ACPR 19 Tutorial Digital Geometry in Pattern Recognition: Extracting Geometric Features with DGtal and Applications – Part I –

Bertrand Kerautret¹ Jacques-Olivier Lachaud ² 5th Asian Conference on Pattern Recognition 26 November, 2019, Auckland, New Zealand

¹LIRIS (UMR CNRS 5205) Université de Lyon 2, F-69676, France

²LAMA (UMR CNRS 5127), Université Savoie Mont Blanc, F-73376, France

Overview of the presentation - Part I -

- 1. Motivation, Theory and Applications
- 2. Geometry with Digital Straight lines
 - 2.1 Main idea of DSS recognition algorithms
 - 2.2 Adaptation to noise
 - 2.3 Applications of DSS
- 3. DGtal Library Overview
 - 3.1 Short presentation of the library
 - 3.2 Extracting level sets contours with DGtal
 - 3.3 Example of geometric estimator
- 4. Practical session: Hands on DGtal

https://kerautret.github.io/ACPR19-DGPRTutorial

1. Motivation, Theory and Applications

Motivation

Digital Geometry

Study of shapes defined in a digital domain, generally images (\mathbb{Z}^2 , \mathbb{Z}^3 , ...) or sometimes regular lattices.

• 2D shapes = set of pixels = subsets of \mathbb{Z}^2

photo picture

image segmentation

document analysis

Motivation

Digital Geometry

Study of shapes defined in a digital domain, generally images (\mathbb{Z}^2 , \mathbb{Z}^3 , ...) or sometimes regular lattices.

- 2D shapes = set of pixels = subsets of \mathbb{Z}^2
- 3D shapes = set of voxels = subsets of Z³

Motivation

Why a specific Digital Geometry ?

- geometry of pixels/voxels looks easy but is difficult for many reasons
- Euclidean definitions of connectedness, convexity, straight lines, differential geometric quantities fail

Infinitesimal differential geometry?

Applications require geometric tools

Classical image applications

- image restoration, noise identification/removal
- image segmentation with geometric priors
- shape matching, indexing
- precise shape measurements (biomedical and material imaging)

Desired geometric analysis

- identify linear or planar parts
- cut shape into convex / concave parts
- identify dominant points (high curvature) and inflexion points (perception)
- measure volume, perimeter, area, length, curvatures
- identify centerline of tubular objects
- compute skeleton, medial axis
- process shape geometry: remove noise, simplify, multi-scale decomposition

Corner point detection

- digital contour tracking
- sound definition of digital straight segment
- stable and convergent digital curvature estimator

Corner point detection

- digital contour tracking
- sound definition of digital straight segment
- stable and convergent digital curvature estimator
- noise addressed with thicker digital straight segment

3D shape feature extraction on snow micro-structures

- 3D micro-tomography of snow \Rightarrow binary 3D images
- digital topology \Rightarrow digital surface tracking
- extracting linear parts along axes plane xy, xz, yz
- theoretical asymptotic analysis of length wrt gridstep h
- identify features according to length of linear parts

1. Motivation, Theory and Applications 2. Geometry with Digital Straight lines 3. DGtal Library Overview 4. Practical session: Hands on DGtal

Applications where digital geometry is useful

Topology identification and control, skeleton extraction

- consistent definitions of connectedness
- topological invariant (here homotopy)
- simple points preserve topology: very efficient topological control

Image restoration, segmentation and inpainting

- most image processing task = variational formulation
- digital calculus = sound framework for variational problem in digital domain
- digital calculus formulation of Mumford-Shah model

Image restoration, segmentation and inpainting

- most image processing task = variational formulation
- digital calculus = sound framework for variational problem in digital domain
- digital calculus formulation of Mumford-Shah model

Generate 3D surface model from 3D labelled images

- surface tracking in 3D labelled partitions
- convergent normal vector estimation on interfaces
- discrete variational model to align digital surface with estimated normals

Centerline extraction in arbitrary mesh / digital surfaces

- normal estimation on mesh / digital surfaces
- ray casting with 3D digital straight lines
- digital voting process

Laplacian operator for shape analysis, simplification, matching

- convergent normal estimation on digital surfaces
- convergent surface integrals
- $\bullet \Rightarrow \mathsf{pointwise} \ \mathsf{convergent} \ \mathsf{Laplacian} \ \mathsf{operator}$
- provide eigenvalues/eigenvector analysis

Summary

Applications require sound theoretical foundations

- digital topology
 - contour tracking
 - topological invariants and simple points
 - digital surfaces
- geometric primitives
 - digital straight segments
 - digital planes
- convergent geometric estimators
 - tangent and normal estimation
 - surface integrals
- digital calculus
 - variational image and geometry processing
 - multiscale analysis

