Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète

Jacques-Olivier Lachaud¹

¹LaBRI - Université Bordeaux 1

soutenance d'HdR - 6 décembre 2006

Domaine de recherche

Plan

- Contexte et motivations : modèles déformables
- Modèle déformable en géométrie riemannienne
- Modèle déformable en géométrie discrète
- Surfaces discrètes : représentation, géométrie, topologie
- 5 Géométrie discrète asymptotique

Plan

- Contexte et motivations : modèles déformables
- 2 Modèle déformable en géométrie riemannienne
- Modèle déformable en géométrie discrète
- 4 Surfaces discrètes : représentation, géométrie, topologie
- 5 Géométrie discrète asymptotique

Segmentation d'image par modèles déformables

- recherche d'une composante significative dans une image I
- approche basée contours, sans a priori sur la forme finale
- ⇒ problème assez difficile

Image 1

gradient $|\nabla I|$

segmentation idéale

Segmentation d'image par modèles déformables

Segmentation d'image par modèles déformables

Modèle déformable

Approche variationnelle

= Famille de formes + critère(forme, I) + optimisation

Critère

balance adéquation avec l'image et régularité de la forme critere(forme, I) = adequation(forme, I) + regularite(forme)

Applications en vision, imagerie médicale, vidéo, synthèse d'image, ...

Modèles déformables : approches classiques

catégorie	Explicite (snakes, etc.)	
Formes (2D)	courbe/surface paramétrée et/ou échantillonnée	
Torriles (2D)	$C:[0,1] \to \mathbb{R}^2$	
Exemple		
Critère	$\int_{\mathcal{C}} \alpha C'(s) ^2 + \beta C''(s) ^2 + P(I, C(s)) ds$	
	régularisation adéquation	
Optimisation	$\gamma C_t = -2\alpha C'' + 2\beta C^{(4)} - \nabla P$	
	régularisation	

[Kass et. al. 87, Terzopoulos et. al. 88, Cohen 91,...]

Modèles déformables : approches classiques

catégorie	Implicite (level-sets)		
Formes (2D)	courbe/surface implicite échantillonnée		
Torries (2D)	$\Phi: \mathbb{R}^2 \to \mathbb{R}, S = \{\Phi = 0\}$		
Exemple			
	adéquation		
Critère	(contour actif géodésique) $\int_{S} \widetilde{g(I,S)} ds$		
	régularisation		
Optimisation	$\Phi_t = g(I, \cdot)(c_0 + \kappa) \nabla \Phi + \nabla g \cdot \nabla \Phi$		
	régularisation		

[Caselles *et. al.* 93, Malladi *et. al.* 94, Caselles *et. al.* 97, Yezzi 97,...]

J.-O. Lachaud (LaBRI) HdR 6 / 56

Modèles déformables : complexité

Image I, de taille N^d . Forme C d'aire |C|. Pas h. $P = \frac{|C|}{h^{d-1}}$.

catégorie	explicite (snakes, etc.)	implicite (level-sets)
nb de variables	$P pprox \Theta(N^{d-1})$	N ^d
déplacement	Р	N^d [Osher Sethian88]
		K_1P [Adalsteinson95]
		$K_2P\log P$ [Strain99]
changement de topologie	N ^d (T-snake, [McIT95,97])	naturel
	P (2D, maille simplexe [DM99])	
	$P \log P$ (2-3D δ -snake [LM99])	
	$P \log P$ (2-4D simpliciale [BLS03])	
En résumé	au mieux $\Theta(\mathit{N}^{d-1})$	au mieux $\Theta(N^{d-1})$

Première problématique : complexité en temps

```
\begin{array}{cccc} & complexité \ / \ itération : & fct \ nb \ de \ variables \\ \times & nb \ d'itérations : & fct \ init., \ vitesse \ déplacement \\ = & complexité \ segmentation \end{array}
```

Comment rendre cette complexité plus indépendante de celle de l'image?

- meilleure initialisation (spécifique à l'application)
- approche multirésolution [Elomary 94,Ronfard 94,...]
- adaptabilité locale [Delingette 94,Bredno et. al. 03,...]
- augmentation pas d'intégration [Weickert et. al. 03,...]
- amélioration des forces [Xu Prince 98,...]

```
Conclusion : nb de variables \propto résolution de I, déplacement max <\frac{h}{2} \Rightarrow complexité très dépendante de la résolution de I
```

4□ ト 4個 ト 4 星 ト 4 星 ト 9 4 0°

Deuxième problématique : minimum local \neq optimum

évolution EDP ⇒extraction d'un minimum local

Comment espérer trouver l'optimum dans l'espace des formes?

- initialisation (spécifique à l'application)
- « convexification » fonctionnelle [Zhu Yuille 96, Jehan-Besson et. al. 03, ...]
- optimum dans des cas particuliers [Cohen Kimmel 97, Deschamps Cohen 01, Ardon Cohen 05]
- discrétisation partielle + programmation dynamique [Amini et. al. 90, Tagare 97, Gunn 97,...]
- méthodes combinatoires de segmentation : qqs résultats d'optimalité Conclusion : version combinatoire des modèles déformables ?

