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A versatile tool for piecewise smooth image and geometry
processing

Image restoration

Image segmentation

Mesh denoising Feature delineation

Mesh segmentation Mesh inpainting
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Ambrosio-Tortorelli’s functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications



Mumford-Shah functional
[Mumford and Shah, 1989]

Mumford-Shah functional for image restoration
We minimize

MS(K , u) = α

∫
Ω\K
|u − g |2 dx︸ ︷︷ ︸

fidelity term

+

∫
Ω\K
|∇u|2 dx︸ ︷︷ ︸

smoothness term

+λ H1(K ∩ Ω)︸ ︷︷ ︸
discontinuities length

• Ω the image domain
• g the input image
• u a piecewise smooth approximation of g
• K the set of discontinuities
• H1 the Hausdorff measure
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Mumford-Shah functional
[Mumford and Shah, 1989]

Notably difficult to minimize
Many relaxations and convexifications have been proposed.

• Total Variation [Rudin et al., 1992] and its variants
• Multi-phase level sets [Vese and Chan, 2002] and follow-ups
• Discrete graph approaches

[Boykov et al., 2001, Boykov and Funka-Lea, 2006]

• Calibration method [Alberti et al., 2003] and associated algorithms
[Pock et al., 2009, Chambolle and Pock, 2011]

• Ambrosio-Tortorelli functional [Ambrosio and Tortorelli, 1992]

• convex relaxations of AT [Kee and Kim, 2014]
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Ambrosio-Tortorelli functional
[Ambrosio and Tortorelli, 1992]

ATε(u, v) = α

∫
Ω

|u−g |2 dx+

∫
Ω

v2|∇u|2 dx+λ

∫
Ω

ε|∇v |2+
1
ε

(1− v)2

4
dx

• Ω the image domain
• g the input image
• u a piecewise smooth approximation of g
• v a smooth approximation of 1− χK

whole domain integration

no Hausdorff measure

Γ-convergence: ATε
Γ−−−−→

ε→0
MS
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Finite elements implementation

. Proposed in [Bourdin and Chambolle, 2000]

. Finite elements with mesh refinement and realignment
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Finite elements implementation

. Proposed in [Bourdin and Chambolle, 2000]

. Finite elements with mesh refinement and realignment

Main problem: scale parameter ε � sampling h

• computationaly costly
• not consistent with input
• never able to capture thin discontinuities



Finite elements implementation

. Proposed in [Bourdin and Chambolle, 2000]

. Finite elements with mesh refinement and realignment

Main problem: scale parameter ε � sampling h

• computationaly costly
• not consistent with input
• never able to capture thin discontinuities

We propose a discrete AT variant where we can set
ε < h to get thin discontinuities
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Discrete Calculus

Computer graphics, geometry processing, shape optimization

(Images: Knöppel et al. 2015, Crane et al. 2013, Springborn et al. 2010)

Discrete exterior calculus [Desbrun, Hirani, Leok, . . . ]

Discrete differential calculus [Polthier, Pinkall, Bobenko, . . . ]

Discrete calculus [Grady, Polimeni, . . . ]

Graph and network analysis, image processing, fluid simul.

(Images: Bugeau et al. 2014, couprie et al. 2014, Elcott et al. 2006)

Discrete exterior calculus (DEC)

• no discretization, discrete by nature
• keep algebraic properties of calculus, exact Stokes’ theorem
• reduces to matrix/vectors
• works without embedding, just metric
• “any” cell complex, arbitrary dimension
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Cell complex, chains, boundary, forms
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• cell complex K : vertices, edges, faces (pixels)

with orientation
• k-chains: Ck(K ) are integral formal sums of oriented cells

• boundary operators: · · ·C2(K )
∂2−→ C1(K )

∂1−→ C0(K )
∂0−→ 0

• discrete k-forms: elements of C k(K ) := Hom(Ck(K ),R)

. 0-forms: functions, i.e. a value per vertex

. 1-forms: differential forms/vector field, i.e. a value per edge

. 2-forms: area forms, i.e. a value per face
• Integral

∫
σ
α = pairing k-form α with k-chain σ∫

σ

α := α(σ) =
∑
i

aiα(ci ) if σ =
∑
i

aici
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Exterior derivative, Stokes theorem

• exterior derivative defined by duality: dk : C k(K )→ C k+1(K )

(dkα
k)(σk+1) := αk(∂k+1σk+1)

thus incidence relations define derivative by duality

• •

• •

0.2 0.7

0.1 0.5

0.5

0.1 0.2

0.4

0.5− 0.2
−0.4 + 0.1	

• Function or discrete 0-form : α = (0.2, 0.7, 0.1, 0.5)

• 1-form d0(α) = β = (0.5, 0.1, 0.2, 0.4)

• 2-form d1(β) = 0, since d1d0 = 0
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• exterior derivative defined by duality: dk : C k(K )→ C k+1(K )

(dkα
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• Function or discrete 0-form : α = (0.2, 0.7, 0.1, 0.5)

• 1-form d0(α) = β = (0.5, 0.1, 0.2, 0.4)

