Discrete calculus model of Ambrosio-Tortorelli's functional

Jacques-Olivier Lachaud¹

¹Lab. of Mathematics, University Savoie Mont Blanc

March 7th, 2019 Workshop Phase-field models of fracture Banff International Research Station

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Collaborators

Marion Foare

David Coeurjolly Pierre Gueth

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Hugues Talbot

Nicolas Bonneel

A versatile tool for piecewise smooth image and geometry processing

Discrete calculus model of Ambrosio-Tortorelli's functionnal

Ambrosio-Tortorelli's functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications

Mumford-Shah functional

[Mumford and Shah, 1989]

Mumford-Shah functional for image restoration We minimize

$$\mathcal{MS}(K, u) = \alpha \underbrace{\int_{\Omega \setminus K} |u - g|^2 \, \mathrm{dx}}_{\text{fidelity term}} + \underbrace{\int_{\Omega \setminus K} |\nabla u|^2 \, \mathrm{dx}}_{\text{smoothness term}} + \lambda \underbrace{\mathcal{H}^1(K \cap \Omega)}_{\text{discontinuities length}}$$

- $\bullet~\Omega$ the image domain
- g the input image
- u a piecewise smooth approximation of g
- *K* the set of discontinuities
- $\bullet \ \mathcal{H}^1$ the Hausdorff measure

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Mumford-Shah functional

[Mumford and Shah, 1989]

Mumford-Shah functional for image restoration We minimize

$$\mathcal{MS}(\mathbf{K}, u) = \alpha \underbrace{\int_{\Omega \setminus \mathbf{K}} |u - g|^2 \, \mathrm{dx}}_{\text{fidelity term}} + \underbrace{\int_{\Omega \setminus \mathbf{K}} |\nabla u|^2 \, \mathrm{dx}}_{\text{smoothness term}} + \lambda \underbrace{\mathcal{H}^1(\mathbf{K} \cap \Omega)}_{\text{discontinuities length}}$$

- Ω the image domain
- g the input image
- u a piecewise smooth approximation of g
- ✓ K the set of discontinuities
- $earrow \mathcal{H}^1$ the Hausdorff measure

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Mumford-Shah functional [Mumford and Shah, 1989]

Notably difficult to minimize

Many relaxations and convexifications have been proposed.

- Total Variation [Rudin et al., 1992] and its variants
- Multi-phase level sets [Vese and Chan, 2002] and follow-ups
- Discrete graph approaches [Boykov et al., 2001, Boykov and Funka-Lea, 2006]
- Calibration method [Alberti et al., 2003] and associated algorithms [Pock et al., 2009, Chambolle and Pock, 2011]

ション ふゆ く 山 マ チャット しょうくしゃ

- Ambrosio-Tortorelli functional [Ambrosio and Tortorelli, 1992]
- convex relaxations of AT [Kee and Kim, 2014]

Mumford-Shah functional [Mumford and Shah, 1989]

Notably difficult to minimize

Many relaxations and convexifications have been proposed.

- Total Variation [Rudin et al., 1992] and its variants
- Multi-phase level sets [Vese and Chan, 2002] and follow-ups
- Discrete graph approaches [Boykov et al., 2001, Boykov and Funka-Lea, 2006]
- Calibration method [Alberti et al., 2003] and associated algorithms [Pock et al., 2009, Chambolle and Pock, 2011]

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- Ambrosio-Tortorelli functional [Ambrosio and Tortorelli, 1992]
- convex relaxations of AT [Kee and Kim, 2014]

Ambrosio-Tortorelli functional

[Ambrosio and Tortorelli, 1992]

$$AT_{\varepsilon}(\boldsymbol{u},\boldsymbol{v}) = \alpha \int_{\Omega} |\boldsymbol{u} - \boldsymbol{g}|^2 \, \mathrm{dx} + \int_{\Omega} \boldsymbol{v}^2 |\nabla \boldsymbol{u}|^2 \, \mathrm{dx} + \lambda \int_{\Omega} \varepsilon |\nabla \boldsymbol{v}|^2 + \frac{1}{\varepsilon} \frac{(1-\boldsymbol{v})^2}{4} \, \mathrm{dx}$$

- Ω the image domain
- g the input image
- u a piecewise smooth approximation of g
- v a smooth approximation of $1-\chi_K$
- ✓ whole domain integration
- 🗸 no Hausdorff measure

Ambrosio-Tortorelli functional

[Ambrosio and Tortorelli, 1992]

$$AT_{\varepsilon}(\boldsymbol{u},\boldsymbol{v}) = \alpha \int_{\Omega} |\boldsymbol{u} - \boldsymbol{g}|^2 \, \mathrm{dx} + \int_{\Omega} \boldsymbol{v}^2 |\nabla \boldsymbol{u}|^2 \, \mathrm{dx} + \lambda \int_{\Omega} \varepsilon |\nabla \boldsymbol{v}|^2 + \frac{1}{\varepsilon} \frac{(1-\boldsymbol{v})^2}{4} \, \mathrm{dx}$$

- Ω the image domain
- g the input image
- u a piecewise smooth approximation of g
- v a smooth approximation of $1-\chi_K$
- ✓ whole domain integration
- 🗸 no Hausdorff measure

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

$$\Gamma\text{-convergence:} \quad AT_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} \mathcal{MS}$$

Finite differences implementation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Finite differences implementation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▷ Proposed in [Bourdin and Chambolle, 2000]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

▷ Proposed in [Bourdin and Chambolle, 2000]

<ロ> (四) (四) (三) (三) (三) (三)

- ▷ Proposed in [Bourdin and Chambolle, 2000]
- ▷ Finite elements with mesh refinement and realignment

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- ▷ Proposed in [Bourdin and Chambolle, 2000]
- ▷ Finite elements with mesh refinement and realignment

- ▷ Proposed in [Bourdin and Chambolle, 2000]
- ▷ Finite elements with mesh refinement and realignment

- ▷ Proposed in [Bourdin and Chambolle, 2000]
- ▷ Finite elements with mesh refinement and realignment

- ▶ Proposed in [Bourdin and Chambolle, 2000]
- Finite elements with mesh refinement and realignment

Discrete calculus model of Ambrosio-Tortorelli's functionnal

Ambrosio-Tortorelli's functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Discrete Calculus

Computer graphics, geometry processing, shape optimization

(Images: Knöppel et al. 2015, Crane et al. 2013, Springborn et al. 2010)

Discrete exterior calculus [Desbrun, Hirani, Leok, ...] Discrete differential calculus [Polthier, Pinkall, Bobenko, ...] Discrete calculus [Grady, Polimeni, ...]