□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 釣魚@

Démarche : changement de la géométrie

Indépendance complexité et résolution?

Géométrie riemannienne

Géométrie euclidienne

Analogue combinatoire des modèles déformables ?

> Géométrie discrète

Démarche : changement de la géométrie

et

Indépendance complexité résolution?

Géométrie riemannienne

Géométrie euclidienne

Analogue combinatoire des modèles déformables?

> Géométrie discrète

Géométrie riemannienne

Déformer l'espace pour densité adaptée à l'information image.

Démarche : changement de la géométrie

Indépendance complexité et résolution?

Géométrie riemannienne

Géométrie euclidienne

Analogue combinatoire des modèles déformables?

Géométrie discrète

Géométrie discrète

Estimateurs géométriques discrets pour approcher formulation variationnelle.

Plan

- Contexte et motivations : modèles déformables
- 2 Modèle déformable en géométrie riemannienne
- Modèle déformable en géométrie discrète
- 4 Surfaces discrètes : représentation, géométrie, topologie
- 5 Géométrie discrète asymptotique

Modèle déformable riemannien : principe

Problématique

Réduire le nombre de variables, diminuer le nombre d'itérations.

Idée directrice

- concentrer l'effort de calcul au voisinage des zones d'intérêt
- adapter la densité des variables selon la position dans l'image
- utiliser la géométrie riemannienne, qui peut déformer l'espace

densité de variables uniforme dans l'espace euclidien

Modèle déformable riemannien : principe

Problématique

Réduire le nombre de variables, diminuer le nombre d'itérations.

Idée directrice

- concentrer l'effort de calcul au voisinage des zones d'intérêt
- adapter la densité des variables selon la position dans l'image
- utiliser la géométrie riemannienne, qui peut déformer l'espace

densité de variables uniforme dans l'espace riemannien adaptative dans l'espace euclidien

Géométrie riemannienne : déformer l'espace

Norme/produit scalaire variable en tout point de l'espace \mathbb{R}^n

euclidien riemannien au point **x**

$$\mathbf{ds}^2 = (dx^1 \cdots dx^n) \times {}^T (dx^1 \cdots dx^n) \quad (dx^1 \cdots dx^n) \times G(\mathbf{x}) \times {}^T (dx^1 \cdots dx^n)$$

où la matrice G, symétrique, définie positive, dépend de l'origine \mathbf{x} du déplacement, de valeurs/vecteurs propres (μ_i, \mathbf{v}_i) .

- application $x \mapsto G(x)$ appelée **métrique**
- ullet longueur chemin $\gamma: \mathrm{L}_{\mathrm{R}}(\gamma) = \int_{t_0}^{t_1} \sqrt{{}^{T}\gamma'(t) imes \mathcal{G}(\gamma(t)) imes \gamma'(t)} \, dt$
- distance de u à v $d_R(u,v)$: plus court chemin riemannien

HdR

13 / 56

Géométrie riemannienne : déformer l'espace

Norme/produit scalaire variable en tout point de l'espace \mathbb{R}^n

euclidien riemannien au point
$$\mathbf{x}$$

$$\mathbf{ds}^2 = (dx^1 \cdots dx^n) \times {}^T (dx^1 \cdots dx^n) \quad (dx^1 \cdots dx^n) \times G(\mathbf{x}) \times {}^T (dx^1 \cdots dx^n)$$

où la matrice G, symétrique, définie positive, dépend de l'origine \mathbf{x} du déplacement, de valeurs/vecteurs propres (μ_i, \mathbf{v}_i) .

Définition de la métrique G

En tout point de l'image, choix de n directions orthogonales $\mathbf{v}_1, \dots, \mathbf{v}_n$ - n coefficients de dilatation μ_1, \dots, μ_n

Modèle déformable initial [Lachaud Montanvert 99]

• Adaptation de topologie basée distance euclidienne d_F sommets contrainte si non-satisfaite

$$(u, v)$$
 voisins

$$(u,v)$$
 voisins $\delta \leq d_E(u,v) \leq \zeta \delta$

$$(u, v)$$
 non-voisins $\lambda \zeta \delta \leq d_E(u, v)$

Substitution de d_F par une mesure riemannienne d_R

- sur-estimer distances autour des zones d'intérêt ⇒ densité plus grande
- sous-estimer distances partout ailleurs ⇒ densité plus faible

Métrique riemannienne adaptée à l'image

- Construction automatique de la métrique
- Approche contour : structures pertinentes autour contours forts

contour en x

intensité s courbures κ_1, κ_2 directions $\mathbf{n}, \mathbf{t}_1, \mathbf{t}_2$

métrique en x

$$egin{array}{ll} \mu_1 \propto s^2 & \mathbf{v}_1 = \mathbf{n} \ \mu_2 \propto \kappa_1^2 \mu_1 & \mathbf{v}_2 = \mathbf{t}_1 \ \mu_3 \propto \kappa_2^2 \mu_1 & \mathbf{v}_3 = \mathbf{t}_2 \ \end{array}
ight] G(\mathbf{x})$$

Estimation de la géométrie de l'image

 $\forall \mathbf{x}$, calculer gradient $s\mathbf{n}$ et courbures $\kappa_1\mathbf{t}_1$ et $\kappa_2\mathbf{t}_2$ de l'isophote passant par \mathbf{x} sur l'image I.

