Discrete calculus model of Ambrosio-Tortorelli's functional

Jacques-Olivier Lachaud ${ }^{1}$
${ }^{1}$ Lab. of Mathematics, University Savoie Mont Blanc

March 7th, 2019
Workshop Phase-field models of fracture
Banff International Research Station

Collaborators

Hugues Talbot Nicolas Bonneel

A versatile tool for piecewise smooth image and geometry processing

Discrete calculus model of Ambrosio-Tortorelli's functionnal

Ambrosio-Tortorelli's functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications

Mumford-Shah functional

[Mumford and Shah, 1989]

Mumford-Shah functional for image restoration

We minimize

$$
\mathcal{M S}(K, u)=\alpha \underbrace{\int_{\Omega \backslash K}|u-g|^{2} \mathrm{dx}}_{\text {fidelity term }}+\underbrace{\int_{\Omega \backslash K}|\nabla u|^{2} \mathrm{dx}}_{\text {smoothness term }}+\lambda \underbrace{\mathcal{H}^{1}(K \cap \Omega)}_{\text {discontinuities length }}
$$

- Ω the image domain
- g the input image
- u a piecewise smooth approximation of g
- K the set of discontinuities
- \mathcal{H}^{1} the Hausdorff measure

Mumford-Shah functional

[Mumford and Shah, 1989]

Mumford-Shah functional for image restoration

We minimize

$$
\mathcal{M S}(K, u)=\alpha \underbrace{\int_{\Omega \backslash K}|u-g|^{2} \mathrm{dx}}_{\text {fidelity term }}+\underbrace{\int_{\Omega \backslash K}|\nabla u|^{2} \mathrm{dx}}_{\text {smoothness term }}+\lambda \underbrace{\mathcal{H}^{1}(K \cap \Omega)}_{\text {discontinuities length }}
$$

- Ω the image domain
- g the input image
- u a piecewise smooth approximation of g
χK the set of discontinuities
Х \mathcal{H}^{1} the Hausdorff measure

Mumford-Shah functional
 [Mumford and Shah, 1989]

Notably difficult to minimize
Many relaxations and convexifications have been proposed.

- Total Variation [Rudin et al., 1992] and its variants
- Multi-phase level sets [Vese and Chan, 2002] and follow-ups
- Discrete graph approaches [Boykov et al., 2001, Boykov and Funka-Lea, 2006]
- Calibration method [Alberti et al., 2003] and associated algorithms [Pock et al., 2009, Chambolle and Pock, 2011]
- Ambrosio-Tortorelli functional [Ambrosio and Tortorelli, 1992]
- convex relaxations of AT [Kee and Kim, 2014]

Mumford-Shah functional

[Mumford and Shah, 1989]

Notably difficult to minimize
Many relaxations and convexifications have been proposed.

- Total Variation [Rudin et al., 1992] and its variants
- Multi-phase level sets [Vese and Chan, 2002] and follow-ups
- Discrete graph approaches
[Boykov et al., 2001, Boykov and Funka-Lea, 2006]
- Calibration method [Alberti et al., 2003] and associated algorithms [Pock et al., 2009, Chambolle and Pock, 2011]
- Ambrosio-Tortorelli functional [Ambrosio and Tortorelli, 1992]
- convex relaxations of AT [Kee and Kim, 2014]

Ambrosio-Tortorelli functional

[Ambrosio and Tortorelli, 1992]

$$
A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{\varepsilon} \frac{(1-v)^{2}}{4} \mathrm{dx}
$$

- Ω the image domain
- g the input image
- u a piecewise smooth approximation of g
- v a smooth approximation of $1-\chi_{K}$ whole domain integration no Hausdorff measure

Ambrosio-Tortorelli functional

[Ambrosio and Tortorelli, 1992]

$$
A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{\varepsilon} \frac{(1-v)^{2}}{4} \mathrm{dx}
$$

- Ω the image domain
- g the input image
- u a piecewise smooth approximation of g
- v a smooth approximation of $1-\chi_{k}$
whole domain integration
no Hausdorff measure

$$
\Gamma \text {-convergence: } \quad A T_{\varepsilon} \xrightarrow[\varepsilon \rightarrow 0]{\Gamma} \mathcal{M S}
$$

Finite differences implementation

Finite differences implementation

Finite elements implementation

\triangleright Proposed in [Bourdin and Chambolle, 2000]

Finite elements implementation

\triangleright Proposed in [Bourdin and Chambolle, 2000]

Finite elements implementation

\triangleright Proposed in [Bourdin and Chambolle, 2000]
\triangleright Finite elements with mesh refinement and realignment

Finite elements implementation

\triangleright Proposed in [Bourdin and Chambolle, 2000]
\triangleright Finite elements with mesh refinement and realignment

Finite elements implementation
\triangleright Proposed in [Bourdin and Chambolle, 2000]
\triangleright Finite elements with mesh refinement and realignment

Finite elements implementation

\triangleright Proposed in [Bourdin and Chambolle, 2000]
\triangleright Finite elements with mesh refinement and realignment

Finite elements implementation

\triangleright Proposed in [Bourdin and Chambolle, 2000]
\triangleright Finite elements with mesh refinement and realignment

Discrete calculus model of Ambrosio-Tortorelli's functionnal

Ambrosio-Tortorelli's functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications

Discrete Calculus

Computer graphics, geometry processing, shape optimization

(Images: Knöppel et al. 2015, Crane et al. 2013, Springborn et al. 2010)
Discrete exterior calculus [Desbrun, Hirani, Leok, ...]
Discrete differential calculus [Polthier, Pinkall, Bobenko, ...]
Discrete calculus [Grady, Polimeni, ...]
Graph and network analysis, image processing, fluid simul.