Graph and network analysis, image processing, fluid simul.

(Images: Bugeau et al. 2014, couprie et al. 2014, Elcott et al. 2006)

Discrete Calculus

Computer graphics, geometry processing, shape optimization

• no discretization, discrete by nature

keep algebraic properties of calculus, exact Stokes' theorem

Discrete exterior calculus (DEC)

- reduces to matrix/vectors
- works without embedding, just metric
- "any" cell complex, arbitrary dimension

Graph and network analysis, image processing, fluid simul.

(Images: Bugeau et al. 2014, couprie et al. 2014, Elcott et al. 2006)

• *cell complex K*: vertices, edges, faces (pixels)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• cell complex K: vertices, edges, faces (pixels) with orientation

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

• cell complex K: vertices, edges, faces (pixels) with orientation

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• *k*-chains: $C_k(K)$ are integral formal sums of oriented cells

- cell complex K: vertices, edges, faces (pixels) with orientation
- k-chains: $C_k(K)$ are integral formal sums of oriented cells
- boundary operators: $\cdots C_2(K) \xrightarrow{\partial_2} C_1(K) \xrightarrow{\partial_1} C_0(K) \xrightarrow{\partial_0} 0$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- cell complex K: vertices, edges, faces (pixels) with orientation
- k-chains: $C_k(K)$ are integral formal sums of oriented cells
- boundary operators: $\cdots C_2(K) \xrightarrow{\partial_2} C_1(K) \xrightarrow{\partial_1} C_0(K) \xrightarrow{\partial_0} 0$
- discrete k-forms: elements of $C^k(K) := \operatorname{Hom}(C_k(K), \mathbb{R})$
 - ▷ 0-forms: functions, i.e. a value per vertex
 - ▷ 1-forms: differential forms/vector field, i.e. a value per edge

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

> 2-forms: area forms, i.e. a value per face

- cell complex K: vertices, edges, faces (pixels) with orientation
- *k*-chains: $C_k(K)$ are integral formal sums of oriented cells
- boundary operators: $\cdots C_2(K) \xrightarrow{\partial_2} C_1(K) \xrightarrow{\partial_1} C_0(K) \xrightarrow{\partial_0} 0$
- discrete k-forms: elements of $C^k(K) := \operatorname{Hom}(C_k(K), \mathbb{R})$
 - ▷ 0-forms: functions, i.e. a value per vertex
 - ▷ 1-forms: differential forms/vector field, i.e. a value per edge
 - ▷ 2-forms: area forms, i.e. a value per face
- Integral $\int_{\sigma} \alpha$ = pairing k-form α with k-chain σ

$$\int_{\sigma} \alpha := \alpha(\sigma) = \sum_{i} a_{i} \alpha(c_{i}) \quad \text{if } \sigma = \sum_{i} a_{i} c_{i}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• exterior derivative defined by duality: $\mathbf{d}_k : C^k(\mathcal{K}) \to C^{k+1}(\mathcal{K})$

$$(\mathbf{d}_k \alpha^k)(\sigma_{k+1}) := \alpha^k (\partial_{k+1} \sigma_{k+1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

thus incidence relations define derivative by duality

• exterior derivative defined by duality: $\mathbf{d}_k : C^k(\mathcal{K}) \to C^{k+1}(\mathcal{K})$

$$(\mathbf{d}_k \alpha^k)(\sigma_{k+1}) := \alpha^k (\partial_{k+1} \sigma_{k+1})$$

thus incidence relations define derivative by duality

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

• Function or discrete 0-form : $\alpha = (0.2, 0.7, 0.1, 0.5)$

• exterior derivative defined by duality: $\mathbf{d}_k : C^k(K) \to C^{k+1}(K)$

$$(\mathbf{d}_k \alpha^k)(\sigma_{k+1}) := \alpha^k (\partial_{k+1} \sigma_{k+1})$$

thus incidence relations define derivative by duality

- Function or discrete 0-form : $\alpha = (0.2, 0.7, 0.1, 0.5)$
- 1-form $\mathbf{d}_0(\alpha) = \beta = (0.5, 0.1, 0.2, 0.4)$

• exterior derivative defined by duality: $\mathbf{d}_k : C^k(K) \to C^{k+1}(K)$

$$(\mathbf{d}_k \alpha^k)(\sigma_{k+1}) := \alpha^k (\partial_{k+1} \sigma_{k+1})$$

thus incidence relations define derivative by duality

うして ふゆう ふほう ふほう うらつ

- Function or discrete 0-form : $\alpha = (0.2, 0.7, 0.1, 0.5)$
- 1-form $\mathbf{d}_0(\alpha) = \beta = (0.5, 0.1, 0.2, 0.4)$
- 2-form $\mathbf{d}_1(\beta) = 0$, since $\mathbf{d}_1 \mathbf{d}_0 = 0$

• exterior derivative defined by duality: $\mathbf{d}_k : C^k(K) \to C^{k+1}(K)$

$$(\mathbf{d}_k \alpha^k)(\sigma_{k+1}) := \alpha^k (\partial_{k+1} \sigma_{k+1})$$

うして ふゆう ふほう ふほう うらつ

the (discrete) Stokes theorem is trivial by definition $\int_{\sigma} \mathbf{d}\alpha = \int_{\partial\sigma} \alpha$ for σ any k-chain and α any k - 1-form $0.4 + 0.1 \downarrow$ 0.5 = 0.7

- Function or discrete 0-form : $\alpha = (0.2, 0.7, 0.1, 0.5)$
- 1-form $\mathbf{d}_0(\alpha) = \beta = (0.5, 0.1, 0.2, 0.4)$
- 2-form $\mathbf{d}_1(\beta) = 0$, since $\mathbf{d}_1 \mathbf{d}_0 = 0$

Dual cell complex, Hodge star, calculus

(日) (同) (日) (日)

э

• Hodge duality created with dual/orthogonal structure

Dual cell complex, Hodge star, calculus

・ロト ・ 日本 ・ 日本 ・ 日本

э

• anti-derivatives $\mathbf{d}_{\overline{k}}$ are derivatives in dual complex

▷ in matrix form $\mathbf{d}_{\overline{k}}^{\mathsf{T}} := \mathbf{d}_{n-1-k}$

Dual cell complex, Hodge star, calculus

- anti-derivatives d_k are derivatives in dual complex
 ▷ in matrix form d_k^T := d_{n-1-k}
- Hodge stars \star_k transport k-forms to dual 2 k-forms
 - b diagonal matrices incorporating metric information
 - ▷ e.g. $\star_k \mathbf{1} = \alpha$ is the area 2-form dA
Dual cell complex, Hodge star, calculus

- anti-derivatives d_k are derivatives in dual complex
 ▷ in matrix form d_k^T := d_{n-1-k}
- Hodge stars \star_k transport k-forms to dual 2 k-forms
 - \triangleright diagonal matrices incorporating metric information
 - \triangleright e.g. $\star_k \mathbf{1} = \alpha$ is the area 2-form dA
- wedge products satisfy algebraic properties (Leibniz rules $\dots)$
 - $\triangleright \ \alpha \land \beta := \operatorname{diag}(\alpha)\beta, \text{ for } \alpha \in \mathcal{C}^{k}(K), \beta \in \mathcal{C}^{2-k}(\overline{K}),$
 - ▷ $f \land \gamma := \operatorname{diag}(\mathbf{M}_{01}f)\gamma$, for $f \in C^0(K), \gamma \in C^1(K)$...