- classiquement filtres dérivatifs [Monga et. al. 95, Rieger et. al. 02]
- diagonalisation tenseur de structure [Kass Witkin 87]

$$Q_{\rho,\sigma}: \mathbf{v} \longmapsto g_{\rho} * (\mathbf{v} \cdot \nabla(g_{\sigma} * I))^{2}$$
 vecteurs / valeurs propres $Q_{\rho,\sigma}: \mathbf{v} \longmapsto {}^{T}\mathbf{v} \times J_{\rho,\sigma} \times \mathbf{v}$ $(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3})/(\xi_{1}, \xi_{2}, \xi_{3})$

Theorem (Courbures par diagonalisation)

contour **idéal** de tenseur $J_{\rho,\sigma}$ alors

- directions principales $(n, t_1, t_2) = vecteurs propres$
- intensité s, courbures principales κ_1 et κ_2 $\xi_1 = s^2$ $\xi_2 = \rho^2 s^2 \kappa_1^2$ $\xi_3 = \rho^2 s^2 \kappa_2^2$

Expérimentations

Réduction du nombre de sommets et du nombre d'itérations

4□ > 4ⓓ > 4ಠ > 4ಠ > 戛 900

Influence de la résolution

• Même image, échantillonnée à des fréquences croissantes.

18 / 56

Comparaison avec l'approche multi-résolution

• approche classique (densité uniforme, résolution fine) : 10,14s, 458 sommets

it 200

it. 300

it. 400

it. 900

- approche multi-résolution (densité uniforme, résolution progressive) :
 9,23s, 392 sommets
- approche riemannienne (densité adaptative) : 1,73s, 150 sommets

Comparaison avec l'approche multi-résolution

- approche classique (densité uniforme, résolution fine) : 10,14s, 458 sommets
- approche multi-résolution (densité uniforme, résolution progressive) :
 9,23s, 392 sommets

• approche riemannienne (densité adaptative) : 1,73s, 150 sommets

Comparaison avec l'approche multi-résolution

- approche classique (densité uniforme, résolution fine) : 10,14s, 458 sommets
- approche multi-résolution (densité uniforme, résolution progressive) :
 9,23s, 392 sommets
- approche riemannienne (densité adaptative) : 1,73s, 150 sommets

Evaluation sur scanner

Uniforme fin

Adaptatif

Evaluation sur scanner

Vue latérale de l'oreille

	Uniforme	Adaptatif
Sommets	142.340	15.936
lt érat ions	900	500
Temps de calcul	3h 22min	22min (+3min 49s)

Discussion

- modèle hautement déformable à densité adaptative : $\approx 10 \times$ moins de sommets, $\approx 5 \times$ moins d'itérations, entre 3 à 10 fois + rapide
- complexité dépendante de la géométrie de l'image
- nouvel estimateur de courbure(s) image : robuste, précis, comparativement rapide

```
Thèse de Benjamin Taton [2004]
[Computer Vision Image Understanding 2005]
[ECCV02,3DIM03,ICPR04]
```

Plan

- Contexte et motivations : modèles déformables
- 2 Modèle déformable en géométrie riemannienne
- Modèle déformable en géométrie discrète
- 4 Surfaces discrètes : représentation, géométrie, topologie
- 5 Géométrie discrète asymptotique

segmentation de l'image / par minimisation

- segmentation = étiquetage f en N classes
- partitions f (nb fini) + critère(partition,I)
 + optimisation

segmentation de l'image / par minimisation

- segmentation = étiquetage f en N classes
- partitions f (nb fini) + critère(partition,I)
 + optimisation

- minimisation d'énergie sur un graphe (V, W) optimum à $t = +\infty$ [Geman 87], optimum pour N = 2 [Greig et. al. 89], $2 \times optimum$ [Boykov et. al. 01]
- discrétisation d'approx. par morceaux [Mumford Shah 89]
 optimum sur pyramide causale [Guigues et. al. 03]
- division-fusion, pyramides adaptatives, ligne de partage des eaux, variantes discrètes des modèles déformables,

. . .

segmentation de l'image / par minimisation

- segmentation = étiquetage f en N classes
- partitions f (nb fini) + critère(partition,I)+ optimisation

Approches combinatoires / variationnelles : optimalité

Plusieurs algorithmes intéressants vis-à-vis optimalité

segmentation de l'image I par minimisation

- segmentation = étiquetage f en N classes
- partitions f (nb fini) + critère(partition, l)+ optimisation

Approches combinatoires / variationnelles : régularisation

Régularisation simpliste : valeur du critère identique sur toutes ces formes

Analogue combinatoire des modèles déformables avec meilleure régularisation?

