur la grille discrète \mathbb{Z}^2 est un segment de droite discrète (DSS) ssi $\exists (a, b, \mu)$ tels que

$$\forall P \in C \quad \mu \leq aP_x - bP_y < \mu + |a| + |b|$$

• extraction DSS avec algorithmes optimaux (e.g. [Debled Reveillès 95])

Image: A matrix

tangentes discrètes sont des DSS particuliers

Segments de droites discrètes (DSS)

Approche combinatoire [Berstel 97]

segment maximal sur courbe discrète = DSS qui ne peut pas être étendu à gauche ou à droite et rester encore un DSS.

< ロト < 同ト < ヨト < ヨ

segment maximal sur courbe discrète = DSS qui ne peut pas être étendu à gauche ou à droite et rester encore un DSS.

イロト イポト イヨト イヨ

segment maximal sur courbe discrète = DSS qui ne peut pas être étendu à gauche ou à droite et rester encore un DSS.

イロト イポト イヨト イヨ

segment maximal sur courbe discrète = DSS qui ne peut pas être étendu à gauche ou à droite et rester encore un DSS.

(日) (同) (日) (日) (日)

Polygones convexes discrets (CDP)

Definition (*polygone convexe discret* (CDP) Γ)

sous-ensemble 4-connexe de \mathbb{Z}^2 égal à la discrétisation de son enveloppe convexe.

- $n_e(\Gamma) = nb$ de sommets de Γ
- $Per(\Gamma) = périmètre de \Gamma$

Segments maximaux sur bord d'un CDP

<ロト <部ト <きト <きト = 第

Segments maximaux sur bord d'un CDP

Un ensemble 4-connexe de \mathbb{Z}^2 est un CDP ssi les directions des segments maximaux successifs sont monotones.

J.-O. Lachaud (LaBRI)

Segments maximaux sur bord d'un CDP

sommets o, arêtes

segments maximaux

Theorem ([Feschet 05])

On peut construire des courbes discrètes où autant de segments maximaux que l'on souhaite traversent un même point.

J.-O. Lachaud (LaBRI)

Liens entre arêtes du CDP et segments maximaux

- convexité \Rightarrow 2 classes de MS
- Segments maximaux "arête"

イロト イポト イヨト イ

• Segments maximaux "sommet"

Liens entre arêtes du CDP et segments maximaux

- convexité \Rightarrow 2 classes de MS
- Segments maximaux "arête" pente z_n = pente arête 1 MS "arête" par arête

Lemma (basé motifs)

 $\textit{MS contient} \leq 2n+1$ arêtes

Ex : pente $z_n = \frac{1}{5} \Rightarrow 3$ arêtes

• Segments maximaux "sommet"

Liens entre arêtes du CDP et segments maximaux

- convexité \Rightarrow 2 classes de MS
- Segments maximaux "arête"
- Segments maximaux "sommet"

Lemma (basé motifs)

Max. 2 MS "sommet" par sommet 1 prof. pair + 1 prof. impair

gauche $\frac{7}{8} = [0; 1, 7]$, droite $\frac{3}{5} = [0; 1, 1, 2]$

Lemma (basé motifs)

MS contient $\leq 2n$ arêtes

Theorem (Nombre segments maximaux et nombre d'arêtes)

Si Γ CDP inclus dans grille $m \times m$ alors

$$\frac{n_e(\Gamma)}{\Theta(\log m)} \le n_{MS}(\partial \Gamma) \le 3n_e(\Gamma)$$

HdR

48 / 56

Démonstration.

- Lemmes précédents +
- plus court DSS de profondeur n : [0; 2, 2, ...]
- \Rightarrow profondeur max. d'un DSS dans $\subset m \times m$

Theorem (somme des longueurs des MS sur CDP) Sur le bord d'un CDP Γ de segments maximaux (MS_i);

$$\operatorname{Per}(\Gamma) \leq \sum_{i} L_D(MS_i) \leq 19 \operatorname{Per}(\Gamma)$$

Theorem (longueur moyenne des MS sur CDP)

Si Γ CDP inclus dans grille m imes m alors

 $\frac{1}{3}\frac{\operatorname{Per}(\Gamma)}{n_e(\Gamma)} \leq \frac{\sum_i L_D(MS_i)}{n_{MS}(\partial\Gamma)} \leq 19\frac{\operatorname{Per}(\Gamma)}{n_e(\Gamma)}\Theta(\log m)$