Dual cell complex, Hodge star, calculus

Almost all the calculus is built from the previous operators

- codifferentials $\delta_1 := -\star_{\overline{2}} \mathbf{d}_{\overline{1}} \star_1$, $\delta_2 := -\star_{\overline{1}} \mathbf{d}_{\overline{0}} \star_2$,
- Laplacian $\Delta := \delta_1 \mathbf{d}_0$
- Edge Laplacian $\Delta_1 := \mathbf{d}_0 \delta_1 + \delta_2 \mathbf{d}_1$,
- $\bullet\,$ musical ops : Vector field $\stackrel{\flat}{\to}$ 1-form $\stackrel{\sharp}{\to}$ Vector field
- gradient $\nabla f := (\mathbf{d}_0 f)^{\sharp}$
- divergence $\operatorname{div} \mathbf{V} := \delta_1 \mathbf{V}^{\flat}$
- L^2 inner-product $(\alpha, \beta)_{\Omega, k} := \int_{\Omega} \alpha \wedge \star_k \beta$, for α, β k-forms
 - ▷ $f \land \gamma := \operatorname{diag}(\mathbf{M}_{01}f)\gamma$, for $f \in C^{0}(K), \gamma \in C^{1}(K) \ldots$

On faces and vertices

$$AT_{\varepsilon}(u,v) = \alpha \int_{\Omega} |u-g|^2 \, \mathrm{dx} + \int_{\Omega} v^2 |\nabla u|^2 \, \mathrm{dx} + \lambda \int_{\Omega} \varepsilon |\nabla v|^2 + \frac{1}{4\varepsilon} (1-v)^2 \, \mathrm{dx}$$

We choose :

- functions *u*, *g* to live on faces
 - ▷ u, g are 2-forms
 - ▷ equivalently dual 0-forms

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

function v to live on vertices ●
 v is a 0-form

On faces and vertices

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$AT_{\varepsilon}(u, v) = \alpha \int_{\Omega} |u - g|^{2} dx + \int_{\Omega} v^{2} |\nabla u|^{2} dx + \lambda \int_{\Omega} \varepsilon |\nabla v|^{2} + \frac{1}{4\varepsilon} (1 - v)^{2} dx$$

$$We \text{ choose :}$$

$$functions u, g \text{ to live on faces}$$

$$u, g \text{ are 2-forms}$$

$$equivalently dual 0-forms$$

$$function v \text{ to live on vertices} \bullet$$

$$v \text{ is a 0-form}$$

$$AT_{\varepsilon}^{2,0}(u, v) = \alpha (u - g, u - g)_{\Omega,2}$$

$$+ \lambda \varepsilon (\mathbf{d}_{0}v, \mathbf{d}_{0}v)_{\Omega,1}$$

$$AT_{\varepsilon}(u, v) = \alpha \int_{\Omega} |u - g|^{2} dx + \int_{\Omega} v^{2} |\nabla u|^{2} dx + \lambda \int_{\Omega} \varepsilon |\nabla v|^{2} + \frac{1}{4\varepsilon} (1 - v)^{2} dx$$

$$We \text{ choose :}$$

$$functions u, g \text{ to live on faces}$$

$$u, g \text{ are 2-forms}$$

$$equivalently dual 0 \text{ -forms}$$

$$function v \text{ to live on vertices}$$

$$v \text{ is a 0-form}$$

$$AT_{\varepsilon}^{2,0}(u, v) = \alpha (u - g, u - g)_{\Omega,2}$$

$$+ \lambda \varepsilon (d_{0}v, d_{0}v)_{\Omega,1} + \frac{\lambda}{4\varepsilon} (1 - v, 1 - v)_{\Omega,0}$$

$$AT_{\varepsilon}(u, v) = \alpha \int_{\Omega} |u - g|^{2} dx + \int_{\Omega} v^{2} |\nabla u|^{2} dx + \lambda \int_{\Omega} \varepsilon |\nabla v|^{2} + \frac{1}{4\varepsilon} (1 - v)^{2} dx$$

$$We \text{ choose}:$$

$$\bullet \text{ functions } u, g \text{ to live on faces}$$

$$\bullet u, g \text{ are } 2\text{-forms}$$

$$\bullet \text{ equivalently dual 0-forms}$$

$$\bullet \text{ function } v \text{ to live on vertices } \bullet$$

$$\bullet v \text{ is a } 0\text{-form}$$

$$AT_{\varepsilon}^{2,0}(u, v) = \alpha (u - g, u - g)_{\Omega,2} + (?, ?)_{\Omega}$$

$$+ \lambda \varepsilon (\mathbf{d}_{0}v, \mathbf{d}_{0}v)_{\Omega,1} + \frac{\lambda}{4\varepsilon} (1 - v, 1 - v)_{\Omega,0}$$

Cross term mixing u and v

$$\int_{\Omega} \mathbf{v}^2 |\nabla \mathbf{u}|^2 \, \mathrm{dx} = (\mathbf{v} \delta_2 \mathbf{u}, \mathbf{v} \delta_2 \mathbf{u})_{\Omega, 1}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

•
$$v\delta_2 u = v \wedge \delta_2 u = diag(\mathbf{M}_{01}v)\delta_2 u$$

Cross term mixing u and v

$$\int_{\Omega} v^{2} |\nabla u|^{2} dx = (v\delta_{2}u, v\delta_{2}u)_{\Omega,1}$$
• $v\delta_{2}u = v \wedge \delta_{2}u = \text{diag}(\mathsf{M}_{01}v)\delta_{2}u$
0.8 0.8 1.0
1.0 0.0 0.2
1.0 0.2 0.8