Processus de discrétisation Dig

Discrétisation de Gauss $\operatorname{Dig}_{\mathrm{G}}: X \mapsto X \cap (\mathbb{Z} \times \mathbb{Z})$

Discrétisation de Gauss de pas h Dig_G : $X, h \mapsto X \cap (h\mathbb{Z} \times h\mathbb{Z})$

$$O_h = \operatorname{Dig_G}(X, h)$$
$$E(O_h)$$

$$O_{\frac{h}{2}} = \operatorname{Dig}_{G}(X, \frac{h}{2}) \quad \dots \\ E(O_{\frac{h}{2}}) \quad \dots$$

Modèle déformable discret asymptotiquement euclidien

Peut-on garantir que l'énergie discrète tende vers l'énergie continue lorsque le pas de grille h tend vers 0?

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ りへの

Modèle déformable discret

• Energie d'un modèle déformable type snake courbe param. C $E(C) = \int_C \alpha |C'(u)|^2 + \beta |C''(u)|^2 + P(I,C(u))du$ sous-ensemble $X \subset \mathbb{R}^2$ $E(X) = \int_{\mathrm{bd}\ X} \alpha + \beta \kappa^2(s) + P(I,s)ds$

Modèle déformable discret 2D

Famille de formes $\mathcal{O}=\mathcal{P}(\mathbb{Z}^2)$

Forme discrète $O \in \mathcal{O}$: $\hat{E(O)} = \sum_{\sigma \in \partial O} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma)) \hat{I}(\sigma)$

- $ullet \hat{l}(\sigma)$: longueur élémentaire estimée
- $\hat{\kappa}(\sigma)$: courbure estimée

J.-O. Lachaud (LaBRI)

Projection et rétro-projection

• Application continue entre bd X et bd $Dig_G(X, h)$?

Lemma (extension à $\mathrm{Dig}_{\mathcal{G}}$ de [Latecki et. al. 98])

Si X est par(r)-régulier, \exists homéomorphisme pour $h < \frac{\sqrt{10}}{5}r$

• projection de bd X sur bd $Dig_G(X, h)$?

- non
- ullet rétro-projection π de bd $\operatorname{Dig_G}(X,h)$ sur bd X : continue, surjective

Projection et rétro-projection

• Application continue entre $\operatorname{bd} X$ et $\operatorname{bd} \operatorname{Dig}_{G}(X,h)$?

Lemma (extension à Dig de [Latecki et. al. 98])

Si X est par(r)-régulier, \exists homéomorphisme pour $h < \frac{\sqrt{10}}{5}r$

• projection de bd X sur bd $Dig_G(X, h)$?

bd X bd X

• rétro-projection π de bd $\mathrm{Dig}_G(X,h)$ sur bd X: continue, surjective

J.-O. Lachaud (LaBRI)

non

Projection et rétro-projection

• Application continue entre $\operatorname{bd} X$ et $\operatorname{bd} \operatorname{Dig}_{G}(X, h)$?

Lemma (extension à $\mathrm{Dig}_{\mathcal{G}}$ de [Latecki et. al. 98])

Si X est par(r)-régulier, \exists homéomorphisme pour $h < \frac{\sqrt{10}}{5}r$

• projection de bd X sur bd $Dig_G(X, h)$?

non

ullet rétro-projection π de $\operatorname{bd} \operatorname{Dig_G}(X,h)$ sur $\operatorname{bd} X$: continue, surjective

4□ > 4□ > 4□ > 4 = > 4 = > 9 < 0</p>

Modèle déformable discret asymptotiquement euclidien

Theorem

Le MD d'énergie $E(O) = \sum_{\sigma \in \partial O} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma)) \hat{I}(\sigma)$ est asymptotiquement euclidien ssi

- longueur élémentaire $\hat{l}(\sigma)/h$ tend vers $|\cos(\theta(\sigma))|$
- **2** courbure $\hat{\kappa}(\sigma)$ tend vers $\kappa(\pi(\sigma))$

J.-O. Lachaud (LaBRI) HdR

28 / 56

Convergence des quantités estimées \hat{l} et $\hat{\kappa}$?

Peut-on construire un modèle déformable asymptotiquement euclidien?

- convergence longueur élémentaire ⇔ convergence estimateur de tangente
- ullet \hat{l} :tangente symétrique $\hat{ heta}^{ST}$
- ullet $\hat{\kappa}$: courbure par cercle circonscrit aux demi-tangentes $\hat{\kappa}^{CC}$
- estimateurs admis convergents dans un premier temps [Coeurjolly02]
- validation expérimentale

J.-O. Lachaud (LaBRI)

Validation expérimentale l Test du MD discret à échelle fixée

- Algorithme de minimisation a posteriori (bulle déformable [Elomary Chassery 94])
 - expansion progressive dans la direction d'énergie minimale

2 à la fin, extraction de la position intermédiaire optimale.

Validation expérimentale II Test du MD discret à échelle fixée

1. Segmentation de composantes inhomogènes : $\alpha = 0.5$

2. Robustesse au bruit Gaussien : $\alpha = 0.5$, bruit Gaussien d'écart-type 12.8

4□ > 4□ > 4 = > 4 = > = 90

Validation expérimentale III

Test du MD discret à échelle fixée

3. Robustesse à l'initialisation (IRM cœur diastole)

Synthèse et problématiques induites

- discrétisation valide d'un modèle déformable géométrique
- extension nD naturelle
- approximation d'intégrales curvilignes sur des contours discrets

Représentation efficace des surfaces discrètes de \mathbb{Z}^n et calcul rapide d'estimations géométriques?