《曰》 《國》 《臣》 《臣》 三臣

HdR

49 / 56

J.-O. Lachaud (LaBRI)
Theorem (somme des longueurs des MS sur CDP)

Sur le bord d'un CDP Γ de segments maximaux $(MS_i)_i$

$$\operatorname{Per}(\Gamma) \leq \sum_{i} L_D(MS_i) \leq 19 \operatorname{Per}(\Gamma)$$

Theorem (longueur moyenne des MS sur CDP)

Si Γ CDP inclus dans grille $m \times m$ alors

$$\frac{1}{3}\frac{\operatorname{Per}(\Gamma)}{n_e(\Gamma)} \leq \frac{\sum_i L_D(MS_i)}{n_{MS}(\partial\Gamma)} \leq 19\frac{\operatorname{Per}(\Gamma)}{n_e(\Gamma)}\Theta(\log m)$$

Theorem (Balog Bárány 91)

Soit $S \in C^3$ – convexe. Le nombre d'arêtes de sa discrétisation suit

$$c_1(S)\frac{1}{h^{\frac{2}{3}}} \leq n_e(\mathrm{Dig}_{\mathrm{G}}(S,h)) \leq c_2(S)\frac{1}{h^{\frac{2}{3}}}$$

Theorem (Asymptotique nombre et long. des segments maximaux) Soit $S \in C^3$ - convexe. Si S_h est le CDP $Dig_G(S, h)$.

$$\begin{array}{ll} (nombre) & \Theta(\frac{1}{h^{\frac{2}{3}}\log\frac{1}{h}}) & \leq n_{MS}(\partial S_h) \leq \Theta(\frac{1}{h^{\frac{2}{3}}}) \\ (long.dis.) & \Theta(\frac{1}{h^{\frac{1}{3}}}) & \leq L_D \ movenne \ MS \ sur \ \partial S_h \leq \Theta(\frac{1}{h^{\frac{1}{3}}}\log\frac{1}{h}) \end{array}$$

<ロト <回ト < 回ト < 回

Résumé asymptotique segments maximaux

 $\begin{array}{c|c} \text{Sur les discrétisées de formes } \mathcal{C}^3\text{-convexes }(\kappa>0).\\ \hline \\ \underline{plus \ court} & \underline{moyenne} & \underline{plus \ long}\\ \hline \mathcal{L}_D(MS) & \Omega(\frac{1}{h^{\frac{1}{3}}}) & \Theta(\frac{1}{h^{\frac{1}{3}}}) \leq \cdot \leq \Theta(\frac{1}{h^{\frac{1}{3}}} \log \frac{1}{h}) & \mathcal{O}(\frac{1}{h^{\frac{1}{2}}})\\ \mathcal{L}(MS) & \Omega(h^{\frac{2}{3}}) & \Theta(h^{\frac{2}{3}}) \leq \cdot \leq \Theta(h^{\frac{2}{3}} \log \frac{1}{h}) & \mathcal{O}(h^{\frac{1}{2}}) \end{array}$

• plus long MS =
$$\mathcal{O}(\frac{1}{h^{\frac{1}{2}}})$$

• plus court MS =
$$\Omega(\frac{1}{h^{\frac{1}{3}}})$$

(géométrie) (cercles séparants)

Vérification expérimentale

J.-O. Lachaud (LaBRI)

HdR 52 / 56

Estimateurs géométriques

(tangente) estimateurs basés MS sont multigrille convergents

- long. discrète du + petit MS grandit en $1/h^{\frac{1}{3}}$
- long. euclidienne $\geq h^{\frac{2}{3}}$ et épaisseur en h
- bord de S enfermé dans un tube + Taylor

 \Rightarrow convergence uniforme en $h^{\frac{1}{3}}$

(courbure) estimateur par cercle circonscrit aux demi-tangentes

Estimateurs géométriques

(tangente) estimateurs basés MS sont multigrille convergents(courbure) estimateur par cercle circonscrit aux demi-tangentes

 $_$ Arc of the circumscribed circle

- convergent si demi-tangentes grandissent en $1/h^{\frac{1}{2}}$ [Coe02]
- $\bullet \ \, \text{non car demi-tangentes} \subset \mathsf{MS}$
- expérimentalement non convergent