(Images: Bugeau et al. 2014, couprie et al. 2014, Elcott et al. 2006)

Discrete Calculus

Computer graphics, geometry processing, shape optimization

- no discretization, discrete by nature
- keep algebraic properties of calculus, exact Stokes' theorem
- reduces to matrix/vectors
- works without embedding, just metric
- "any" cell complex, arbitrary dimension

Graph and network analysis, image processing, fluid simul.

(Images: Bugeau et al. 2014, couprie et al. 2014, Elcott et al. 2006)

Cell complex, chains, boundary, forms

- cell complex K: vertices, edges, faces (pixels)

Cell complex, chains, boundary, forms

- cell complex K: vertices, edges, faces (pixels) with orientation

Cell complex, chains, boundary, forms

$$
\sigma:=a_{1}+a_{4}+a_{5} \in C_{2}(K)
$$

- cell complex K: vertices, edges, faces (pixels) with orientation
- k-chains: $C_{k}(K)$ are integral formal sums of oriented cells

Cell complex, chains, boundary, forms

$$
\begin{aligned}
\sigma & :=a_{1}+a_{4}+a_{5} \in C_{2}(K) \\
\eta & :=\sum e_{i}-\sum e_{j} \in C_{1}(K) \\
\eta & =\partial_{2} \sigma
\end{aligned}
$$

- cell complex K : vertices, edges, faces (pixels) with orientation
- k-chains: $C_{k}(K)$ are integral formal sums of oriented cells
- boundary operators: $\cdots C_{2}(K) \xrightarrow{\partial_{2}} C_{1}(K) \xrightarrow{\partial_{1}} C_{0}(K) \xrightarrow{\partial_{0}} 0$

Cell complex, chains, boundary, forms

$$
\begin{aligned}
\sigma & :=a_{1}+a_{4}+a_{5} \in C_{2}(K) \\
\eta & :=\sum e_{i}-\sum e_{j} \in C_{1}(K) \\
\eta & =\partial_{2} \sigma
\end{aligned}
$$

- cell complex K : vertices, edges, faces (pixels) with orientation
- k-chains: $C_{k}(K)$ are integral formal sums of oriented cells
- boundary operators: $\cdots C_{2}(K) \xrightarrow{\partial_{\mathbf{2}}} C_{1}(K) \xrightarrow{\partial_{\mathbf{1}}} C_{0}(K) \xrightarrow{\partial_{0}} 0$
- discrete k-forms: elements of $C^{k}(K):=\operatorname{Hom}\left(C_{k}(K), \mathbb{R}\right)$
$\triangleright 0$-forms: functions, i.e. a value per vertex
\triangleright 1-forms: differential forms/vector field, i.e. a value per edge
\triangleright 2-forms: area forms, i.e. a value per face

Cell complex, chains, boundary, forms

$$
\begin{aligned}
\sigma & :=a_{1}+a_{4}+a_{5} \in C_{2}(K) \\
\eta & :=\sum e_{i}-\sum e_{j} \in C_{1}(K) \\
\eta & =\partial_{2} \sigma
\end{aligned}
$$

- cell complex K : vertices, edges, faces (pixels) with orientation
- k-chains: $C_{k}(K)$ are integral formal sums of oriented cells
- boundary operators: $\cdots C_{2}(K) \xrightarrow{\partial_{2}} C_{1}(K) \xrightarrow{\partial_{1}} C_{0}(K) \xrightarrow{\partial_{0}} 0$
- discrete k-forms: elements of $C^{k}(K):=\operatorname{Hom}\left(C_{k}(K), \mathbb{R}\right)$
$\triangleright 0$-forms: functions, i.e. a value per vertex
\triangleright 1-forms: differential forms/vector field, i.e. a value per edge
$\triangleright 2$-forms: area forms, i.e. a value per face
- Integral $\int_{\sigma} \alpha=$ pairing k-form α with k-chain σ

$$
\int_{\sigma} \alpha:=\alpha(\sigma)=\sum_{i} a_{i} \alpha\left(c_{i}\right) \quad \text { if } \sigma=\sum_{i} a_{i} c_{i}
$$

Exterior derivative, Stokes theorem

- exterior derivative defined by duality: $\mathbf{d}_{k}: C^{k}(K) \rightarrow C^{k+1}(K)$

$$
\left(\mathbf{d}_{k} \alpha^{k}\right)\left(\sigma_{k+1}\right):=\alpha^{k}\left(\partial_{k+1} \sigma_{k+1}\right)
$$

thus incidence relations define derivative by duality

Exterior derivative, Stokes theorem

- exterior derivative defined by duality: $\mathbf{d}_{k}: C^{k}(K) \rightarrow C^{k+1}(K)$

$$
\left(\mathbf{d}_{k} \alpha^{k}\right)\left(\sigma_{k+1}\right):=\alpha^{k}\left(\partial_{k+1} \sigma_{k+1}\right)
$$

thus incidence relations define derivative by duality

- Function or discrete 0-form : $\alpha=(0.2,0.7,0.1,0.5)$

Exterior derivative, Stokes theorem

- exterior derivative defined by duality: $\mathbf{d}_{k}: C^{k}(K) \rightarrow C^{k+1}(K)$

$$
\left(\mathbf{d}_{k} \alpha^{k}\right)\left(\sigma_{k+1}\right):=\alpha^{k}\left(\partial_{k+1} \sigma_{k+1}\right)
$$

thus incidence relations define derivative by duality

- Function or discrete 0 -form : $\alpha=(0.2,0.7,0.1,0.5)$
- 1 -form $\mathbf{d}_{0}(\alpha)=\beta=(0.5,0.1,0.2,0.4)$

Exterior derivative, Stokes theorem

- exterior derivative defined by duality: $\mathbf{d}_{k}: C^{k}(K) \rightarrow C^{k+1}(K)$

$$
\left(\mathbf{d}_{k} \alpha^{k}\right)\left(\sigma_{k+1}\right):=\alpha^{k}\left(\partial_{k+1} \sigma_{k+1}\right)
$$

thus incidence relations define derivative by duality

- Function or discrete 0 -form : $\alpha=(0.2,0.7,0.1,0.5)$
- 1 -form $\mathbf{d}_{0}(\alpha)=\beta=(0.5,0.1,0.2,0.4)$
- 2 -form $\mathbf{d}_{1}(\beta)=0$, since $\mathbf{d}_{1} \mathbf{d}_{0}=0$