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• 0-form v

Cross term mixing u and v

$$\int_{\Omega} v^{2} |\nabla u|^{2} \, \mathrm{dx} = (v \delta_{2} \mathbf{u}, v \delta_{2} \mathbf{u})_{\Omega,1}$$
• $v \delta_{2} \mathbf{u} = v \wedge \delta_{2} \mathbf{u} = \mathrm{diag}(\mathbf{M}_{01} v) \delta_{2} \mathbf{u}$

$$0.9 \begin{bmatrix} 0.8 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.6 \end{bmatrix} \stackrel{1.0}{0.4} \stackrel{0.6}{0.2} \stackrel{0.2}{0.1} \stackrel{0.2}{0.5} \stackrel{0.8}{0.8}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- 0-form v
- 1-form $M_{01}v$

Cross term mixing u and v

- 0-form v
- 1-form $M_{01}v$

Cross term mixing u and v

- 0-form v
- 1-form **M**₀₁**v**

- 2-form u
- 1-form $\delta_2 u$

イロト イポト イヨト イヨト

Cross term mixing u and v

$$\int_{\Omega} v^2 |\nabla u|^2 \, \mathrm{dx} = (v \delta_2 \mathbf{u}, v \delta_2 \mathbf{u})_{\Omega, 1}$$

1 -3

2 -8

6

-10

1010

•
$$v\delta_2 u = v \wedge \delta_2 u = diag(\mathbf{M}_{01}v)\delta_2 u$$

• 2-form u

-1

-2

- 0-form v
- 1-form M₀₁v

• 1-form $\delta_2 \mathbf{u}$

-2

• 1-form $diag(\mathbf{M}_{01}\mathbf{v})\delta_2\mathbf{u}$ Discrete calculus model of Ambrosio-Tortorelli's functionnal

Ambrosio-Tortorelli's functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications

On faces and vertices

$$AT_{\varepsilon}(u,v) = \alpha \int_{\Omega} |u-g|^2 \, \mathrm{dx} + \int_{\Omega} v^2 |\nabla u|^2 \, \mathrm{dx} + \lambda \int_{\Omega} \varepsilon |\nabla v|^2 + \frac{1}{4\varepsilon} (1-v)^2 \, \mathrm{dx}$$

We choose :

- functions *u*, *g* to live on faces
 - ▷ u, g are 2-forms
 - ▷ equivalently dual 0-forms

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

function v to live on vertices ●
 v is a 0-form

On faces and vertices

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$AT_{\varepsilon}(u, v) = \alpha \int_{\Omega} |u - g|^{2} dx + \int_{\Omega} v^{2} |\nabla u|^{2} dx + \lambda \int_{\Omega} \varepsilon |\nabla v|^{2} + \frac{1}{4\varepsilon} (1 - v)^{2} dx$$

$$We \text{ choose :}$$

$$functions u, g \text{ to live on faces}$$

$$u, g \text{ are 2-forms}$$

$$equivalently dual 0-forms$$

$$function v \text{ to live on vertices} \bullet$$

$$v \text{ is a 0-form}$$

$$AT_{\varepsilon}^{2,0}(u, v) = \alpha (u - g, u - g)_{\Omega,2}$$

$$+ \lambda \varepsilon (\mathbf{d}_{0}v, \mathbf{d}_{0}v)_{\Omega,1}$$

$$AT_{\varepsilon}(u, v) = \alpha \int_{\Omega} |u - g|^{2} dx + \int_{\Omega} v^{2} |\nabla u|^{2} dx + \lambda \int_{\Omega} \varepsilon |\nabla v|^{2} + \frac{1}{4\varepsilon} (1 - v)^{2} dx$$

$$We \text{ choose :}$$

$$functions u, g \text{ to live on faces}$$

$$u, g \text{ are 2-forms}$$

$$equivalently dual 0 \text{ -forms}$$

$$function v \text{ to live on vertices}$$

$$v \text{ is a 0-form}$$

$$AT_{\varepsilon}^{2,0}(u, v) = \alpha (u - g, u - g)_{\Omega,2}$$

$$+ \lambda \varepsilon (d_{0}v, d_{0}v)_{\Omega,1} + \frac{\lambda}{4\varepsilon} (1 - v, 1 - v)_{\Omega,0}$$

$$AT_{\varepsilon}(u, v) = \alpha \int_{\Omega} |u - g|^{2} dx + \int_{\Omega} v^{2} |\nabla u|^{2} dx + \lambda \int_{\Omega} \varepsilon |\nabla v|^{2} + \frac{1}{4\varepsilon} (1 - v)^{2} dx$$

$$We \text{ choose}:$$

$$\bullet \text{ functions } u, g \text{ to live on faces}$$

$$\bullet u, g \text{ are } 2\text{-forms}$$

$$\bullet \text{ equivalently dual 0-forms}$$

$$\bullet \text{ function } v \text{ to live on vertices } \bullet$$

$$\bullet v \text{ is a } 0\text{-form}$$

$$AT_{\varepsilon}^{2,0}(u, v) = \alpha (u - g, u - g)_{\Omega,2} + (?, ?)_{\Omega}$$

$$+ \lambda \varepsilon (\mathbf{d}_{0}v, \mathbf{d}_{0}v)_{\Omega,1} + \frac{\lambda}{4\varepsilon} (1 - v, 1 - v)_{\Omega,0}$$

Cross term mixing u and v

$$\int_{\Omega} \mathbf{v}^2 |\nabla \mathbf{u}|^2 \, \mathrm{dx} = (\mathbf{v} \delta_2 \mathbf{u}, \mathbf{v} \delta_2 \mathbf{u})_{\Omega, 1}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

•
$$v\delta_2 u = v \wedge \delta_2 u = diag(\mathbf{M}_{01}v)\delta_2 u$$

Cross term mixing u and v

$$\int_{\Omega} v^{2} |\nabla u|^{2} dx = (v\delta_{2}u, v\delta_{2}u)_{\Omega,1}$$
• $v\delta_{2}u = v \wedge \delta_{2}u = \text{diag}(\mathsf{M}_{01}v)\delta_{2}u$
0.8 0.8 1.0
1.0 0.0 0.2
1.0 0.2 0.8