• 2-form d1(β) = 0, since d1d0 = 0

(discrete) Stokes theorem is trivial by definition∫
σ

dα =

∫
∂σ

α

for σ any k-chain and α any k − 1-form



Dual cell complex, Hodge star, calculus
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d0

d1

?0

?1

?2

d0

d1

?0

?1

?2

complex K dual complex K primal dual
• Hodge duality created with dual/orthogonal structure

• anti-derivatives dk are derivatives in dual complex
. in matrix form dk

ᵀ := dn−1−k

• Hodge stars ?k transport k-forms to dual 2− k-forms
. diagonal matrices incorporating metric information
. e.g. ?k1 = α is the area 2-form dA

• wedge products satisfy algebraic properties (Leibniz rules . . . )
. α ∧ β := diag(α)β, for α ∈ C k(K ), β ∈ C 2−k(K ),
. f ∧ γ := diag(M01f )γ, for f ∈ C 0(K ), γ ∈ C 1(K ) . . .
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Almost all the calculus is built from the previous operators
• codifferentials δ1 := −?2d1?1, δ2 := −?1d0?2,
• Laplacian ∆ := δ1d0
• Edge Laplacian ∆1 := d0δ1 + δ2d1,

• musical ops : Vector field [→ 1-form
]→ Vector field

• gradient ∇f := (d0f )]

• divergence divV := δ1V[

• L2 inner-product (α, β)Ω,k :=
∫

Ω
α∧?kβ, for α, β k-forms



Discrete formulation of AT
On faces and vertices

ATε(u, v) =α

∫
Ω

|u − g |2 dx+

∫
Ω

v2|∇u|2 dx+λ

∫
Ω

ε|∇v |2+ 1
4ε (1− v)2 dx

• • • •

• • • •

• • • •

• • • • We choose :

• functions u, g to live on faces
. u, g are 2-forms
. equivalently dual 0-forms

• function v to live on vertices •
. v is a 0-form

AT2,0
ε (u, v) = α (u− g, u− g)Ω,2

+ (?, ?)Ω

+ λε (d0v,d0v)Ω,1 +
λ

4ε
(1− v, 1− v)Ω,0
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Discrete calculus model of Ambrosio-Tortorelli’s functionnal

Ambrosio-Tortorelli’s functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications
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Discrete formulation of AT

AT2,0
ε (u, v) = α (u− g, u− g)Ω,2 + (diag(M01v)δ2u, diag(M01v)δ2u)Ω,1

+ λε (d0v, d0v)Ω,1 +
λ

4ε
(1− v, 1− v)Ω,0

• with matrices A := d0, B′ := δ2, Gk := ?k .

AT2,0
ε (u, v) = α(u− g)ᵀG2(u− g) + uᵀB′ᵀdiag(M01v)2G1B′u

+ λεvᵀAᵀG1Av +
λ

4ε
(1− v)ᵀG0(1− v)

• Euler-Lagrange: min
u,v

AT2,0
ε ⇒

dAT2,0
ε

du
= 0 and

dAT2,0
ε

dv
= 0

• AT2,0
ε is quadratic in u and in v

• We solve alternatively for u and v the sparse linear systems:
[
αG2 − B′ᵀdiag (M01v)2 G1B′

]
u = αG2g,[

λ
4εG0 + λεAᵀG1A + M01

ᵀdiag (B′u)
2 G1M01

]
v = λ

4εG01.
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Discrete formulation of AT: vectorial data

AT2,0
ε (u1, . . . , un, v) = α

∑
i

(ui − gi , ui − gi )Ω,2

+
∑
i

(diag(M01v)δ2ui , diag(M01v)δ2ui )Ω,1

+ λε (d0v, d0v)Ω,1 +
λ

4ε
(1− v, 1− v)Ω,0

• We solve alternatively for the ui and v the sparse linear systems: ∀i ∈ {1, . . . , n},
[
αG2 − B′ᵀdiag (M01v)2 G1B′

]
ui = αG2gi ,[

λ
4εG0 + λεAᵀG1A + M01

ᵀ(
∑

i diag (B′ui )
2
)G1M01

]
v = λ

4εG01.

• Our algorithm progressively decreases ε to get a better chance of
capturing the optimum
. ε follows typically sequence 2, 1, 0.5, 0.25 (for h = 1 sampling)
. results on u and v are starting point for next ε



Image restoration on toy examples

g FD FE [BC, 2000] AT2,0
ε

• systems are solved using Cholesky decomposition (Eigen)
• ε takes the successive values 2, 1, 0.5, 0.25, for sampling step h = 1.



Image restoration on toy examples

g FD FE [BC, 2000] AT2,0
ε

• systems are solved using Cholesky decomposition (Eigen)
• ε takes the successive values 2, 1, 0.5, 0.25, for sampling step h = 1.



g TV [ Duran et al. [ Strek. et al. AT2,0
ε

2013 ] 2014 ]



Influence of parameter ε

ATε(u, v) = α

∫
Ω

|u−g |2 dx+

∫
Ω

v2|∇u|2 dx+λ

∫
Ω

ε|∇v |2+
1
ε

(1− v)2

4
dx

• Γ-convergence parameter
• Controls the thickness of the contours

. large ε convexifies AT and helps to detect the discontinuities;

. as ε goes to 0, the discontinuities become thinner and thinner.