Exterior derivative, Stokes theorem

- exterior derivative defined by duality: $\mathbf{d}_{k}: C^{k}(K) \rightarrow C^{k+1}(K)$

$$
\left(\mathbf{d}_{k} \alpha^{k}\right)\left(\sigma_{k+1}\right):=\alpha^{k}\left(\partial_{k+1} \sigma_{k+1}\right)
$$

th (discrete) Stokes theorem is trivial by definition

$$
\int_{\sigma} \mathbf{d} \alpha=\int_{\partial \sigma} \alpha
$$

for σ any k-chain and α any $k-1$-form

- Function or discrete 0-form : $\alpha=(0.2,0.7,0.1,0.5)$
- 1 -form $\mathbf{d}_{0}(\alpha)=\beta=(0.5,0.1,0.2,0.4)$
- 2 -form $\mathbf{d}_{1}(\beta)=0$, since $\mathbf{d}_{1} \mathbf{d}_{0}=0$

Dual cell complex, Hodge star, calculus

complex K

dual complex \bar{K}

primal dual

- Hodge duality created with dual/orthogonal structure

Dual cell complex, Hodge star, calculus

complex K

dual complex \bar{K}

primal dual

- Hodge duality created with dual/orthogonal structure
- anti-derivatives $\mathbf{d}_{\bar{k}}$ are derivatives in dual complex
\triangleright in matrix form $\mathbf{d}_{\bar{k}}{ }^{\top}:=\mathbf{d}_{n-1-k}$

Dual cell complex, Hodge star, calculus

complex K

dual complex \bar{K}

primal dual

- Hodge duality created with dual/orthogonal structure
- anti-derivatives $\mathbf{d}_{\bar{k}}$ are derivatives in dual complex
\triangleright in matrix form $\mathbf{d}_{\bar{k}}{ }^{\top}:=\mathbf{d}_{n-1-k}$
- Hodge stars \star_{k} transport k-forms to dual $2-k$-forms
\triangleright diagonal matrices incorporating metric information
\triangleright e.g. $\star_{k} \mathbf{1}=\alpha$ is the area 2 -form $\mathrm{d} A$

Dual cell complex, Hodge star, calculus

complex K

dual complex \bar{K}

primal dual

- Hodge duality created with dual/orthogonal structure
- anti-derivatives $\mathbf{d}_{\bar{k}}$ are derivatives in dual complex
\triangleright in matrix form $\mathbf{d}_{\bar{k}}{ }^{\top}:=\mathbf{d}_{n-1-k}$
- Hodge stars \star_{k} transport k-forms to dual $2-k$-forms
\triangleright diagonal matrices incorporating metric information
\triangleright e.g. $\star_{k} \mathbf{1}=\alpha$ is the area 2 -form $\mathrm{d} A$
- wedge products satisfy algebraic properties (Leibniz rules ...)
$\triangleright \alpha \wedge \beta:=\operatorname{diag}(\alpha) \beta$, for $\alpha \in C^{k}(K), \beta \in C^{2-k}(\bar{K})$,
$\triangleright f \wedge \gamma:=\operatorname{diag}\left(\mathbf{M}_{01} f\right) \gamma$, for $f \in C^{0}(K), \gamma \in C^{1}(K) \ldots$

Dual cell complex, Hodge star, calculus

Almost all the calculus is built from the previous operators

- codifferentials $\delta_{1}:=-\star_{2} \mathbf{d}_{1{ }_{1}}{ }_{1}, \delta_{2}:=-\star_{1} \mathbf{d}_{\overline{0} \star_{2}}$,
- Laplacian $\Delta:=\delta_{1} \mathbf{d}_{0}$
- Edge Laplacian $\Delta_{1}:=\mathbf{d}_{0} \delta_{1}+\delta_{2} \mathbf{d}_{1}$,
- musical ops : Vector field $\xrightarrow{b} 1$-form $\xrightarrow{\sharp}$ Vector field
- gradient $\nabla f:=\left(\mathbf{d}_{0} f\right)^{\sharp}$
- divergence $\operatorname{div} \mathbf{V}:=\delta_{1} \mathbf{V}^{b}$
- L^{2} inner-product $(\alpha, \beta)_{\Omega, k}:=\int_{\Omega} \alpha \wedge \star_{k} \beta$, for $\alpha, \beta k$-forms
$\triangleright f \wedge \gamma:=\operatorname{diag}\left(\mathbf{M}_{01} f\right) \gamma$, for $f \in C^{0}(K), \gamma \in C^{1}(K) \ldots$

Discrete formulation of AT

On faces and vertices

$$
A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx}
$$

We choose :

- functions u, g to live on faces
$\triangleright u, g$ are 2 -forms
\triangleright equivalently dual 0 -forms
- function v to live on vertices
$\triangleright \mathrm{v}$ is a 0 -form

Discrete formulation of AT

On faces and vertices

$$
\begin{aligned}
& A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx} \\
& \stackrel{\bullet}{\uparrow} \bullet \longrightarrow \bullet \longrightarrow \stackrel{\bullet}{\uparrow} \quad \text { We choose : } \\
& \text { - functions } u, g \text { to live on faces } \\
& \triangleright u, g \text { are 2-forms } \\
& \triangleright \text { equivalently dual } 0 \text {-forms } \\
& \text { - function } v \text { to live on vertices } \\
& \triangleright v \text { is a } 0 \text {-form } \\
& \operatorname{AT}_{\varepsilon}^{2,0}(u, v)=\alpha(u-g, u-g)_{\Omega, 2}
\end{aligned}
$$