Summary

Applications require sound theoretical foundations

- digital topology
 - contour tracking
 - topological invariants and simple points
 - digital surfaces
- geometric primitives
 - digital straightness
 - digital planes
- convergent geometric estimators
 - tangent and normal estimation
 - curvatures estimation
 - surface integrals
- digital calculus
 - variational image and geometry processing
 - multiscale analysis

Topology: grid, adjacency, connectedness

• regular grid / lattice

3D discrete space

Topology: grid, adjacency, connectedness

- regular grid / lattice
- 4-/8-adjacency (2D), 6-/18-/26-adjacencies (3), play dual roles

Topology: grid, adjacency, connectedness

- regular grid / lattice
- 4-/8-adjacency (2D), 6-/18-/26-adjacencies (3), play dual roles
- curves, objects are related to adjacency pairs

Topology: grid, adjacency, connectedness

- regular grid / lattice
- 4-/8-adjacency (2D), 6-/18-/26-adjacencies (3), play dual roles
- curves, objects are related to adjacency pairs
- interpixel / cell topology, digital surfaces related to adjacency pairs
- sound definition of digital *d*-dimensional manifold

Geometric primitives

• 2D/3D naive or standard digital lines, circles.

Geometric primitives

- 2D/3D naive or standard digital lines, circles.
- 3D naive or standard digital planes, spheres.

Geometric primitives

- 2D/3D naive or standard digital lines, circles.
- 3D naive or standard digital planes, spheres.
- recognition algorithms for these primitives

Geometric primitives

- 2D/3D naive or standard digital lines, circles.
- 3D naive or standard digital planes, spheres.
- recognition algorithms for these primitives

1. Motivation, Theory and Applications 2. Geometry with Digital Straight lines 3. DGtal Library Overview 4. Practical session: Hands on DGtal

Main ingredients of digital geometry

Geometric estimators of area/volume/tangent/normals/curvatures

- multigrid convergence: the finer the sampling grid *h*, the better the geometric estimation
- multigrid convergent estimators of (speed as a function of h) area/volume pixel/voxel counting (O(h) convex shapes, O(h^{22/15}) C²-convex)

perimeter minimum length polygon $(O(h^{4/3})$ convex shapes, O(h) otherwise)

- tangent 2D max. digital straight segment $(O(h^{2/3})$ piecewise C^2 shapes), Voronoi Covariance Measure $(O(h^{2/3}))$
 - **normal 3D** integral invariant $(O(h^{2/3}))$, Voronoi Covariance Measure $(O(h^{2/3}))$,
- curvatures 2D/3D integral invariant $(O(h^{1/3}))$, corrected curvature measures $(O(h^{2/3}))$

Geometric estimators of area/volume/tangent/normals/curvatures

- multigrid convergence: the finer the sampling grid *h*, the better the geometric estimation
- multigrid convergent estimators of (speed as a function of h) area/volume pixel/voxel counting (O(h) convex shapes, O(h^{22/15}) C²-convex)

perimeter minimum length polygon $(O(h^{4/3})$ convex shapes, O(h) otherwise)

- tangent 2D max. digital straight segment $(O(h^{2/3})$ piecewise C^2 shapes), Voronoi Covariance Measure $(O(h^{2/3}))$
 - **normal 3D** integral invariant $(O(h^{2/3}))$, Voronoi Covariance Measure $(O(h^{2/3}))$,
- curvatures 2D/3D integral invariant $(O(h^{1/3}))$, corrected curvature measures $(O(h^{2/3}))$

All results presented in the tutorial were obtained from the DGtal library!

Example of convergent curvature estimator

• Mean curvature estimation with corrected curvature measures

2. Geometry with Digital Straight lines

2. Geometry with Digital Straight Lines

Main primitive for 2D analysis:

- Digital Straight Segment recognition algorithms (DSS).
- Take the noise into account (parameters).
- Adapted locally to the shape (scale adjustment).

2. Geometry with Digital Straight Lines

Main primitive for 2D analysis:

- Digital Straight Segment recognition algorithms (DSS).
- Take the noise into account (parameters).
- Adapted locally to the shape (scale adjustment).

2. Geometry with Digital Straight Lines

Main primitive for 2D analysis:

- Digital Straight Segment recognition algorithms (DSS).
- Take the noise into account (parameters).
- Adapted locally to the shape (scale adjustment).

Overview of Geometry with DSS:

- 2.1 Main idea of DSS recognition algorithms.
- 2.2 Adaptation to noise.
- 2.3 Applications examples: curvature, scale detection and vectorisation.