ε = 2↘ 2 ε = 2↘ 1 ε = 2↘ 0.5 ε = 2↘ 0.25



Discrete calculus model of Ambrosio-Tortorelli’s functionnal

Ambrosio-Tortorelli’s functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications



Image restoration / denoising
g TV AT2,0

ε

(PSNR = 20.23 dB) (PSNR = 29.36 dB) (PSNR = 29.03 dB)



Image restoration / denoising
g TV AT2,0

ε

(PSNR = 20.23 dB) (PSNR = 29.36 dB) (PSNR = 29.03 dB)



Scale-space given by α and λ and image segmentation

for decreasing λ



Image inpainting (on toy example)

• mask (in black) : domain M where data g (in color) is unknown
• α(x) := {α ∈ Ω \M, 0 elswhere}
• initialization: u random in M, = g in Ω \M

AT2,0
ε with ε from 1 to 0.25

AT2,0
ε with ε from 4 to 0.25



Image inpainting (on classical crack-tip example)

g mask M AT2,0
ε , α = 1, λ = 0.0024

• Decreasing sequence of λ (irreversibility !?)
• same result as [Pock, Bishof, Cremers, Pock 2009], based on MS relaxation

of [Alberti, Bouchitté, Dal Maso 2003]

• result independent of initialization as long as first ε is big enough
(ε from 4 to 0.25 here, for image of size 110× 110).



Image inpainting (crack-tip + decreasing λ)

g

mask M

α = 1

8
→

0.
25

4
→

0.
25

2
→

0.
25

ε λ = 0.0195 λ = 0.00244 λ = 0.000432 λ = 0.0000763



Image inpainting (crack-tip + changing resolution)

100× 100 200× 200
λ = 0.0000763 λ = 0.0000381

α = 1 α = 1



Feature delineation on digital surfaces

digital surface = boundary of set
of voxels

same discrete calculus
same AT2,0

ε

Input: normal vector field g estimated
by Integral Invariant digital normal
estimator.

Output: piecewise smooth normals
(ui )i=1,2,3 and features v
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Discrete calculus on triangulated mesh

• dual mesh ⊥ primal mesh

• dual vertex = center of triangle
circumcircle

• Hodge stars are no more trivial but
still diagonal matrices

• ?0(v) := Area(dual(v))

• ?1(e) := length(dual(e))/length(e)

• ?2(t) := 1/Area(t)

• otherwise same discrete calculus

• AT2,0
ε is then the same !



Discrete calculus on triangulated mesh

• dual mesh ⊥ primal mesh

• dual vertex = center of triangle
circumcircle

• Hodge stars are no more trivial but
still diagonal matrices

• ?0(v) := Area(dual(v))

• ?1(e) := length(dual(e))/length(e)

• ?2(t) := 1/Area(t)

• otherwise same discrete calculus

• AT2,0
ε is then the same !



Mesh denoising

0. Bad mesh with positions x0, k ← 0

1. g = normals from x(k), Hodge stars from x(k)

2. AT2,0
ε to get piecewise smooth normals u(k)

3. x(k+1) ← regularize positions x(k) by
aligning geometric normals with u(k)

4. k ← k + 1 and iterate till stability
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Mesh denoising (a few results)



Mesh denoising (Comparison with FEM)
no

is
e
fr
ee

w
ith

no
is
e

FEM [Tong and Tai 2016] our approach



Mesh segmentation

• v is used as a probability of edge merge in a graph connected
component algorithm



Mesh inpainting

Original Missing area CGAL filling Our inpainting



Conclusion

• Discrete calculus model of AT recovers discontinuities
. usual “phase-field” ones −→ thin discontinuities

• very generic formulation: 2D images, digital surfaces, triangulated
meshes, graph structures, 3D hexahedral, tetrahedral or mixed
meshes, . . .

• opens a wide range of applications
. image processing
. 3D geometry processing

• open-source C++ code available, mostly on dgtal.org, otherwise
on github.com

• reasonnable computation times: from seconds to a few minutes

dgtal.org
github.com


Open questions. Debatable statements.

• What about Γ-convergence of AT2,0
ε to MS ?

. If ε < h or ε ≈ h, terms λε (d0v,d0v)Ω,1 +
λ

4ε
(1− v, 1− v)Ω,0

do not converge to λHN−1(Ju)
. Agreed, but it is also the case for FDM or FEM !

• Probably ε� h, AT2,0
ε Γ-converges to MS (same as FDM or FEM)

. what is the speed of convergence, error , etc ...
• Mostly interested in the location of discontinuities, not in the

energy value !

. When ε < h, Hausdorff distance between v and “ground truth”?

• What about tensors in discrete calculus ? Forms model only
antisymmetric tensors !
. Smart approach: decomposition on image and kernel of

operators
. Grid approach: differential and derivatives aligned with edges
. both cases: tensors located both on primal and dual vertices !

Thank you for your attention !
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