Discrete formulation of AT

On faces and vertices

$$
\begin{aligned}
& A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We choose : } \\
& \text { - functions } u, g \text { to live on faces } \\
& \triangleright \text { u. } 5 \text { are } 2 \text {-forms } \\
& \triangleright \text { equivalently dual 0-forms } \\
& \text { - fuplction } v \text { to live on vertices } \\
& \triangleright v \text { is a 0-form } \\
& \operatorname{AT}_{\varepsilon}^{2,0}(u, v)=\alpha(u-g, u-g)_{\Omega, 2} \\
& +\lambda \varepsilon\left(\mathbf{d}_{0} \vee, \mathbf{d}_{0} \vee\right)_{\Omega, 1}
\end{aligned}
$$

Discrete formulation of AT

On faces and vertices

$$
\begin{aligned}
& A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx} \\
& \operatorname{AT}_{\varepsilon}^{2,0}(u, v)=\alpha(u-g, u-g)_{\Omega, 2} \\
& +\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}
\end{aligned}
$$

Discrete formulation of AT

On faces and vertices

$$
\begin{aligned}
& A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx} \\
& \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \quad \text { We choose }:
\end{aligned}
$$

- functions u, g to live on faces
$\triangleright u, g$ ane 2 -forms
\triangleright equivalently dual 0 -forms
- function v to live on vertices
$\triangleright v$ is a 0 -form

$$
\mathrm{AT}_{\varepsilon}^{2,0}(\mathrm{u}, \mathrm{v})=\alpha(\mathrm{u}-\mathrm{g}, \mathrm{u}-\mathrm{g})_{\Omega, 2}+(?, ?)_{\Omega}
$$

$$
+\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}
$$

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}=\left(\mathrm{v} \delta_{2} u, v \delta_{2} \mathrm{u}\right)_{\Omega, 1}
$$

- $\delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}=\left(\mathrm{v} \delta_{2} u, \mathrm{v} \delta_{2} \mathrm{u}\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$
- $0.8 \quad 0.8 \quad 1.0$
$\bullet \quad .0 .0 \quad 0.2$
$\bullet \quad$ • $0.2 \quad 0.8$
- 0-form v

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}=\left(v \delta_{2} u, v \delta_{2} \mathrm{u}\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

- 0-form v
- 1-form $\mathrm{M}_{01} \mathrm{v}$

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} d x=\left(v \delta_{2} u, v \delta_{2} u\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

- 0 -form v
- 2-form u
- 1-form $\mathrm{M}_{01} \mathrm{v}$

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} d x=\left(v \delta_{2} u, v \delta_{2} u\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

- 0 -form v
- 2 -form u
- 1-form $\mathrm{M}_{01} \mathrm{v}$
- 1-form $\delta_{2} \mathrm{u}$

Discrete formulation of AT
Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}=\left(\mathrm{v} \delta_{2} \mathrm{u}, \mathrm{v} \delta_{2} \mathrm{u}\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

- 0 -form v
- 1-form $\mathrm{M}_{01} \mathrm{v}$

- 2-form u
- 1-form $\delta_{2} \mathrm{u}$

- 1-form $\operatorname{diag}\left(\mathbf{M}_{01} \mathrm{v}\right) \delta_{2} \mathrm{u}$

Discrete calculus model of Ambrosio-Tortorelli's functionnal

Ambrosio-Tortorelli's functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications

Discrete formulation of AT

On faces and vertices

$$
A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx}
$$

We choose :

- functions u, g to live on faces
$\triangleright u, g$ are 2 -forms
\triangleright equivalently dual 0 -forms
- function v to live on vertices
$\triangleright \mathrm{v}$ is a 0 -form

Discrete formulation of AT

On faces and vertices

$$
\begin{aligned}
& A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx} \\
& \stackrel{\bullet}{\uparrow} \bullet \longrightarrow \bullet \longrightarrow \stackrel{\bullet}{\uparrow} \quad \text { We choose : } \\
& \text { - functions } u, g \text { to live on faces } \\
& \triangleright u, g \text { are 2-forms } \\
& \triangleright \text { equivalently dual } 0 \text {-forms } \\
& \text { - function } v \text { to live on vertices } \\
& \triangleright v \text { is a } 0 \text {-form } \\
& \operatorname{AT}_{\varepsilon}^{2,0}(u, v)=\alpha(u-g, u-g)_{\Omega, 2}
\end{aligned}
$$

Discrete formulation of AT

On faces and vertices

$$
\begin{aligned}
& A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We choose : } \\
& \text { - functions } u, g \text { to live on faces } \\
& \triangleright \text { u. } 5 \text { are } 2 \text {-forms } \\
& \triangleright \text { equivalently dual 0-forms } \\
& \text { - fuplction } v \text { to live on vertices } \\
& \triangleright v \text { is a 0-form } \\
& \operatorname{AT}_{\varepsilon}^{2,0}(u, v)=\alpha(u-g, u-g)_{\Omega, 2} \\
& +\lambda \varepsilon\left(\mathbf{d}_{0} \vee, \mathbf{d}_{0} \vee\right)_{\Omega, 1}
\end{aligned}
$$

Discrete formulation of AT

On faces and vertices

$$
\begin{aligned}
& A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx} \\
& \operatorname{AT}_{\varepsilon}^{2,0}(u, v)=\alpha(u-g, u-g)_{\Omega, 2} \\
& +\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}
\end{aligned}
$$

Discrete formulation of AT

On faces and vertices

$$
\begin{aligned}
& A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(1-v)^{2} \mathrm{dx} \\
& \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \quad \text { We choose }:
\end{aligned}
$$