2.1 Main idea of DSS recognition algorithms

Arithmetic definition of digital line [Réveilles 91]

A digital line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$\mu \leq \mathsf{ax} - \mathsf{by} < \mu + \omega$$

- a, b, μ , ω in $\mathbb Z$
- gcd(a, b) = 1, (b, a) main vector of the line
- noted $\mathcal{D}(a, b, \mu, \omega)$

2.1 Main idea of DSS recognition algorithms

Arithmetic definition of digital line [Réveilles 91]

A digital line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$\mu \leq \mathsf{ax} - \mathsf{by} < \mu + \omega$$

- a, b, μ , ω in $\mathbb Z$
- gcd(a, b) = 1, (b, a) main vector of the line
- noted $\mathcal{D}(a, b, \mu, \omega)$

• if $\omega = max(|a|, |b|)$: \mathcal{D} is 8-arc (naïve line).

Arithmetic definition of digital line [Réveilles 91]

A digital line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$\mu \leq \mathsf{ax} - \mathsf{by} < \mu + \omega$$

- a, b, μ , ω in $\mathbb Z$
- gcd(a, b) = 1, (b, a) main vector of the line
- noted D(a, b, μ, ω)

- if $\omega = max(|a|, |b|)$: \mathcal{D} is 8-arc (naïve line).
- if $\omega < max(|a|, |b|)$: \mathcal{D} is deconnected.

Arithmetic definition of digital line [Réveilles 91]

A digital line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$\mu \leq \mathsf{ax} - \mathsf{by} < \mu + \omega$$

- a, b, μ , ω in $\mathbb Z$
- gcd(a, b) = 1, (b, a) main vector of the line
- noted D(a, b, μ, ω)

- if $\omega = max(|a|, |b|)$: \mathcal{D} is 8-arc (naïve line).
- if $\omega < max(|a|, |b|)$: \mathcal{D} is deconnected.
- if $\omega = |a| + |b|$: \mathcal{D} is 4-arc (standard line).

Arithmetic definition of digital line [Réveilles 91]

A digital line with parameters (a, b, μ) and arithmetical thickness ω is defined as the set of integer points (x, y) verifying :

$$\mu \leq \mathsf{ax} - \mathsf{by} < \mu + \omega$$

- a, b, μ , ω in $\mathbb Z$
- gcd(a, b) = 1, (b, a) main vector of the line
- noted D(a, b, μ, ω)

- if $\omega = max(|a|, |b|)$: \mathcal{D} is 8-arc (naïve line).
- if $\omega < max(|a|, |b|)$: \mathcal{D} is deconnected.
- if $\omega = |a| + |b|$: \mathcal{D} is 4-arc (standard line).
- if $\omega > |a| + |b|$: \mathcal{D} is called a thick line.

Recognition Problem

- Goal: Recover the segment characteristics from a input sequence of points.
- Based on the remainder and periodicity detection.

Recognition Problem

- Goal: Recover the segment characteristics from a input sequence of points.
- Based on the remainder and periodicity detection.
- Remainder of a point *M* is defined as a function of $\mathcal{D}(a, b, \mu, \omega)$:

 $r_{\mathcal{D}}(M) = a x_M - b y_M$

Recognition Problem

- Goal: Recover the segment characteristics from a input sequence of points.
- Based on the remainder and periodicity detection.
- Remainder of a point *M* is defined as a function of $\mathcal{D}(a, b, \mu, \omega)$:

 $r_{\mathcal{D}}(M) = a x_M - b y_M$

Recognition Problem

- Goal: Recover the segment characteristics from a input sequence of points.
- Based on the remainder and periodicity detection.
- Remainder of a point *M* is defined as a function of $\mathcal{D}(a, b, \mu, \omega)$:

$$r_{\mathcal{D}}(M) = a x_M - b y_M$$

• Maintain the lower/upper leaning points.

Strategy of segment recognition (S)

- Compute remainder of new point *M*.
- From r(M) update characteristics.
- Update \mathcal{S} parameters & leaning pts.

Strategy of segment recognition (S)

- Compute remainder of new point *M*.
- From r(M) update characteristics.
- Update \mathcal{S} parameters & leaning pts.

Recognized segment \mathcal{S} of $\mathcal{D}_0(3,7,-1,7)$

Strategy of segment recognition (S)

- Compute remainder of new point *M*.
- From r(M) update characteristics.
- Update \mathcal{S} parameters & leaning pts.

Strategy of segment recognition (S)

- Compute remainder of new point *M*.
- From r(M) update characteristics.
- Update \mathcal{S} parameters & leaning pts.

Rules to update the characteristics of S:

(*iv*) $r_{\mathcal{D}}(M) > \mu + max(|a|, |b|)$:

M is strongly exterior to \mathcal{D} and M not added to \mathcal{S} .

Recognized segment S of $\mathcal{D}_0(3,7,-1,7)$

Strategy of segment recognition (S)

- Compute remainder of new point *M*.
- From r(M) update characteristics.
- Update \mathcal{S} parameters & leaning pts.