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• 0-form v

Cross term mixing u and v

$$\int_{\Omega} v^{2} |\nabla u|^{2} \, \mathrm{dx} = (v \delta_{2} \mathbf{u}, v \delta_{2} \mathbf{u})_{\Omega,1}$$
• $v \delta_{2} \mathbf{u} = v \wedge \delta_{2} \mathbf{u} = \mathrm{diag}(\mathbf{M}_{01} v) \delta_{2} \mathbf{u}$

$$0.9 \begin{bmatrix} 0.8 \\ 0.8 \\ 0.4 \\ 0.6 \\ 0.6 \end{bmatrix} \stackrel{1.0}{0.4} \stackrel{0.6}{0.2} \stackrel{0.2}{0.1} \stackrel{0.2}{0.5} \stackrel{0.8}{0.8}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- 0-form v
- 1-form $M_{01}v$

Cross term mixing u and v

- 0-form v
- 1-form $M_{01}v$

Cross term mixing u and v

- 0-form v
- 1-form **M**₀₁**v**

- 2-form u
- 1-form $\delta_2 u$

イロト イポト イヨト イヨト

Cross term mixing u and v

$$\int_{\Omega} v^2 |\nabla u|^2 \, \mathrm{dx} = (v \delta_2 \mathbf{u}, v \delta_2 \mathbf{u})_{\Omega, 1}$$

1 -3

2 -8

6

-10

1010

•
$$v\delta_2 u = v \wedge \delta_2 u = diag(\mathbf{M}_{01}v)\delta_2 u$$

• 2-form u

-1

-2

- 0-form v
- 1-form M₀₁v

• 1-form $\delta_2 \mathbf{u}$

-2

• 1-form $diag(\mathbf{M}_{01}\mathbf{v})\delta_2\mathbf{u}$

$$\begin{split} \operatorname{AT}_{\varepsilon}^{2,0}(\mathsf{u},\mathsf{v}) &= \alpha \left(\mathsf{u} - \mathsf{g}, \mathsf{u} - \mathsf{g}\right)_{\Omega,2} + \left(\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})\delta_{2}\mathsf{u}, \operatorname{diag}(\mathsf{M}_{01}\mathsf{v})\delta_{2}\mathsf{u}\right)_{\Omega,1} \\ &+ \lambda \varepsilon \left(\mathsf{d}_{0}\mathsf{v}, \mathsf{d}_{0}\mathsf{v}\right)_{\Omega,1} + \frac{\lambda}{4\varepsilon} \left(1 - \mathsf{v}, 1 - \mathsf{v}\right)_{\Omega,0} \end{split}$$

$$\begin{split} \operatorname{AT}_{\varepsilon}^{2,0}(\mathsf{u},\mathsf{v}) &= \alpha \left(\mathsf{u}-\mathsf{g},\mathsf{u}-\mathsf{g}\right)_{\Omega,2} + \left(\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})\delta_{2}\mathsf{u},\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})\delta_{2}\mathsf{u}\right)_{\Omega,1} \\ &+ \lambda \varepsilon \left(\mathsf{d}_{0}\mathsf{v},\mathsf{d}_{0}\mathsf{v}\right)_{\Omega,1} + \frac{\lambda}{4\varepsilon} \left(1-\mathsf{v},1-\mathsf{v}\right)_{\Omega,0} \end{split}$$

• with matrices $\mathbf{A} := \mathbf{d}_0$, $\mathbf{B}' := \delta_2$, $\mathbf{G}_k := \star_k$.

$$\begin{split} \operatorname{AT}_{\varepsilon}^{2,0}(\mathsf{u},\mathsf{v}) &= \alpha(\mathsf{u}-\mathsf{g})^{\mathsf{T}}\mathsf{G}_{2}(\mathsf{u}-\mathsf{g}) + \mathsf{u}^{\mathsf{T}}\mathsf{B}'^{\mathsf{T}}\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})^{2}\mathsf{G}_{1}\mathsf{B}'\mathsf{u} \\ &+ \lambda\varepsilon\mathsf{v}^{\mathsf{T}}\mathsf{A}^{\mathsf{T}}\mathsf{G}_{1}\mathsf{A}\mathsf{v} + \frac{\lambda}{4\varepsilon}(1-\mathsf{v})^{\mathsf{T}}\mathsf{G}_{0}(1-\mathsf{v}) \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

$$\begin{split} \operatorname{AT}_{\varepsilon}^{2,0}(\mathsf{u},\mathsf{v}) &= \alpha \left(\mathsf{u}-\mathsf{g},\mathsf{u}-\mathsf{g}\right)_{\Omega,2} + \left(\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})\delta_{2}\mathsf{u},\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})\delta_{2}\mathsf{u}\right)_{\Omega,1} \\ &+ \lambda \varepsilon \left(\mathsf{d}_{0}\mathsf{v},\mathsf{d}_{0}\mathsf{v}\right)_{\Omega,1} + \frac{\lambda}{4\varepsilon} \left(1-\mathsf{v},1-\mathsf{v}\right)_{\Omega,0} \end{split}$$

• with matrices $\mathbf{A} := \mathbf{d}_0$, $\mathbf{B}' := \delta_2$, $\mathbf{G}_k := \star_k$.

$$\begin{split} \operatorname{AT}_{\varepsilon}^{2,0}(\mathsf{u},\mathsf{v}) &= \alpha(\mathsf{u}-\mathsf{g})^{\mathsf{T}}\mathsf{G}_{2}(\mathsf{u}-\mathsf{g}) + \mathsf{u}^{\mathsf{T}}\mathsf{B}'^{\mathsf{T}}\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})^{2}\mathsf{G}_{1}\mathsf{B}'\mathsf{u} \\ &+ \lambda\varepsilon\mathsf{v}^{\mathsf{T}}\mathsf{A}^{\mathsf{T}}\mathsf{G}_{1}\mathsf{A}\mathsf{v} + \frac{\lambda}{4\varepsilon}(1-\mathsf{v})^{\mathsf{T}}\mathsf{G}_{0}(1-\mathsf{v}) \end{split}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- Euler-Lagrange: $\min_{u,v} \operatorname{AT}^{2,0}_{\varepsilon} \Rightarrow \frac{\operatorname{dAT}^{2,0}_{\varepsilon}}{\operatorname{du}} = 0$ and $\frac{\operatorname{dAT}^{2,0}_{\varepsilon}}{\operatorname{dv}} = 0$
- $\operatorname{AT}^{2,0}_{\varepsilon}$ is quadratic in u and in v

$$\begin{split} \operatorname{AT}_{\varepsilon}^{2,0}(\mathsf{u},\mathsf{v}) &= \alpha \left(\mathsf{u}-\mathsf{g},\mathsf{u}-\mathsf{g}\right)_{\Omega,2} + \left(\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})\delta_{2}\mathsf{u},\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})\delta_{2}\mathsf{u}\right)_{\Omega,1} \\ &+ \lambda \varepsilon \left(\mathsf{d}_{0}\mathsf{v},\mathsf{d}_{0}\mathsf{v}\right)_{\Omega,1} + \frac{\lambda}{4\varepsilon} \left(1-\mathsf{v},1-\mathsf{v}\right)_{\Omega,0} \end{split}$$