Convergence d'estimateurs géométriques discrets de quantités géométriques locales ? Vitesse de convergence ?

collaboration avec Anne Vialard projet Jeunes chercheurs GdR-ISIS avec David Cœurjolly et Laure Tougne (LIRIS) [IWVF01],[HdR06]

Plan

- Contexte et motivations : modèles déformables
- 2 Modèle déformable en géométrie riemannienne
- Modèle déformable en géométrie discrète
- 4 Surfaces discrètes : représentation, géométrie, topologie
- 5 Géométrie discrète asymptotique

Surface discrètes nD: représentation, suivi, codage

ullet grille cellulaire \mathbb{C}^n : identification avec Khalimsky + topologie algébrique

cellule = n coord. entières

(bord)
$$\Delta \sum$$
(voxels⁺) = $(\sum surfels^+) + (\sum surfels^-)$

voisinage, suivi de surface nD

codage: 1 cellule = 1 entier, opérateurs = { | | ,&&, !,«,»}*
 ⇒ Implémentation générique nD, très efficace, compacte

[IWCIA03], Cours EJC Algo. Calc. Formel 2005

マロンマ部とマミとマミと (名)

J.-O. Lachaud (LaBRI)

Géométrie des courbes 2D et surfaces discrètes nD

• estimateurs géométriques discrets basés segments de droites discrètes

forme de \mathbb{R}^2 segments maximaux tangente $\hat{\theta}=$ comb. convexe directions Propriétés : précis, convexité respectée, isotrope, convergent, calcul en temps optimal

• estimateurs nD par croisement de géométries 2D

n-1 chemins par surfel

normale $\hat{\mathbf{n}}$ orth. aux $(\hat{ heta}_i)$

Aire = $\sum_{\sigma} |\hat{\mathbf{n}} \cdot \mathbf{e}_{\perp \sigma}|$

Collaboration avec Anne Vialard, thèse de François de Vieilleville [DGC103,DGC105], [Image and Vision Computing 2006]

Topologie des surfaces combinatoires nD

- Surfaces nD? : modèles combinatoires de subdivision de variétés
- résultats d'équivalences de modèles topologiques

n- *G*-cartes [Lienhardt 94]

- \triangleright n+1 involutions sur des brins
- + simpliciales, connexes, fermées

n-surfaces [Bert rand99]

- ordre partiel
- décomposition récursive
- calcul d'invariants topologiques sur les complexes cellulaires ($\Delta \Delta = 0$) groupes d'homologie par mise en forme de Smith/Agoston [Agoston76]

Tore

Cube avec cavité

thèse de Sylvie Alyrangues [2005]

Collaboration avec Pascal Lienhardt (SIC), Xavier Daragon (ESIEE),

Laurent Fuchs (SIC) et Samuel Peltier (SIC/PRIP)

[CVWW02,IWCIA04,DGCI05], [Computers & Graphics 2006]

Plan

- Contexte et motivations : modèles déformables
- 2 Modèle déformable en géométrie riemannienne
- Modèle déformable en géométrie discrète
- 4 Surfaces discrètes : représentation, géométrie, topologie
- 5 Géométrie discrète asymptotique

Estimateurs géométriques discrets et conv. multigrille

Definition (Estimateur géométrique discret)

Cherche à estimer une quantité géométrique de X à partir de sa seule discrétisation.

tangente symétrique (ST) direction du plus long segment de droite discrète symétrique autour du point •

Convergence estimateur géométrique [Serra 82]

Soit une famille de formes F. L'estimateur géométrique $\hat{\epsilon}$ est multigrille-convergent pour F vers la mesure géométrique ϵ ssi

$$\forall X \in F, \lim_{h \to 0} |\hat{\epsilon}(\mathrm{Dig}_{\mathrm{G}}(X, h)) - \epsilon(X)| = 0$$

39 / 56

J.-O. Lachaud (LaBRI) HdR

Résultats connus de convergence multigrille

Quantité	Forme de \mathbb{R}^2	technique	B. sup erreur	Ref
aire	C3-convexes	comptage	$O(h^{\frac{15}{11}+\epsilon})$	[Huxley90]
moments	C3-convexes	comptage	$O(h^{\frac{15}{11}+\epsilon})$	[Klette,Žunić00]
longueur	poly. conv.	polygonalisation	\approx 4.5 h	[Kovalevsky,Fuchs92]
longueur	poly. conv.	"saucissonnage"	$\approx 5.844h$	<i>[Klette</i> et. al. <i>98]</i>
longueur	C3-convexes	"Grid continuum"	\approx 8 h	[Sloboda,Zatko96]
longueur	convexe	\int normales	(non connu)	[Coeurjolly02]

Quantités géométriques locales? (tangentes θ , courbures κ)