Rules to update the characteristics of S:

(*iv*) $r_{\mathcal{D}}(M) > \mu + max(|a|, |b|)$:

M is strongly exterior to \mathcal{D} and M not added to \mathcal{S} .

Recognized segment \mathcal{S} of $\mathcal{D}_0(3,7,-1,7)$

Strategy of segment recognition (S)

- Compute remainder of new point *M*.
- From *r*(*M*) update characteristics.
- Update \mathcal{S} parameters & leaning pts.

Rules to update the characteristics of S:

(iii) $r_{\mathcal{D}}(M) = \mu - 1$: *M* weakly exterior to \mathcal{D} ,

M added to S and the slope is updated by the vector $U_F M$

Recognized segment S of $\mathcal{D}_0(3,7,-1,7)$

Strategy of segment recognition (S)

- Compute remainder of new point *M*.
- From *r*(*M*) update characteristics.
- Update \mathcal{S} parameters & leaning pts.

Rules to update the characteristics of S:

(iii) $r_{\mathcal{D}}(M) = \mu - 1$: *M* weakly exterior to \mathcal{D} ,

M added to S and the slope is updated by the vector $U_F M$

Recognized segment S of $\mathcal{D}_0(3,7,-1,7)$

Strategy of segment recognition (S)

- Compute remainder of new point *M*.
- From r(M) update characteristics.
- Update \mathcal{S} parameters & leaning pts.

Rules to update the characteristics of S:

(iii) $r_{\mathcal{D}}(M) = \mu - 1$: *M* weakly exterior to \mathcal{D} ,

M added to S and the slope is updated by the vector $U_F M$

Recognized segment S of $\mathcal{D}_1(4, 9, -1, 9)$

Primitive of Maximal Digital Straight Segment (MDSS)

Let C be a digital curve, a segment of a naïve digital line is said maximal if it cannot be extended at the right and left hand sides on C.

Primitive of Maximal Digital Straight Segment (MDSS)

Let C be a digital curve, a segment of a naïve digital line is said maximal if it cannot be extended at the right and left hand sides on C.

Primitive of Maximal Digital Straight Segment (MDSS)

Let C be a digital curve, a segment of a naïve digital line is said maximal if it cannot be extended at the right and left hand sides on C.

Primitive of Maximal Digital Straight Segment (MDSS)

Let C be a digital curve, a segment of a naïve digital line is said maximal if it cannot be extended at the right and left hand sides on C.

Sequence computation of maximal segments

Computable in linear type [Feschet and Tougne 99].

Primitive of Maximal Digital Straight Segment (MDSS)

Let C be a digital curve, a segment of a naïve digital line is said maximal if it cannot be extended at the right and left hand sides on C.

Sequence computation of maximal segments

Computable in linear type [Feschet and Tougne 99].

Primitive of Maximal Digital Straight Segment (MDSS)

Let C be a digital curve, a segment of a naïve digital line is said maximal if it cannot be extended at the right and left hand sides on C.

Sequence computation of maximal segments

Computable in linear type [Feschet and Tougne 99].

Advantage and limits of the MDSS

- + Gives a convergent technique to estimate geometric features like tangent, curvature.
- + Linear time algorithm.
- + Simple to implement and available in the DGtal Library.

Advantage and limits of the MDSS

- + Gives a convergent technique to estimate geometric features like tangent, curvature.
- + Linear time algorithm.
- + Simple to implement and available in the DGtal Library.
- - Limited to handle perfect digitized objects.
- - For real object it can be sensitive to noise.
- - Cannot process disconnected set of points.

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

Overview

• Based on bounding line definition.

 $\mathcal{D}(1, 2, -4, 6)$, bounding line of the se-

quence of grey points

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

- Based on bounding line definition.
- Optimal Bounding line.

 $\mathcal{D}(5, 8, -8, 11)$, optimal bounding line (width $\frac{10}{8} = 1.25$) of the sequence of grey points

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.
- Thick param. to take noise into account.

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.
- Thick param. to take noise into account.

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.
- Thick param. to take noise into account.

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.
- Thick param. to take noise into account.

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.
- Thick param. to take noise into account.

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

Overview

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.
- Thick param. to take noise into account.

 $t_4 = 4$

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

Overview

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.
- Thick param. to take noise into account.

 $t_4 = 4$

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.
- Thick param. to take noise into account.

Primitive of Blurred Segment (or Alpha Thick Segments)

- Primitive able to handle noise.
- Can process disconnected set of points.
- No necessary integer coordinates.

- Based on bounding line definition.
- Optimal Bounding line.
- Based on the convexhull computation.
- Thick param. to take noise into account.

2.3 Applications of DSS

Overview of key applications:

- (1) Curvature estimator based on DSS.
- (2) Scale detection (noise).
- (3) Polygonalisation (arcs/segments).
- (4) Image vectorisation.