• with matrices $\mathbf{A} := \mathbf{d}_0$, $\mathbf{B}' := \delta_2$, $\mathbf{G}_k := \star_k$.

$$\begin{aligned} \operatorname{AT}_{\varepsilon}^{2,0}(\mathsf{u},\mathsf{v}) &= \alpha(\mathsf{u}-\mathsf{g})^{\mathsf{T}}\mathsf{G}_{2}(\mathsf{u}-\mathsf{g}) + \mathsf{u}^{\mathsf{T}}\mathsf{B}'^{\mathsf{T}}\operatorname{diag}(\mathsf{M}_{01}\mathsf{v})^{2}\mathsf{G}_{1}\mathsf{B}'\mathsf{u} \\ &+ \lambda\varepsilon\mathsf{v}^{\mathsf{T}}\mathsf{A}^{\mathsf{T}}\mathsf{G}_{1}\mathsf{A}\mathsf{v} + \frac{\lambda}{4\varepsilon}(1-\mathsf{v})^{\mathsf{T}}\mathsf{G}_{0}(1-\mathsf{v}) \end{aligned}$$

• Euler-Lagrange:
$$\min_{u,v} AT_{\varepsilon}^{2,0} \Rightarrow \frac{dAT_{\varepsilon}^{2,0}}{du} = 0$$
 and $\frac{dAT_{\varepsilon}^{2,0}}{dv} = 0$

- $AT_{\varepsilon}^{2,0}$ is quadratic in u and in v
- \bullet We solve alternatively for ${\color{black}\textbf{u}}$ and ${\color{black}\textbf{v}}$ the sparse linear systems:

$$\begin{cases} \left[\alpha \mathbf{G}_2 - \mathbf{B'}^{\mathsf{T}} \mathrm{diag} \left(\mathbf{M}_{01} \mathbf{v} \right)^2 \mathbf{G}_1 \mathbf{B'} \right] \mathbf{u} = \alpha \mathbf{G}_2 \mathbf{g}, \\ \left[\frac{\lambda}{4\varepsilon} \mathbf{G}_0 + \lambda \varepsilon \mathbf{A}^{\mathsf{T}} \mathbf{G}_1 \mathbf{A} + \mathbf{M}_{01}^{\mathsf{T}} \mathrm{diag} \left(\mathbf{B'} \mathbf{u} \right)^2 \mathbf{G}_1 \mathbf{M}_{01} \right] \mathbf{v} = \frac{\lambda}{4\varepsilon} \mathbf{G}_0 \mathbf{1}. \end{cases}$$

Discrete formulation of AT: vectorial data

$$\begin{aligned} \operatorname{AT}_{\varepsilon}^{2,0}(\boldsymbol{u}_{1},\ldots,\boldsymbol{u}_{n},\boldsymbol{v}) &= \alpha \sum_{i} (\boldsymbol{u}_{i} - \boldsymbol{g}_{i}, \boldsymbol{u}_{i} - \boldsymbol{g}_{i})_{\Omega,2} \\ &+ \sum_{i} (\operatorname{diag}(\mathsf{M}_{01}\boldsymbol{v})\delta_{2}\boldsymbol{u}_{i}, \operatorname{diag}(\mathsf{M}_{01}\boldsymbol{v})\delta_{2}\boldsymbol{u}_{i})_{\Omega,1} \\ &+ \lambda \varepsilon (\mathsf{d}_{0}\boldsymbol{v}, \mathsf{d}_{0}\boldsymbol{v})_{\Omega,1} + \frac{\lambda}{4\varepsilon} (1 - \boldsymbol{v}, 1 - \boldsymbol{v})_{\Omega,0} \end{aligned}$$

• We solve alternatively for the u_i and v the sparse linear systems:

$$\begin{cases} \forall i \in \{1, \dots, n\}, \left[\alpha \mathbf{G}_2 - \mathbf{B}'^{\mathsf{T}} \mathrm{diag} \left(\mathbf{M}_{01} \mathbf{v}\right)^2 \mathbf{G}_1 \mathbf{B}' \right] \mathbf{u}_i = \alpha \mathbf{G}_2 \mathbf{g}_i, \\ \left[\frac{\lambda}{4\varepsilon} \mathbf{G}_0 + \lambda \varepsilon \mathbf{A}^{\mathsf{T}} \mathbf{G}_1 \mathbf{A} + \mathbf{M}_{01}^{\mathsf{T}} (\sum_i \mathrm{diag} \left(\mathbf{B}' \mathbf{u}_i\right)^2) \mathbf{G}_1 \mathbf{M}_{01} \right] \mathbf{v} = \frac{\lambda}{4\varepsilon} \mathbf{G}_0 \mathbf{1} \end{cases}$$

- Our algorithm progressively decreases ϵ to get a better chance of capturing the optimum
 - ▷ ϵ follows typically sequence 2, 1, 0.5, 0.25 (for h = 1 sampling)
 - \triangleright results on u and v are starting point for next ϵ

Image restoration on toy examples

- systems are solved using Cholesky decomposition (Eigen)
- ϵ takes the successive values 2, 1, 0.5, 0.25, for sampling step h = 1.

Image restoration on toy examples

- systems are solved using Cholesky decomposition (Eigen)
- ϵ takes the successive values 2, 1, 0.5, 0.25, for sampling step h = 1.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへの

Influence of parameter ε

$$AT_{\varepsilon}(u,v) = \alpha \int_{\Omega} |u-g|^2 \, \mathrm{dx} + \int_{\Omega} v^2 |\nabla u|^2 \, \mathrm{dx} + \lambda \int_{\Omega} \varepsilon |\nabla v|^2 + \frac{1}{\varepsilon} \frac{(1-v)^2}{4} \, \mathrm{dx}$$

- Γ-convergence parameter
- Controls the thickness of the contours
 - \triangleright large ε convexifies AT and helps to detect the discontinuities;
 - \triangleright as ε goes to 0, the discontinuities become thinner and thinner.