- functions u, g to live on faces
$\triangleright u, g$ ane 2 -forms
\triangleright equivalently dual 0 -forms
- function v to live on vertices
$\triangleright v$ is a 0 -form

$$
\mathrm{AT}_{\varepsilon}^{2,0}(\mathrm{u}, \mathrm{v})=\alpha(\mathrm{u}-\mathrm{g}, \mathrm{u}-\mathrm{g})_{\Omega, 2}+(?, ?)_{\Omega}
$$

$$
+\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}
$$

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}=\left(\mathrm{v} \delta_{2} u, v \delta_{2} \mathrm{u}\right)_{\Omega, 1}
$$

- $\delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}=\left(\mathrm{v} \delta_{2} u, \mathrm{v} \delta_{2} \mathrm{u}\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$
- $0.8 \quad 0.8 \quad 1.0$
$\bullet \quad .0 .0 \quad 0.2$
$\bullet \quad$ • $0.2 \quad 0.8$
- 0-form v

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}=\left(v \delta_{2} u, v \delta_{2} \mathrm{u}\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

- 0-form v
- 1-form $\mathrm{M}_{01} \mathrm{v}$

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} d x=\left(v \delta_{2} u, v \delta_{2} u\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

- 0 -form v
- 2-form u
- 1-form $\mathrm{M}_{01} \mathrm{v}$

Discrete formulation of AT

Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} d x=\left(v \delta_{2} u, v \delta_{2} u\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

- 0 -form v
- 2 -form u
- 1-form $\mathrm{M}_{01} \mathrm{v}$
- 1-form $\delta_{2} \mathrm{u}$

Discrete formulation of AT
Cross term mixing u and v

$$
\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}=\left(\mathrm{v} \delta_{2} \mathrm{u}, \mathrm{v} \delta_{2} \mathrm{u}\right)_{\Omega, 1}
$$

- $v \delta_{2} u=v \wedge \delta_{2} u=\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u$

- 0 -form v
- 1-form $\mathrm{M}_{01} \mathrm{v}$

- 2-form u
- 1-form $\delta_{2} \mathrm{u}$

- 1-form $\operatorname{diag}\left(\mathbf{M}_{01} \mathrm{v}\right) \delta_{2} \mathrm{u}$

Discrete formulation of AT

$$
\begin{aligned}
\operatorname{AT}_{\varepsilon}^{2,0}(u, v) & =\alpha(u-g, u-g)_{\Omega, 2}+\left(\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u, \operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u\right)_{\Omega, 1} \\
& +\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}
\end{aligned}
$$

Discrete formulation of AT

$$
\begin{aligned}
\mathrm{AT}_{\varepsilon}^{2,0}(u, v) & =\alpha(u-g, u-g)_{\Omega, 2}+\left(\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u, \operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u\right)_{\Omega, 1} \\
& +\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}
\end{aligned}
$$

- with matrices $\mathbf{A}:=\mathbf{d}_{0}, \mathbf{B}^{\prime}:=\delta_{2}, \mathbf{G}_{k}:=\star_{k}$.

$$
\begin{aligned}
\operatorname{AT}_{\varepsilon}^{2,0}(u, v) & =\alpha(u-g)^{\top} \mathbf{G}_{2}(u-g)+u^{\top} \mathbf{B}^{\prime \top} \operatorname{diag}\left(\mathbf{M}_{01} v\right)^{2} \mathbf{G}_{1} \mathbf{B}^{\prime} u \\
& +\lambda \varepsilon v^{\top} \mathbf{A}^{\top} \mathbf{G}_{1} \mathbf{A} v+\frac{\lambda}{4 \varepsilon}(1-v)^{\top} \mathbf{G}_{0}(1-v)
\end{aligned}
$$

Discrete formulation of AT

$$
\begin{aligned}
\mathrm{AT}_{\varepsilon}^{2,0}(u, v) & =\alpha(u-g, u-g)_{\Omega, 2}+\left(\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u, \operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u\right)_{\Omega, 1} \\
& +\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}
\end{aligned}
$$

- with matrices $\mathbf{A}:=\mathbf{d}_{0}, \mathbf{B}^{\prime}:=\delta_{2}, \mathbf{G}_{k}:=\star_{k}$.

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathrm{AT}_{\varepsilon}^{2,0}(u, v) & =\alpha(u-g)^{\top} \mathbf{G}_{2}(u-g)+u^{\top} \mathbf{B}^{\prime \top} \operatorname{diag}\left(\mathbf{M}_{01} v\right)^{2} \mathbf{G}_{1} \mathbf{B}^{\prime} u \\
& +\lambda \varepsilon v^{\top} \mathbf{A}^{\top} \mathbf{G}_{1} \mathbf{A} v+\frac{\lambda}{4 \varepsilon}(1-v)^{\top} \mathbf{G}_{0}(1-v)
\end{aligned} \\
& \text { - Euler-Lagrange: } \min _{u, v} \mathrm{AT}_{\varepsilon}^{2,0} \Rightarrow \frac{\mathrm{dAT}_{\varepsilon}^{2,0}}{\mathrm{du}}=0 \text { and } \frac{\mathrm{dAT}_{\varepsilon}^{2,0}}{\mathrm{dv}}=0
\end{aligned}
$$

- $\mathrm{AT}_{\varepsilon}^{2,0}$ is quadratic in u and in v

Discrete formulation of AT

$$
\begin{aligned}
\operatorname{AT}_{\varepsilon}^{2,0}(u, v) & =\alpha(u-g, u-g)_{\Omega, 2}+\left(\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u, \operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u\right)_{\Omega, 1} \\
& +\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}
\end{aligned}
$$

- with matrices $\mathbf{A}:=\mathbf{d}_{0}, \mathbf{B}^{\prime}:=\delta_{2}, \mathbf{G}_{k}:=\star_{k}$.