- ullet lien avec croissance segments discrets avec h o 0 [Coeurjolly02]
- \bullet tangente symétrique $\hat{\theta}^{\bar{S}T}$ convergente vers tangente θ
 - ...si segments discrets grandissent partout
- \bullet courbure par cercle circonscrit $\hat{\kappa}^{\textit{CC}}$ convergente vers courbure κ
 - ...si segments discrets grandissent en $O(\frac{1}{\sqrt{h}})$

(ロ) 《문) 《토) 《토 · (미) (이)

Résultats connus de convergence multigrille

Quantité	Forme de \mathbb{R}^2	technique	B. sup erreur	Ref
aire	C3-convexes	comptage	$O(h^{\frac{15}{11}+\epsilon})$	[Huxley90]
moments	C3-convexes	comptage	$O(h^{\frac{15}{11}+\epsilon})$	[Klette,Žunić00]
longueur	poly. conv.	polygonalisation	\approx 4.5 h	[Kovalevsky, Fuchs92]
longueur	poly. conv.	"saucissonnage"	$\approx 5.844h$	[Klette et. al. 98]
longueur	C3-convexes	"Grid continuum"	\approx 8 h	[Sloboda,Zatko96]
longueur	convexe	\int normales	(non connu)	[Coeurjolly02]

Quantités géométriques locales? (tangentes θ , courbures κ)

- ullet lien avec croissance segments discrets avec h
 ightarrow 0 [Coeurjolly02]
- ullet tangente symétrique $\hat{ heta}^{ar{ extsf{S}}T}$ convergente vers tangente heta
 - ...si segments discrets grandissent partout
- \bullet courbure par cercle circonscrit $\hat{\kappa}^{\textit{CC}}$ convergente vers courbure κ
 - ...si segments discrets grandissent en $O(\frac{1}{\sqrt{h}})$

faux

faux

Croissance asymptotique des segments discrets Méthodologie de preuve

Théorèmes de convergence d'estimateurs discrets

Preuves basées sur croissance asymptotique des segments de droites discrètes sur bord des discrétisés : segments maximaux

Croissance asymptotique des segments discrets Méthodologie de preuve

Théorèmes de convergence d'estimateurs discrets

Preuves basées sur croissance asymptotique des segments de droites discrètes sur bord des discrétisés : segments maximaux

Bornes asymptotiques en nombre et longueur des segments maximaux

- outils
- (DSS) segments de droites discrètes approches arithmétique et combinatoire
 - (MS) segments maximaux sur un contour discret
- (CDP) polygones convexes discrets
- propriétés des MS sur CDP
- propriétés asymptotiques CDP ⇒ propriétés asymptotiques MS

◆ロト ◆個ト ◆意ト ◆意ト · 章 · 夕久で

Segments de droites discrètes (DSS) Approche arithmétique [Reveillès 91]

Definition

Un ensemble fini C de points 4-connexes sur la grille discrète \mathbb{Z}^2 est un segment de droite discrète (DSS) ssi $\exists (a,b,\mu)$ tels que

$$\forall P \in C \quad \mu \leq aP_x - bP_y < \mu + |a| + |b|$$

- extraction DSS avec algorithmes optimaux (e.g. [Debled Reveillès 95])
- 2 tangentes discrètes sont des DSS particuliers

Segments de droites discrètes (DSS)

Approche combinatoire [Berstel 97]

- motif de pente $z = \frac{p}{q}$ = chemin U_1U_2 , codé sur $\{0 = \text{pas } x, 1 = \text{pas } y\}$
- fractions continues

$$z = 0 + \frac{1}{u_1 + \frac{1}{\dots + \frac{1}{u_n}}}$$
$$= [0; u_1, \dots, u_n]$$

construction récursive

$$F(z_0) = 0$$
 (0), $F(z_1) = 0^{u_1}1$ (001), $F(z_2) = F(z_0)F(z_1)^{u_2}$ (0001001001), ... n est la profondeur du motif z .

◆□▶ ◆□▶ ◆ ■ ▶ ◆ ■ り へ ○

Definition

Definition

Definition

Definition

Polygones convexes discrets (CDP)

Definition (polygone convexe discret (CDP) Γ)

sous-ensemble 4-connexe de \mathbb{Z}^2 égal à la discrétisation de son enveloppe convexe.

- $n_e(\Gamma) = \text{nb de sommets de } \Gamma$
- $Per(\Gamma) = périmètre de \Gamma$

Segments maximaux sur bord d'un CDP

Segments maximaux sur bord d'un CDP

Theorem ([Debled-Rennesson Reiter-Doerksen 04])

Un ensemble 4-connexe de \mathbb{Z}^2 est un CDP ssi les directions des segments maximaux successifs sont monotones.

Segments maximaux sur bord d'un CDP

Theorem ([Feschet 05])

On peut construire des courbes discrètes où autant de segments maximaux que l'on souhaite traversent un même point.