Discussion

- propriétés asymptotiques des parties linéaires des bords discrétisés
- convergence multigrille d'estimateurs géométriques discrets

Quantité	estimateur	Unif. convergent	Conv. moyenne
position	\hat{x}^{conv}	$\mathcal{O}(h)$	$\mathcal{O}(h^{\frac{4}{3}})$
tangente	tan. sym.	non	?
tangente	$\hat{ heta}^{ extsf{conv}}$?	$\mathcal{O}(h^{\frac{2}{3}})$
tangente	$\hat{ heta}^{MS}$	$\mathcal{O}(h^{\frac{1}{3}})$	$\mathcal{O}(h^{\frac{2}{3}})$
courbure	Cercle circ.	non	exp. non
courbure	Variation tang. sym.	non	non

Quantité	estimateur	B. sup erreur
longueur	$\int \hat{ heta}^{MS}$	$\mathcal{O}(h^{\frac{1}{3}})$
intégrale	mesure discrète	$\mathcal{O}(h^{\frac{1}{3}})$

thèse de François de Vieilleville, collaboration avec Fabien Feschet (LAIC)

[J. Mathematical Image Vision 06]

[SCIA05,DGCI06,ISVC06],[HdR06]

J.-O. Lachaud (LaBRI)

54 / 56

HdR

イロト 不得下 イヨト イヨト

Conclusion

Comment diminuer la complexité des modèles déformables ?

Modèle déformable en géométrie riemannienne

- moins de variables, moins d'itérations
- nb de variables fonction de la géométrie image

Analogue combinatoire des modèles déformables ?

Modèle déformable discret asymptotiquement euclidien $E(O) = \sum_{\sigma \in \partial O} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma)) \hat{I}(\sigma)$

- Oui pour lpha quelconque, potentiel P quelconque, mais eta=0
- orall estimateur tangente $\hat{ heta}$ basé segments maximaux, $\hat{l} = |cos(\hat{ heta})|$

Nouveaux résultats

- représentation, topologie, géométrie des surfaces discrètes
- estimateurs géométriques, convergence multigrille
- géométrie discrète asymptotique

J.-O. Lachaud (LaBRI)

Conclusion

Comment diminuer la complexité des modèles déformables ?

Modèle déformable en géométrie riemannienne

- moins de variables, moins d'itérations
- nb de variables fonction de la géométrie image

Analogue combinatoire des modèles déformables ?

Modèle déformable discret asymptotiquement euclidien $E(O) = \sum_{\sigma \in \partial O} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma)) \hat{I}(\sigma)$

- Oui pour α quelconque, potentiel P quelconque, mais $\beta = 0$
- orall estimateur tangente $\hat{ heta}$ basé segments maximaux, $\hat{l}=|cos(\hat{ heta})|$

Nouveaux résultats

- représentation, topologie, géométrie des surfaces discrètes
- estimateurs géométriques, convergence multigrille
- géométrie discrète asymptotique

J.-O. Lachaud (LaBRI)

Conclusion

Comment diminuer la complexité des modèles déformables ?

Modèle déformable en géométrie riemannienne

- moins de variables, moins d'itérations
- nb de variables fonction de la géométrie image

Analogue combinatoire des modèles déformables?

Modèle déformable discret asymptotiquement euclidien $E(O) = \sum_{\sigma \in \partial O} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma)) \hat{I}(\sigma)$

- Oui pour α quelconque, potentiel P quelconque, mais $\beta = 0$
- orall estimateur tangente $\hat{ heta}$ basé segments maximaux, $\hat{l}=|cos(\hat{ heta})|$

Nouveaux résultats

- représentation, topologie, géométrie des surfaces discrètes
- estimateurs géométriques, convergence multigrille
- géométrie discrète asymptotique

Modèles déformables

 partitions déformables : algorithmes d'optimisation (pyramides, stochastiques, graph-cuts) thèse de Martin Braure de Calignon, collaboration avec Luc Brun [ISVC06]

 projet ANR FoGRIMMI : modèles déformables discrets pour analyse de très grandes images.

Géométrie discrète

- estimateurs géométriques : courbure convergente ?, estimateurs de tangente de meilleure vitesse de convergence
- projet ANR GeoDIB : Géométrie des objets discrets bruités étude des segments maximaux *épais*

イロト イヨト イヨト イ