$$
\begin{aligned}
& \begin{aligned}
\mathrm{AT}_{\varepsilon}^{2,0}(u, v) & =\alpha(u-g)^{\top} \mathbf{G}_{2}(u-g)+u^{\top} \mathbf{B}^{\prime \top} \operatorname{diag}\left(\mathbf{M}_{01} v\right)^{2} \mathbf{G}_{1} \mathbf{B}^{\prime} u \\
& +\lambda \varepsilon v^{\top} \mathbf{A}^{\top} \mathbf{G}_{1} \mathbf{A} v+\frac{\lambda}{4 \varepsilon}(1-v)^{\top} \mathbf{G}_{0}(1-v)
\end{aligned} \\
& \text { - Euler-Lagrange: } \min _{u, v} \mathrm{AT}_{\varepsilon}^{2,0} \Rightarrow \frac{\mathrm{dAT}_{\varepsilon}^{2,0}}{\mathrm{du}}=0 \text { and } \frac{\mathrm{dAT}_{\varepsilon}^{2,0}}{\mathrm{dv}}=0
\end{aligned}
$$

- $\mathrm{AT}_{\varepsilon}^{2,0}$ is quadratic in u and in v
- We solve alternatively for u and v the sparse linear systems:

$$
\left\{\begin{aligned}
{\left[\alpha \mathbf{G}_{2}-\mathbf{B}^{\prime \top} \operatorname{diag}\left(\mathbf{M}_{01} v\right)^{2} \mathbf{G}_{1} \mathbf{B}^{\prime}\right] \mathrm{u} } & =\alpha \mathbf{G}_{2} g \\
{\left[\frac{\lambda}{4 \varepsilon} \mathbf{G}_{0}+\lambda \varepsilon \mathbf{A}^{\top} \mathbf{G}_{1} \mathbf{A}+\mathbf{M}_{01}^{\top} \operatorname{diag}\left(\mathbf{B}^{\prime} \mathrm{u}\right)^{2} \mathbf{G}_{1} \mathbf{M}_{01}\right] \mathrm{v} } & =\frac{\lambda}{4 \varepsilon} \mathbf{G}_{0} 1
\end{aligned}\right.
$$

Discrete formulation of AT: vectorial data

$$
\begin{aligned}
\operatorname{AT}_{\varepsilon}^{2,0}\left(u_{1}, \ldots, u_{n}, v\right) & =\alpha \sum_{i}\left(u_{i}-g_{i}, u_{i}-g_{i}\right)_{\Omega, 2} \\
& +\sum_{i}\left(\operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u_{i}, \operatorname{diag}\left(\mathbf{M}_{01} v\right) \delta_{2} u_{i}\right)_{\Omega, 1} \\
& +\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}
\end{aligned}
$$

- We solve alternatively for the u_{i} and v the sparse linear systems:

$$
\left\{\begin{aligned}
\forall i \in\{1, \ldots, n\},\left[\alpha \mathbf{G}_{2}-\mathbf{B}^{\prime \top} \operatorname{diag}\left(\mathbf{M}_{01} v\right)^{2} \mathbf{G}_{1} \mathbf{B}^{\prime}\right] u_{i} & =\alpha \mathbf{G}_{2} g_{i}, \\
{\left[\frac{\lambda}{4 \varepsilon} \mathbf{G}_{0}+\lambda \varepsilon \mathbf{A}^{\top} \mathbf{G}_{1} \mathbf{A}+\mathbf{M}_{01}^{\top}\left(\sum_{i} \operatorname{diag}\left(\mathbf{B}^{\prime} u_{i}\right)^{2}\right) \mathbf{G}_{1} \mathbf{M}_{01}\right] v } & =\frac{\lambda}{4 \varepsilon} \mathbf{G}_{0} 1 .
\end{aligned}\right.
$$

- Our algorithm progressively decreases ϵ to get a better chance of capturing the optimum
$\triangleright \epsilon$ follows typically sequence $2,1,0.5,0.25$ (for $h=1$ sampling)
\triangleright results on u and v are starting point for next ϵ

Image restoration on toy examples

- systems are solved using Cholesky decomposition (Eigen)
- ϵ takes the successive values $2,1,0.5,0.25$, for sampling step $h=1$.

Image restoration on toy examples

- systems are solved using Cholesky decomposition (Eigen)
- ϵ takes the successive values $2,1,0.5,0.25$, for sampling step $h=1$.

Influence of parameter ε

$$
A T_{\varepsilon}(u, v)=\alpha \int_{\Omega}|u-g|^{2} \mathrm{dx}+\int_{\Omega} v^{2}|\nabla u|^{2} \mathrm{dx}+\lambda \int_{\Omega} \varepsilon|\nabla v|^{2}+\frac{1}{\varepsilon} \frac{(1-v)^{2}}{4} \mathrm{dx}
$$

- 「-convergence parameter
- Controls the thickness of the contours
\triangleright large ε convexifies $A T$ and helps to detect the discontinuities;
\triangleright as ε goes to 0 , the discontinuities become thinner and thinner.

$$
\varepsilon=2 \searrow 2
$$

Discrete calculus model of Ambrosio-Tortorelli's functionnal

Ambrosio-Tortorelli's functional

A brief introduction to discrete calculus

A discrete calculus model of AT

Applications

Image restoration / denoising

Image restoration / denoising

Scale-space given by α and λ and image segmentation

for decreasing λ

Image inpainting (on toy example)

- mask (in black) : domain M where data g (in color) is unknown
- $\alpha(x):=\{\alpha \in \Omega \backslash M, 0$ elswhere $\}$
- initialization: u random in $M,=g$ in $\Omega \backslash M$

$\mathrm{AT}_{\varepsilon}^{2,0}$ with ϵ from 4 to 0.25

Image inpainting (on classical crack-tip example)

g

mask M

- Decreasing sequence of λ (irreversibility !?)
- same result as [Pock, Bishof, Cremers, Pock 2009], based on MS relaxation of [Alberti, Bouchitté, Dal Maso 2003]
- result independent of initialization as long as first ϵ is big enough (ϵ from 4 to 0.25 here, for image of size 110×110).

Image inpainting (crack-tip + decreasing λ)

Image inpainting (crack-tip + changing resolution)

Feature delineation on digital surfaces

digital surface $=$ boundary of set of voxels

same discrete calculus same $\mathrm{AT}_{\varepsilon}^{2,0}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.