Discrete calculus model of Ambrosio-Tortorelli's functionnal

Ambrosio-Tortorelli's functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications

Image restoration / denoising

Image restoration / denoising

Scale-space given by α and λ and image segmentation

for decreasing λ

Image inpainting (on toy example)

- mask (in black) : domain M where data g (in color) is unknown
- $\alpha(x) := \{ \alpha \in \Omega \setminus M, 0 \text{ elswhere} \}$
- initialization: u random in M, = g in $\Omega \setminus M$

Image inpainting (on classical crack-tip example)

g

mask M

 $\mathrm{AT}^{2,0}_{\varepsilon}$, $\alpha = 1$, $\lambda = 0.0024$

うして ふゆう ふほう ふほう うらつ

- Decreasing sequence of λ (irreversibility !?)
- same result as [Pock, Bishof, Cremers, Pock 2009], based on MS relaxation of [Alberti, Bouchitté, Dal Maso 2003]
- result independent of initialization as long as first ϵ is big enough (ϵ from 4 to 0.25 here, for image of size 110 × 110).

Image inpainting (crack-tip + decreasing λ)

 $egin{aligned} &100 imes100\ \lambda = 0.0000763\ lpha = 1 \end{aligned}$

 200×200 $\lambda = 0.0000381$ $\alpha = 1$

digital surface = boundary of set of voxels

same discrete calculus same $\mathrm{AT}^{2,0}_{\varepsilon}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.

same discrete calculus same $\mathrm{AT}_{\varepsilon}^{2,0}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.

(□) (圖) (E) (E) (E)

digital surface = boundary of set of voxels

same discrete calculus same $\mathrm{AT}_{\varepsilon}^{2,0}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.

Output: piecewise smooth normals $(u_i)_{i=1,2,3}$ and features v

digital surface = boundary of set of voxels

same discrete calculus same $\mathrm{AT}_{\varepsilon}^{2,0}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.

Output: piecewise smooth normals $(u_i)_{i=1,2,3}$ and features v

digital surface = boundary of set of voxels

same discrete calculus same $\mathrm{AT}_{\varepsilon}^{2,0}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.

Output: piecewise smooth normals $(u_i)_{i=1,2,3}$ and features v

Discrete calculus on triangulated mesh

- $\bullet~$ dual mesh $\perp~$ primal mesh
- dual vertex = center of triangle circumcircle
- Hodge stars are no more trivial but still diagonal matrices
- $\star_0(v) := \operatorname{Area}(\operatorname{dual}(v))$
- $\star_1(e) := \operatorname{length}(\operatorname{dual}(e))/\operatorname{length}(e)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\star_2(t) := 1/\operatorname{Area}(t)$
- otherwise same discrete calculus

Discrete calculus on triangulated mesh

- $\bullet\,$ dual mesh \perp primal mesh
- dual vertex = center of triangle circumcircle
- Hodge stars are no more trivial but still diagonal matrices
- $\star_0(v) := \operatorname{Area}(\operatorname{dual}(v))$
- $\star_1(e) := \operatorname{length}(\operatorname{dual}(e))/\operatorname{length}(e)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\star_2(t) := 1/\operatorname{Area}(t)$
- otherwise same discrete calculus
- $AT_{\varepsilon}^{2,0}$ is then the same !

0. Bad mesh with positions \mathbf{x}^0 , $k \leftarrow 0$

イロト イロト イヨト イヨト 三日

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

0. Bad mesh with positions \mathbf{x}^0 , $k \leftarrow 0$ 1. $\mathbf{g} = \text{normals from } \mathbf{x}^{(k)}$, Hodge stars from $\mathbf{x}^{(k)}$ 2. $\operatorname{AT}_{\varepsilon}^{2,0}$ to get piecewise smooth normals $\mathbf{u}^{(k)}$ 3. $\mathbf{x}^{(k+1)} \leftarrow \text{regularize positions } \mathbf{x}^{(k)}$ by aligning geometric normals with $\mathbf{u}^{(k)}$

うして ふゆう ふほう ふほう うらつ

うして ふゆう ふほう ふほう うらつ

0. Bad mesh with positions \mathbf{x}^0 , $k \leftarrow 0$ 1. $\mathbf{g} = \text{normals from } \mathbf{x}^{(k)}$, Hodge stars from $\mathbf{x}^{(k)}$ 2. $\operatorname{AT}_{\varepsilon}^{2,0}$ to get piecewise smooth normals $\mathbf{u}^{(k)}$ 3. $\mathbf{x}^{(k+1)} \leftarrow \text{regularize positions } \mathbf{x}^{(k)}$ by aligning geometric normals with $\mathbf{u}^{(k)}$ 4. $k \leftarrow k + 1$ and iterate till stability

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Mesh denoising (a few results)

Mesh denoising (Comparison with FEM)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Mesh segmentation

• v is used as a probability of edge merge in a graph connected component algorithm

Mesh inpainting

Conclusion

- Discrete calculus model of AT recovers discontinuities
 - $\triangleright\,$ usual "phase-field" ones $\longrightarrow thin$ discontinuities
- very generic formulation: 2D images, digital surfaces, triangulated meshes, graph structures, 3D hexahedral, tetrahedral or mixed meshes, ...
- opens a wide range of applications
 - image processing
 - ▷ 3D geometry processing
- open-source C++ code available, mostly on dgtal.org, otherwise on github.com

うして ふゆう ふほう ふほう うらつ

• reasonnable computation times: from seconds to a few minutes

• What about $\Gamma\text{-convergence of }\mathrm{AT}^{2,0}_{\varepsilon}$ to MS ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• What about $\Gamma\text{-convergence of }\mathrm{AT}^{2,0}_{\varepsilon}$ to MS ?

▷ If $\epsilon < h$ or $\epsilon \approx h$, terms $\lambda \varepsilon (\mathbf{d}_0 \vee, \mathbf{d}_0 \vee)_{\Omega, 1} + \frac{\lambda}{4\varepsilon} (1 - \nu, 1 - \nu)_{\Omega, 0}$ do **not** converge to $\lambda \mathcal{H}^{N-1}(J_u)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

• What about $\Gamma\text{-convergence of }\mathrm{AT}^{2,0}_{\varepsilon}$ to MS ?

▷ If $\epsilon < h$ or $\epsilon \approx h$, terms $\lambda \varepsilon (\mathbf{d}_0 \vee, \mathbf{d}_0 \vee)_{\Omega, 1} + \frac{\lambda}{4\varepsilon} (1 - \vee, 1 - \vee)_{\Omega, 0}$ do **not** converge to $\lambda \mathcal{H}^{N-1}(J_u)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

▷ Agreed, but it is also the case for FDM or FEM !

• What about $\Gamma\text{-convergence of }\mathrm{AT}^{2,0}_{\varepsilon}$ to MS ?