Polygonalisation

Image vectorisation

2.3 Applications of DSS: (1) Curvature estimator

Objectives: [Kerautret and Lachaud 2009]

- Precise estimator even with low resolution.
- Adapted even on data with non perfect digitization or with noise.

Objectives: [Kerautret and Lachaud 2009]

- Precise estimator even with low resolution.
- Adapted even on data with non perfect digitization or with noise.

Main idea: (cf. deformable model)

- Take into account all the shapes having the same digitization.
- Retain the estimation corresponding to the shape having the highest probability (of lower energy).

Objectives: [Kerautret and Lachaud 2009]

- Precise estimator even with low resolution.
- Adapted even on data with non perfect digitization or with noise.

Main idea: (cf. deformable model)

- Take into account all the shapes having the same digitization.
- Retain the estimation corresponding to the shape having the highest probability (of lower energy).

Realization:

• Best length estimator : minimize $\int ds$ [Sloboda *et al.* 98]

Objectives: [Kerautret and Lachaud 2009]

- Precise estimator even with low resolution.
- Adapted even on data with non perfect digitization or with noise.

Main idea: (cf. deformable model)

- Take into account all the shapes having the same digitization.
- Retain the estimation corresponding to the shape having the highest probability (of lower energy).

Realization:

- Best length estimator : minimize $\int ds$ [Sloboda *et al.* 98]
- Best curvature estimator: minimize ∫ κ²ds
 ⇒ Computed in the space of maximal segments (tangential cover).

Examples of tangential cover with uncertainty on the slope

- Every maximal segment presents θ_{\min} , θ_{\max} values.
- For each surfel we can deduce the angle θ_{min} et θ_{max} of the tangent: min (θ_{min}^{i}) and max (θ_{max}^{i}) .

Examples of tangential cover with uncertainty on the slope

- Every maximal segment presents θ_{\min} , θ_{\max} values.
- For each surfel we can deduce the angle θ_{min} et θ_{max} of the tangent: min (θ_{min}^{i}) and max (θ_{max}^{i}) .

2.3 Applications of DSS: (1) Curvature estimator

Main idea [Kerautret & Lachaud, 2012]

1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).

Main idea [Kerautret & Lachaud, 2012]

1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).

- X some simply connected compact snape of R⁻.
- $\operatorname{Dig}_h(X) = \operatorname{Gauss} \operatorname{digitization} \operatorname{of} X$ with step h.

Main idea [Kerautret & Lachaud, 2012]

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

• $\operatorname{Dig}_h(X) = \operatorname{Gauss} \operatorname{digitization} \operatorname{of} X$ with step h.

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

Main idea [Kerautret & Lachaud, 2012]

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

Theorem [Lachaud 06]: asymptotic behavior of the length of maximal segments

- X simply connected shape in R^2 with piecewise C^3 boundary ∂X ,
- U an open connected neighborhood of $p \in \partial X$,

Main idea [Kerautret & Lachaud, 2012]

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

Theorem [Lachaud 06]: asymptotic behavior of the length of maximal segments

- X simply connected shape in R^2 with piecewise C^3 boundary ∂X ,
- U an open connected neighborhood of $p \in \partial X$,
- (L_j^h) the digital lengths of the maximal segments of $\text{Dig}_h(X)$ which cover p,

 $\partial X \cap U$ convex or concave, then $\Omega(1/h^{1/3}) \leq L_j^h \leq O(1/h^{1/2})$ (1)

 $\partial X \cap U$ has null curvature, then $\Omega(1/h) \leq L_j^h \leq O(1/h^1)$ (2)

Main idea [Kerautret & Lachaud, 2012]

- 1. Exploit asymptotic properties of the Length (L) of maximal straight segments (valid on perfect shape digitizations).
- 2. They grow longer as h gets finer.

Theorem [Lachaud 06]: asymptotic behavior of the length of maximal segments

- X simply connected shape in R^2 with piecewise C^3 boundary ∂X ,
- U an open connected neighborhood of $p \in \partial X$,
- (L_j^h) the digital lengths of the maximal segments of $\text{Dig}_h(X)$ which cover p,

 $\partial X \cap U$ convex or concave, then $\Omega(1/h^{1/3}) \leq L_j^h \leq O(1/h^{1/2})$ (1)

 $\partial X \cap U$ has null curvature, then $\Omega(1/h) \leq L_j^h \leq O(1/h^1)$ (2)

Local meaningful scale and noise detection

Meaningful scale:

A meaningful scale of a multi-scale profile $(X_i, Y_i)_{1 \le i \le n}$ is the pair (i_1, i_2) $1 \le i_1 \le i_2 \le n$ such that for all $i, i_1 \le i < i_2$,

$$\frac{Y_{i+1}-Y_i}{X_{i+1}-X_i}\leq t_m,$$

while not true for $i_1 - 1$ and i_2 .