Feature delineation on digital surfaces

digital surface $=$ boundary of se of voxels

same discrete calculus same $\mathrm{AT}_{\varepsilon}^{2,0}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.

Feature delineation on digital surfaces

digital surface $=$ boundary of set of voxels

same discrete calculus same $\mathrm{AT}_{\varepsilon}^{2,0}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.
Output: piecewise smooth normals $\left(u_{i}\right)_{i=1,2,3}$ and features v

Feature delineation on digital surfaces

digital surface $=$ boundary of set of voxels

same discrete calculus same $\mathrm{AT}_{\varepsilon}^{2,0}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.
Output: piecewise smooth normals $\left(u_{i}\right)_{i=1,2,3}$ and features v

Feature delineation on digital surfaces

digital surface $=$ boundary of set of voxels

same discrete calculus same $\mathrm{AT}_{\varepsilon}^{2,0}$

Input: normal vector field g estimated by Integral Invariant digital normal estimator.
Output: piecewise smooth normals $\left(u_{i}\right)_{i=1,2,3}$ and features v

Discrete calculus on triangulated mesh

- dual mesh \perp primal mesh
- dual vertex $=$ center of triangle circumcircle
- Hodge stars are no more trivial but still diagonal matrices
- $\star_{0}(v):=\operatorname{Area}(\operatorname{dual}(v))$
- $\star_{1}(e):=$ length(dual $\left.(e)\right) /$ length (e)
- $\star_{2}(t):=1 / \operatorname{Area}(t)$
- otherwise same discrete calculus

Discrete calculus on triangulated mesh

- dual mesh \perp primal mesh
- dual vertex $=$ center of triangle circumcircle
- Hodge stars are no more trivial but still diagonal matrices
- $\star_{0}(v):=\operatorname{Area}(\operatorname{dual}(v))$
- $\star_{1}(e):=$ length(dual $\left.(e)\right) /$ length (e)
- $\star_{2}(t):=1 / \operatorname{Area}(t)$
- otherwise same discrete calculus
- $\mathrm{AT}_{\varepsilon}^{2,0}$ is then the same!

Mesh denoising

0. Bad mesh with positions $\mathbf{x}^{0}, k \leftarrow 0$

Mesh denoising

Mesh denoising

Mesh denoising

Mesh denoising

0 . Bad mesh with positions $\mathrm{x}^{0}, k \leftarrow 0$

1. $\mathrm{g}=$ normals from $\mathbf{x}^{(k)}$, Hodge stars from $\mathbf{x}^{(k)}$

2. $\mathrm{AT}_{\varepsilon}^{2,0}$ to get piecewise smooth normals $\mathrm{u}^{(k)}$
3. $\mathbf{x}^{(k+1)} \leftarrow$ regularize positions $\mathbf{x}^{(k)}$ by aligning geometric normals with $u^{(k)}$
4. $k \leftarrow k+1$ and iterate till stability

Mesh denoising

Mesh denoising (a few results)

Mesh denoising (Comparison with FEM)

Mesh segmentation

- v is used as a probability of edge merge in a graph connected component algorithm

Mesh inpainting

Original
Missing area
CGAL filling
Our inpainting

Conclusion

- Discrete calculus model of AT recovers discontinuities
\triangleright usual "phase-field" ones \longrightarrow thin discontinuities
- very generic formulation: 2D images, digital surfaces, triangulated meshes, graph structures, 3D hexahedral, tetrahedral or mixed meshes, ...
- opens a wide range of applications
\triangleright image processing
\triangleright 3D geometry processing
- open-source C++ code available, mostly on dgtal.org, otherwise on github.com
- reasonnable computation times: from seconds to a few minutes

Open questions. Debatable statements.

- What about Γ-convergence of $\mathrm{AT}_{\varepsilon}^{2,0}$ to MS ?

Open questions. Debatable statements.

- What about Γ-convergence of $\mathrm{AT}_{\varepsilon}^{2,0}$ to MS ?
\triangleright If $\epsilon<h$ or $\epsilon \approx h$, terms $\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-v, 1-v)_{\Omega, 0}$ do not converge to $\lambda \mathcal{H}^{N-1}\left(J_{u}\right)$

Open questions. Debatable statements.

- What about Γ-convergence of $\mathrm{AT}_{\varepsilon}^{2,0}$ to MS ?
\triangleright If $\epsilon<h$ or $\epsilon \approx h$, terms $\lambda \varepsilon\left(\mathbf{d}_{0} v, \mathbf{d}_{0} v\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-\mathrm{v}, 1-\mathrm{v})_{\Omega, 0}$ do not converge to $\lambda \mathcal{H}^{N-1}\left(J_{u}\right)$
\triangleright Agreed, but it is also the case for FDM or FEM !

Open questions. Debatable statements.

- What about Γ-convergence of $\mathrm{AT}_{\varepsilon}^{2,0}$ to MS ?
\triangleright If $\epsilon<h$ or $\epsilon \approx h$, terms $\lambda \varepsilon\left(\mathbf{d}_{0} \mathrm{v}, \mathbf{d}_{0} \mathrm{v}\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-\mathrm{v}, 1-\mathrm{v})_{\Omega, 0}$ do not converge to $\lambda \mathcal{H}^{N-1}\left(J_{u}\right)$
\triangleright Agreed, but it is also the case for FDM or FEM !
- Probably $\epsilon \gg h, \mathrm{AT}_{\varepsilon}^{2,0} \Gamma$-converges to MS (same as FDM or FEM)
\triangleright what is the speed of convergence, error, etc ...

Open questions. Debatable statements.