▶ If $\epsilon < h$ or $\epsilon \approx h$, terms $\lambda \varepsilon (\mathbf{d}_0 \vee, \mathbf{d}_0 \vee)_{\Omega, 1} + \frac{\lambda}{4\varepsilon} (1 - \nu, 1 - \nu)_{\Omega, 0}$ do **not** converge to $\lambda \mathcal{H}^{N-1}(J_u)$

- \triangleright Agreed, but it is also the case for FDM or FEM !
- Probably $\epsilon \gg h$, $AT_{\varepsilon}^{2,0}$ Γ -converges to MS (same as FDM or FEM)
 - ▷ what is the speed of convergence, error , etc ...

• What about $\Gamma\text{-convergence}$ of $\mathrm{AT}^{2,0}_{\varepsilon}$ to MS ?

▶ If $\epsilon < h$ or $\epsilon \approx h$, terms $\lambda \varepsilon (\mathbf{d}_0 \vee, \mathbf{d}_0 \vee)_{\Omega, 1} + \frac{\lambda}{4\varepsilon} (1 - \nu, 1 - \nu)_{\Omega, 0}$ do **not** converge to $\lambda \mathcal{H}^{N-1}(J_u)$

- $\triangleright\,$ Agreed, but it is also the case for FDM or FEM !
- Probably ε ≫ h, AT_ε^{2,0} Γ-converges to MS (same as FDM or FEM)
 what is the speed of convergence, error , etc ...
- Mostly interested in the **location** of discontinuities, not in the **energy value** !

• What about $\Gamma\text{-convergence}$ of $\mathrm{AT}^{2,0}_{\varepsilon}$ to MS ?

▶ If $\epsilon < h$ or $\epsilon \approx h$, terms $\lambda \varepsilon (\mathbf{d}_0 \vee, \mathbf{d}_0 \vee)_{\Omega, 1} + \frac{\lambda}{4\varepsilon} (1 - \nu, 1 - \nu)_{\Omega, 0}$ do **not** converge to $\lambda \mathcal{H}^{N-1}(J_u)$

- $\triangleright\,$ Agreed, but it is also the case for FDM or FEM !
- Probably ε ≫ h, AT_ε^{2,0} Γ-converges to MS (same as FDM or FEM)
 what is the speed of convergence, error, etc ...
- Mostly interested in the **location** of discontinuities, not in the **energy value** !
 - ▷ When $\epsilon < h$, Hausdorff distance between v and "ground truth"?

• What about $\Gamma\text{-convergence}$ of $\mathrm{AT}^{2,0}_{\varepsilon}$ to MS ?

▷ If $\epsilon < h$ or $\epsilon \approx h$, terms $\lambda \varepsilon (\mathbf{d}_0 \vee, \mathbf{d}_0 \vee)_{\Omega, 1} + \frac{\lambda}{4\varepsilon} (1 - \nu, 1 - \nu)_{\Omega, 0}$ do **not** converge to $\lambda \mathcal{H}^{N-1}(J_u)$

 \triangleright Agreed, but it is also the case for FDM or FEM !

- Probably $\epsilon \gg h$, $AT_{\varepsilon}^{2,0}$ Γ -converges to MS (same as FDM or FEM)
 - $\triangleright\,$ what is the speed of convergence, error , etc $\ldots\,$
- Mostly interested in the **location** of discontinuities, not in the **energy value** !
 - \triangleright When $\epsilon < \textit{h},$ Hausdorff distance between v and "ground truth"?
- What about tensors in discrete calculus ? Forms model only antisymmetric tensors !
 - Smart approach: decomposition on image and kernel of operators
 - ▷ Grid approach: differential and derivatives aligned with edges
 - ▷ both cases: tensors located both on primal and dual vertices !

• What about $\Gamma\text{-convergence}$ of $\mathrm{AT}^{2,0}_{\varepsilon}$ to MS ?

▷ If $\epsilon < h$ or $\epsilon \approx h$, terms $\lambda \varepsilon (\mathbf{d}_0 \vee, \mathbf{d}_0 \vee)_{\Omega, 1} + \frac{\lambda}{4\varepsilon} (1 - \nu, 1 - \nu)_{\Omega, 0}$ do **not** converge to $\lambda \mathcal{H}^{N-1}(J_u)$

- $\triangleright\,$ Agreed, but it is also the case for FDM or FEM !
- Probable >> h AT^{2,0} F converges to MS (come as FDM or FEM) >> wh Thank you for your attention !
- Mostly interested in the **location** of discontinuities, not in the **energy value** !
 - \triangleright When $\epsilon < \textit{h},$ Hausdorff distance between v and "ground truth"?
- What about tensors in discrete calculus ? Forms model only antisymmetric tensors !
 - Smart approach: decomposition on image and kernel of operators
 - ▷ Grid approach: differential and derivatives aligned with edges
 - ▷ both cases: tensors located both on primal and dual vertices !

References |

Alberti, G., Bouchitté, G., and Dal Maso, G. (2003).

The calibration method for the mumford-shah functional and free-discontinuity problems.

Calculus of Variations and Partial Differential Equations, 16(3):299-333.

Ambrosio, L. and Tortorelli, V. M. (1992). On the approximation of free discontinuity problems. *Boll. Un. Mat. Ital.*, 6(B):105–123.

Implementation of an adaptive finite-element approximation of the mumford-shah functional.

Numerische Mathematik, 85(4):609-646.

Boykov, Y. and Funka-Lea, G. (2006).

Graph cuts and efficient nd image segmentation. International journal of computer vision, 70(2):109–131.

Boykov, Y., Veksler, O., and Zabih, R. (2001).

Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(11):1222–1239.

Chambolle, A. and Pock, T. (2011).

A first-order primal-dual algorithm for convex problems with applications to imaging. *Journal of Mathematical Imaging and Vision*, 40(1):120–145.

References II

Kee, Y. and Kim, J. (2014).

A convex relaxation of the ambrosio-tortorelli elliptic functionals for the mumford-shah functional.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4074–4081.

Mumford, D. and Shah, J. (1989).

Optimal approximations by piecewise smooth functions and associated variational problems.

Communications on pure and applied mathematics, 42(5):577-685.

Pock, T., Cremers, D., Bischof, H., and Chambolle, A. (2009). An algorithm for minimizing the mumford-shah functional. In 2009 IEEE 12th International Conference on Computer Vision, pages 1133–1140. IEEE.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. *Physica D: Nonlinear Phenomena*, 60(1):259–268.

Vese, L. A. and Chan, T. F. (2002).

A multiphase level set framework for image segmentation using the mumford and shah model.

International journal of computer vision, 50(3):271–293.