Parameter t_m = noise threshold to discriminate curved from noisy areas.

Local meaningful scale and noise detection

Meaningful scale:

A meaningful scale of a multi-scale profile $(X_i, Y_i)_{1 \le i \le n}$ is the pair (i_1, i_2) $1 \le i_1 \le i_2 \le n$ such that for all $i, i_1 \le i < i_2$,

$$\frac{Y_{i+1}-Y_i}{X_{i+1}-X_i}\leq t_m,$$

while not true for $i_1 - 1$ and i_2 .

Parameter t_m = noise threshold to discriminate curved from noisy areas.

Local meaningful scale and noise detection

Meaningful scale:

A meaningful scale of a multi-scale profile $(X_i, Y_i)_{1 \le i \le n}$ is the pair (i_1, i_2) $1 \le i_1 \le i_2 \le n$ such that for all $i, i_1 \le i < i_2$,

$$\frac{Y_{i+1}-Y_i}{X_{i+1}-X_i}\leq t_m,$$

while not true for $i_1 - 1$ and i_2 .

Parameter t_m = noise threshold to discriminate curved from noisy areas.

Experiments: local noise level detection

Flower with local noise

Experiments: local noise level detection

Flower with local noise

Experiments: local noise level detection

Flower with local noise

Experiments: local noise level detection

Tiny flower without noise

- Accuracy of noise detection independent of shape geometry, independent of shape resolution.
- Only one parameter : maximum level of subsampling (always 10 here).

Noise detection on real images

Noise detection on real images

2.3 Applications of DSS: (2) Scale detection

Multi-thickness Profile

The **multi-thickness profile** $\mathcal{P}_n(P)$ of a point P is defined as the graph $(\log(t_i), \log(\overline{\mathcal{L}}^{t_i}/t_i))_{i=1,...,n}$.

2.3 Applications of DSS: (2) Scale detection

Multi-thickness Profile

The **multi-thickness profile** $\mathcal{P}_n(P)$ of a point P is defined as the graph $(\log(t_i), \log(\overline{\mathcal{L}}^{t_i}/t_i))_{i=1,...,n}$.

Experiments on polygonal shapes (1)

Experiments on polygonal shapes (1)

Experiments on polygonal shapes (2)

Reproduction of the results

Online demonstration available on IPOL: [Kerautret & Lachaud, 2014]

- The algorithm can be tested online: http://www.ipol.im/pub/art/2014/75/
- IPOL article with source code (based on the ImaGene Library).
- Reproducible in DGtal (with Alpha-Thick Segments), see examples of tutorial.

••• < > 🗈	Non sécurisé — demo.ipol.im		00+
IPOL Journal · Image	Processing On Line HOME - ABOUT - ARTICLES - PREPRINTS	· WORKSHOPS · NEWS · SEARCH	
Meaningful Scales Detection Contours	on: an Unsupervised Noise De	tection Algorithm for Di	gital
Please cite the reference article if you publish results	And the design while so that do not		
	ale detection on discrete contours extracted from	grayscale image.	x
polygon with some noise flower with some	noise star with some noise image S	image T	
image coolls Upload Data			
		private mode on the result page.	
Only uplied suitable images. See the copyright and legal core feeds & builtier + silemap + contact + privacy policy + 1			

Selection of polygonalisation algorithms [Kerautret et al. 17]

Selection of polygonalisation algorithms [Kerautret et al. 17]

Selection of polygonalisation algorithms [Kerautret et al. 17]

Selection of polygonalisation algorithms [Kerautret et al. 17]

Selection of polygonalisation algorithms [Kerautret et al. 17]

Selection of polygonalisation algorithms [Kerautret et al. 17]

2.3 Applications of DSS: (3) Image vectorisation

Selection of polygonalisation algorithms [Kerautret et al. 17]

2.3 Applications of DSS: (3) Image vectorisation

- Dominant points based polygonalization (DPP) [Nguyen 11].
- Polygonalization from Frechet dist. (minimal leash length) [Sivignon 11].

2.3 Applications of DSS: (3) Image vectorisation

- Dominant points based polygonalization (DPP) [Nguyen 11].
- Polygonalization from Frechet dist. (minimal leash length) [Sivignon 11].

2.3 Applications of DSS: (3) Image vectorisation

- Dominant points based polygonalization (DPP) [Nguyen 11].
- Polygonalization from Frechet dist. (minimal leash length) [Sivignon 11].

2.3 Applications of DSS: (3) Image vectorisation

- Dominant points based polygonalization (DPP) [Nguyen 11].
- Polygonalization from Frechet dist. (minimal leash length) [Sivignon 11].

2.3 Applications of DSS: (3) Image vectorisation

- Dominant points based polygonalization (DPP) [Nguyen 11].
- Polygonalization from Frechet dist. (minimal leash length) [Sivignon 11].