- What about Γ-convergence of $\mathrm{AT}_{\varepsilon}^{2,0}$ to MS ?
\triangleright If $\epsilon<h$ or $\epsilon \approx h$, terms $\lambda \varepsilon\left(\mathbf{d}_{0} \vee, \mathbf{d}_{0} \vee\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-\mathrm{v}, 1-\mathrm{v})_{\Omega, 0}$ do not converge to $\lambda \mathcal{H}^{N-1}\left(J_{u}\right)$
\triangleright Agreed, but it is also the case for FDM or FEM !
- Probably $\epsilon \gg h, \mathrm{AT}_{\varepsilon}^{2,0} \Gamma$-converges to MS (same as FDM or FEM)
\triangleright what is the speed of convergence, error, etc ...
- Mostly interested in the location of discontinuities, not in the energy value!

Open questions. Debatable statements.

- What about Γ-convergence of $\mathrm{AT}_{\varepsilon}^{2,0}$ to MS ?
\triangleright If $\epsilon<h$ or $\epsilon \approx h$, terms $\lambda \varepsilon\left(\mathbf{d}_{0} \mathrm{v}, \mathbf{d}_{0} \mathrm{v}\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-\mathrm{v}, 1-\mathrm{v})_{\Omega, 0}$ do not converge to $\lambda \mathcal{H}^{N-1}\left(J_{u}\right)$
\triangleright Agreed, but it is also the case for FDM or FEM !
- Probably $\epsilon \gg h, \mathrm{AT}_{\varepsilon}^{2,0} \Gamma$-converges to MS (same as FDM or FEM)
\triangleright what is the speed of convergence, error, etc ...
- Mostly interested in the location of discontinuities, not in the energy value!
\triangleright When $\epsilon<h$, Hausdorff distance between v and "ground truth"?

Open questions. Debatable statements.

- What about Γ-convergence of $\mathrm{AT}_{\varepsilon}^{2,0}$ to MS ?
\triangleright If $\epsilon<h$ or $\epsilon \approx h$, terms $\lambda \varepsilon\left(\mathbf{d}_{0} \mathrm{v}, \mathbf{d}_{0} \mathrm{v}\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-\mathrm{v}, 1-\mathrm{v})_{\Omega, 0}$ do not converge to $\lambda \mathcal{H}^{N-1}\left(J_{u}\right)$
\triangleright Agreed, but it is also the case for FDM or FEM !
- Probably $\epsilon \gg h, \mathrm{AT}_{\varepsilon}^{2,0} \Gamma$-converges to MS (same as FDM or FEM)
\triangleright what is the speed of convergence, error, etc ...
- Mostly interested in the location of discontinuities, not in the energy value !
\triangleright When $\epsilon<h$, Hausdorff distance between v and "ground truth"?
- What about tensors in discrete calculus ? Forms model only antisymmetric tensors !
\triangleright Smart approach: decomposition on image and kernel of operators
\triangleright Grid approach: differential and derivatives aligned with edges
\triangleright both cases: tensors located both on primal and dual vertices !

Open questions. Debatable statements.

- What about Γ-convergence of $\mathrm{AT}_{\varepsilon}^{2,0}$ to MS ?
\triangleright If $\epsilon<h$ or $\epsilon \approx h$, terms $\lambda \varepsilon\left(\mathbf{d}_{0} \mathrm{v}, \mathbf{d}_{0} \mathrm{v}\right)_{\Omega, 1}+\frac{\lambda}{4 \varepsilon}(1-\mathrm{v}, 1-\mathrm{v})_{\Omega, 0}$ do not converge to $\lambda \mathcal{H}^{N-1}\left(J_{u}\right)$
\triangleright Agreed, but it is also the case for FDM or FEM !
- Probab \triangleright whThank you for your attention!
- Mostly interested in the location of discontinuities, not in the energy value !
\triangleright When $\epsilon<h$, Hausdorff distance between v and "ground truth"?
- What about tensors in discrete calculus ? Forms model only antisymmetric tensors !
\triangleright Smart approach: decomposition on image and kernel of operators
\triangleright Grid approach: differential and derivatives aligned with edges
\triangleright both cases: tensors located both on primal and dual vertices !

References I

Alberti, G., Bouchitté, G., and Dal Maso, G. (2003).
The calibration method for the mumford-shah functional and free-discontinuity problems.
Calculus of Variations and Partial Differential Equations, 16(3):299-333.

Ambrosio, L. and Tortorelli, V. M. (1992).
On the approximation of free discontinuity problems.
Boll. Un. Mat. Ital., 6(B):105-123.

Bourdin, B. and Chambolle, A. (2000).
Implementation of an adaptive finite-element approximation of the mumford-shah functional.
Numerische Mathematik, 85(4):609-646.
Boykov, Y. and Funka-Lea, G. (2006).
Graph cuts and efficient nd image segmentation.
International journal of computer vision, 70(2):109-131.
Boykov, Y., Veksler, O., and Zabih, R. (2001).
Fast approximate energy minimization via graph cuts.
IEEE Trans. Pattern Analysis and Machine Intelligence, 23(11):1222-1239.
空
Chambolle, A. and Pock, T. (2011).
A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120-145.

References II

曷
Kee, Y. and Kim, J. (2014).
A convex relaxation of the ambrosio-tortorelli elliptic functionals for the mumford-shah functional.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4074-4081.

Mumford, D. and Shah, J. (1989).
Optimal approximations by piecewise smooth functions and associated variational problems.
Communications on pure and applied mathematics, 42(5):577-685.

Pock, T., Cremers, D., Bischof, H., and Chambolle, A. (2009).
An algorithm for minimizing the mumford-shah functional.
In 2009 IEEE 12th International Conference on Computer Vision, pages 1133-1140. IEEE.

Rudin, L. I., Osher, S., and Fatemi, E. (1992).
Nonlinear total variation based noise removal algorithms.
Physica D: Nonlinear Phenomena, 60(1):259-268.
蔦
Vese, L. A. and Chan, T. F. (2002).
A multiphase level set framework for image segmentation using the mumford and shah model.
International journal of computer vision, 50(3):271-293.