Liens entre arêtes du CDP et segments maximaux

- convexité ⇒2 classes de MS
- Segments maximaux "arête"
- Segments maximaux "sommet"

Liens entre arêtes du CDP et segments maximaux

- convexité ⇒2 classes de MS
- Segments maximaux "arête"
 pente z_n = pente arête
 1 MS "arête" par arête

Lemma (basé motifs)

 $MS \ contient \leq 2n+1 \ ar \hat{e} tes$

Ex : pente
$$z_n = \frac{1}{5} \Rightarrow 3$$
 arêtes

Segments maximaux "sommet"

Liens entre arêtes du CDP et segments maximaux

- convexité ⇒2 classes de MS
- Segments maximaux "arête"
- Segments maximaux "sommet"

Lemma (basé motifs)

Max. 2 MS "sommet" par sommet 1 prof. pair + 1 prof. impair

gauche
$$\frac{7}{8} = [0; 1, 7]$$
, droite $\frac{3}{5} = [0; 1, 1, 2]$

Lemma (basé motifs)

MS contient ≤ 2n arêtes

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Nombre de segments maximaux sur CDP

Theorem (Nombre segments maximaux et nombre d'arêtes)

Si Γ CDP inclus dans grille $m \times m$ alors

$$\frac{n_e(\Gamma)}{\Theta(\log m)} \le n_{MS}(\partial \Gamma) \le 3n_e(\Gamma)$$

Démonstration.

- Lemmes précédents +
- plus court DSS de profondeur $n:[0;2,2,\ldots]$
- \Rightarrow profondeur max. d'un DSS dans $\subset m \times m$

longueurs des segments maximaux sur un CDP

Theorem (somme des longueurs des MS sur CDP)

Sur le bord d'un CDP Γ de segments maximaux $(MS_i)_i$

$$\operatorname{Per}(\Gamma) \leq \sum_{i} L_{D}(MS_{i}) \leq 19 \operatorname{Per}(\Gamma)$$

Theorem (longueur moyenne des MS sur CDP)

Si Γ CDP inclus dans grille $m \times m$ alors

$$\frac{1}{3} \frac{\operatorname{Per}(\Gamma)}{n_e(\Gamma)} \leq \frac{\sum_i L_D(MS_i)}{n_{MS}(\partial \Gamma)} \leq 19 \frac{\operatorname{Per}(\Gamma)}{n_e(\Gamma)} \Theta(\log m)$$

longueurs des segments maximaux sur un CDP

Theorem (somme des longueurs des MS sur CDP)

Sur le bord d'un CDP Γ de segments maximaux $(MS_i)_i$

$$\operatorname{Per}(\Gamma) \leq \sum_{i} L_{D}(MS_{i}) \leq 19\operatorname{Per}(\Gamma)$$

Theorem (longueur moyenne des MS sur CDP)

Si Γ CDP inclus dans grille $m \times m$ alors

$$\frac{1}{3} \frac{\operatorname{Per}(\Gamma)}{n_e(\Gamma)} \leq \frac{\sum_i L_D(MS_i)}{n_{MS}(\partial \Gamma)} \leq 19 \frac{\operatorname{Per}(\Gamma)}{n_e(\Gamma)} \Theta(\log m)$$

asymptotique CDP \Rightarrow asymptotique MS

Theorem (Balog Bárány 91)

Soit $S \in C^3$ – convexe. Le nombre d'arêtes de sa discrétisation suit

$$c_1(S)\frac{1}{h^{\frac{2}{3}}} \le n_e(\mathrm{Dig}_{\mathrm{G}}(S,h)) \le c_2(S)\frac{1}{h^{\frac{2}{3}}}$$

Theorem (Asymptotique nombre et long. des segments maximaux)

Soit $S \in C^3$ — convexe. Si S_h est le CDP $\mathrm{Dig_G}(S,h)$.

(nombre)
$$\Theta(\frac{1}{h^{\frac{2}{3}}\log\frac{1}{h}}) \leq n_{MS}(\partial S_h) \leq \Theta(\frac{1}{h^{\frac{2}{3}}})$$

(long.dis.)
$$\Theta(\frac{1}{h^{\frac{1}{3}}}) \leq L_D$$
 movenne MS sur $\partial S_h \leq \Theta(\frac{1}{h^{\frac{1}{3}}}\log \frac{1}{h})$

4日 → 4団 → 4 豆 → 4 豆 → 9 へ ○

50 / 56

Autres résultats asymptotique MS

Résumé asymptotique segments maximaux

Sur les discrétisées de formes C^3 -convexes ($\kappa > 0$).

	plus court	moyenne	plus long
$L_D(MS)$	$\Omega(\frac{1}{h^{\frac{1}{3}}})$	$\Theta(\frac{1}{h^{\frac{1}{3}}}) \le \cdot \le \Theta(\frac{1}{h^{\frac{1}{3}}}\log \frac{1}{h})$	$\mathcal{O}(\frac{1}{h^{\frac{1}{2}}})$
L(MS)	$\Omega(h^{\frac{2}{3}})$	$\Theta(h^{\frac{2}{3}}) \le \cdot \le \Theta(h^{\frac{2}{3}} \log \frac{1}{h})$	$\mathcal{O}(h^{\frac{1}{2}})$

• plus long MS = $\mathcal{O}(\frac{1}{h^{\frac{1}{2}}})$ • plus court MS = $\Omega(\frac{1}{h^{\frac{1}{3}}})$

(géométrie)

(cercles séparants)