2.3 Applications of DSS: (3) Image vectorisation

- Dominant points based polygonalization (DPP) [Nguyen 11].
- Polygonalization from Frechet dist. (minimal leash length) [Sivignon 11].

2.3 Applications of DSS: (3) Image vectorisation

- Dominant points based polygonalization (DPP) [Nguyen 11].
- Polygonalization from Frechet dist. (minimal leash length) [Sivignon 11].
- Extract from local maxima from curvature (GMC or other).

Component Tree representation [Najman & Couprie 06]

- Constructed from the intensity thresholds.
- Starting from the root (full image),
- to the node representing the included regions.

Component Tree representation [Najman & Couprie 06]

- Constructed from the intensity thresholds.
- Starting from the root (full image),
- to the node representing the included regions.

Representation from component tree

Component Tree representation [Najman & Couprie 06]

- Constructed from the intensity thresholds.
- Starting from the root (full image),
- to the node representing the included regions.

Representation from component tree

Component Tree representation [Najman & Couprie 06]

- Constructed from the intensity thresholds.
- Starting from the root (full image),
- to the node representing the included regions.

Representation using simple filling

Component Tree representation [Najman & Couprie 06]

- Constructed from the intensity thresholds.
- Starting from the root (full image),
- to the node representing the included regions.

R₁ R₁ R₃ R₃ R₃

Representation using simple filling

3. DGtal Library Overview

3.1 Short presentation of the library

Origin/evolution: (www.dgtal.org)

- DGtal: Digital Geometry tools and Algorithms
- Mainly a French initiative from the Discrete Geometry communauty.
- Born 10 year ago during the IWCIA workshop (end of november 2009)
- C++ based library: work (and tested) on *Linux*, *MacOS* and *Windows*.
- Current version 1.0 (from March 2019).
- SGP Software Award at the Symposium on Geometry Processing:

3.1 Short presentation of the library

Origin/evolution: (www.dgtal.org)

- DGtal: Digital Geometry tools and Algorithms
- Mainly a French initiative from the Discrete Geometry communauty.
- Born 10 year ago during the IWCIA workshop (end of november 2009) ¹⁰
- C++ based library: work (and tested) on *Linux*, *MacOS* and *Windows*.
- Current version 1.0 (from March 2019).
- SGP Software Award at the Symposium on Geometry Processing:

Main Objectives:

- Gathers in a unified setting many data structures and algorithms.
- For the discrete geometry communauty and related (digital topology, image processing, discrete geometry, arithmetic).
- It makes easier the appropriation of our tools for neophytes.
- Simplify comparisons of new methods with already existing approaches.
- Simplifies the construction of demonstration tools.

Main actual packages:

• Kernel package: number types, digital space, domain

Main actual packages:

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations

 \Rightarrow greatest common divisor, Bézout vectors, continued fractions, convergent, intersection of integer half-spaces

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations
- Topology package: classic topology tools
 ⇒ Rosenfeld oriented tools, cartesian cellular
 topology, digital surface topology (Herman), tools
 to extract connected component, simple points,...

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations
- Topology package: classic topology tools
- Geometry package: geometric estimators 2D/3D:
 ⇒ length, normal curvature estimators, 3D transform...

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations
- Topology package: classic topology tools
- Geometry package: geometric estimators 2D/3D:
 ⇒ length, normal curvature estimators, 3D transform...

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations
- Topology package: classic topology tools
- Geometry package: geometric estimators 2D/3D:
- DEC package: Discrete exterior calculus:
 ⇒ provides an easy and efficient way to describe linear operator over various structure

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations
- Topology package: classic topology tools
- Geometry package: geometric estimators 2D/3D:
- DEC package: Discrete exterior calculus:
- Board & Viewer package: import/export image and visualization:
 - \Rightarrow interactive and non interactive viewer 2d/3d...

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations
- Topology package: classic topology tools
- Geometry package: geometric estimators 2D/3D:
- DEC package: Discrete exterior calculus:
- Board & Viewer package: import/export image and visualization:
- Image package: implement image model and data-structures.

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations
- Topology package: classic topology tools
- Geometry package: geometric estimators 2D/3D:
- DEC package: Discrete exterior calculus:
- Board & Viewer package: import/export image and visualization:
- Image package: implement image model and data-structures.
- Shape package: shape related concepts, models and algorithms.
 ⇒ generic framework and tools to construct multigrid shapes in DGtal

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations
- Topology package: classic topology tools
- Geometry package: geometric estimators 2D/3D:
- DEC package: Discrete exterior calculus:

- Image package: implement image model and data-structures.
- Shape package: shape related concepts, models and algorithms.
- Graph package: gathers concepts and classes related to graphs.
 ⇒ with wrappers to boost::graph

- Kernel package: number types, digital space, domain
- Arithmetic package: standard arithmetic computations
- Topology package: classic topology tools
- Geometry package: geometric estimators 2D/3D:
- DEC package: Discrete exterior calculus:
- Board & Viewer package: import/export image and visualization:
- Image package: implement image model and data-structures.
- Shape package: shape related concepts, models and algorithms.
- Graph package: gathers concepts and classes related to graphs.
- Math package: various mathematical subpackages.