Vérification expérimentale

Estimateurs géométriques

(tangente) estimateurs basés MS sont multigrille convergents

- long. discrète du + petit MS grandit en $1/h^{\frac{1}{3}}$
- long. euclidienne $\geq h^{\frac{2}{3}}$ et épaisseur en h
- bord de S enfermé dans un tube + Taylor
- \Rightarrow convergence uniforme en $h^{\frac{1}{3}}$

(courbure) estimateur par cercle circonscrit aux demi-tangentes

Estimateurs géométriques

(tangente) estimateurs basés MS sont multigrille convergents (courbure) estimateur par cercle circonscrit aux demi-tangentes

- ullet convergent si demi-tangentes grandissent en $1/h^{1\over 2}$ [Coe02]
- ullet non car demi-tangentes \subset MS
- expérimentalement non convergent

Discussion

- propriétés asymptotiques des parties linéaires des bords discrétisés
- convergence multigrille d'estimateurs géométriques discrets

Quantité	estimateur	Unif. convergent	Conv. moyenne
position	$\hat{\chi}^{\mathrm{conv}}$	$\mathcal{O}(h)$	$\mathcal{O}(h^{\frac{4}{3}})$
tangente	tan. sym.	non	?
tangente	$\hat{ heta}^{conv}$?	$\mathcal{O}(h^{\frac{2}{3}})$
tangente	$\hat{ heta}^{MS}$	$\mathcal{O}(h^{\frac{1}{3}})$	$\mathcal{O}(h^{\frac{2}{3}})$
courbure	Cercle circ.	non	exp. non
courbure	Variation tang. sym.	non	non

Quantité	estimateur	B. sup erreur
longueur	$\int \hat{ heta}^{MS}$	$\mathcal{O}(h^{\frac{1}{3}})$
intégrale	mesure discrète	$\mathcal{O}(h^{\frac{1}{3}})$

thèse de François de Vieilleville, collaboration avec Fabien Feschet (LAIC)

[J. Mathematical Image Vision 06] [SCIA05,DGCI06,ISVC06],[HdR06]

54 / 56

Conclusion

Comment diminuer la complexité des modèles déformables?

Modèle déformable en géométrie riemannienne

- moins de variables, moins d'itérations
- nb de variables fonction de la géométrie image

Analogue combinatoire des modèles déformables ?

Modèle déformable discret asymptotiquement euclidien

$$E(O) = \sum_{\sigma \in \partial O} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma)) \hat{I}(\sigma)$$

- ullet Oui pour lpha quelconque, potentiel P quelconque, mais eta=0
- ullet estimateur tangente $\hat{ heta}$ basé segments maximaux, $\hat{l} = |cos(\hat{ heta})|$

Nouveaux résultats

- représentation, topologie, géométrie des surfaces discrètes
- estimateurs géométriques, convergence multigrille
- géométrie discrète asymptotique

Conclusion

Comment diminuer la complexité des modèles déformables?

Modèle déformable en géométrie riemannienne

- moins de variables, moins d'itérations
- nb de variables fonction de la géométrie image

Analogue combinatoire des modèles déformables?

Modèle déformable discret asymptotiquement euclidien

$$E(O) = \sum_{\sigma \in \partial O} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma)) \hat{I}(\sigma)$$

- ullet Oui pour lpha quelconque, potentiel P quelconque, mais eta=0
- ullet \forall estimateur tangente $\hat{ heta}$ basé segments maximaux, $\hat{l} = |cos(\hat{ heta})|$

Nouveaux résultats

- représentation, topologie, géométrie des surfaces discrètes
- estimateurs géométriques, convergence multigrille
- géométrie discrète asymptotique

Conclusion

Comment diminuer la complexité des modèles déformables?

Modèle déformable en géométrie riemannienne

- moins de variables, moins d'itérations
- nb de variables fonction de la géométrie image

Analogue combinatoire des modèles déformables?

Modèle déformable discret asymptotiquement euclidien

$$E(O) = \sum_{\sigma \in \partial O} (\alpha + \beta \hat{\kappa}^2(\sigma) + P(I, \sigma)) \hat{I}(\sigma)$$

- ullet Oui pour lpha quelconque, potentiel P quelconque, mais eta=0
- ullet \forall estimateur tangente $\hat{ heta}$ basé segments maximaux, $\hat{l} = |cos(\hat{ heta})|$

Nouveaux résultats

- représentation, topologie, géométrie des surfaces discrètes
- estimateurs géométriques, convergence multigrille
- géométrie discrète asymptotique

J.-O. Lachaud (LaBRI)

Perspectives

Modèles déformables

- partitions déformables : algorithmes d'optimisation (pyramides, stochastiques, graph-cuts)
 thèse de Martin Braure de Calignon, collaboration avec Luc Brun [ISVC06]
- projet ANR FoGRIMMI : modèles déformables discrets pour analyse de très grandes images.

Géométrie discrète

- estimateurs géométriques : courbure convergente?, estimateurs de tangente de meilleure vitesse de convergence
- projet ANR GeoDIB : Géométrie des objets discrets bruités étude des segments maximaux épais

4 D > 4 A > 4 E > 4 E > 9 Q Q