Library organization and details:

- Three main projects:
 - Main DGtal library (https://github.com/DGtal-team/DGtal).
 - DGtal-Tools project: contains tools based on DGtal (https://github.com/DGtal-team/DGtal-Tools).
 - DGtal-Tools-contrib: contains tools using DGtal. (https://github.com/DGtal-team/DGtalTools-contrib)

Library organization and details:

- Three main projects:
 - Main DGtal library (https://github.com/DGtal-team/DGtal).
 - DGtal-Tools project: contains tools based on DGtal (https://github.com/DGtal-team/DGtal-Tools).
 - DGtal-Tools-contrib: contains tools using DGtal. (https://github.com/DGtal-team/DGtalTools-contrib)
- CMake oriented compilation.

Library organization and details:

- Three main projects:
 - Main DGtal library (https://github.com/DGtal-team/DGtal).
 - DGtal-Tools project: contains tools based on DGtal (https://github.com/DGtal-team/DGtal-Tools).
 - DGtal-Tools-contrib: contains tools using DGtal. (https://github.com/DGtal-team/DGtalTools-contrib)
- CMake oriented compilation.
- Boost dependancies, and (optionals) LibQGLViewer, ITK, CGal,CAIRO, Eigen, GMP,...

Library organization and details:

- Three main projects:
 - Main DGtal library (https://github.com/DGtal-team/DGtal).
 - DGtal-Tools project: contains tools based on DGtal (https://github.com/DGtal-team/DGtal-Tools).
 - DGtal-Tools-contrib: contains tools using DGtal. (https://github.com/DGtal-team/DGtalTools-contrib)
- CMake oriented compilation.
- Boost dependancies, and (optionals) LibQGLViewer, ITK, CGal,CAIRO, Eigen, GMP,...

Programming principle:

- Generic Programming.
- Concept, models of concepts and concept checking.
- \Rightarrow C++ with template programming

3.1 Short presentation of the library (4)

First example, see: https://github.com/kerautret/ACPR19-DGPRTutorial

- Example to read input contour.
- Display the digital contour.
- Export the visualization.

3.1 Short presentation of the library (4)

First example, see: https://github.com/kerautret/ACPR19-DGPRTutorial

- Example to read input contour.
- Display the digital contour.
- Export the visualization.

```
(see file: tuto1_baseDGtal.cpp)
    #include "DGtal/base/Common.h"
   #include "DGtal/helpers/StdDefs.h"
2
    // To use the reading of input points:
   #include "DGtal/io/readers/PointListReader.h"
4
   // To display graphics elements
6
    #include "DGtal/io/boards/Board2D.h"
8
    typedef Z2i::Point Point;
   std::vector<Point> contour = PointListReader<Point>::getPointsFromFile("
10
         contour.sdp");
   //Displaying the input read contour:
12
    Board2D aBoard;
    for (auto&& p :contour) { aBoard << p; }</pre>
14
    aBoard.saveEPS("res.eps");
```

3.1 Short presentation of the library (4)

First example, see: https://github.com/kerautret/ACPR19-DGPRTutorial

- Example to read input contour.
- Display the digital contour.
- Export the visualization.

```
(see file: tuto1_baseDGtal.cpp)
    #include "DGtal/base/Common.h"
   #include "DGtal/helpers/StdDefs.h"
2
    // To use the reading of input points:
    #include "DGtal/io/readers/PointListReader.h"
4
   // To display graphics elements
6
    #include "DGtal/io/boards/Board2D.h"
8
    typedef Z2i::Point Point;
    std::vector<Point> contour = PcintListReader<Point>::getPointsFromFile("
10
         contour.sdp");
   //Displaying the input read contour
12
    Board2D aBoard;
    for (auto&& p :contour) { aBoard << p; }</pre>
14
    aBoard.saveEPS("res.eps");
```

3.2 Extracting level sets contours with DGtal

Second tutorial exercise (see tuto2_LSC/README.md)

Three main steps in DGtal:

• Create a Khalimsky space:

(see file: tuto2.LSC.cpp)

3.2 Extracting level sets contours with DGtal

Second tutorial exercise (see tuto2_LSC/README.md)

Three main steps in DGtal:

• Create a Khalimsky space:

(see file: tuto2_LSC.cpp)

```
1 Z2i::KSpace ks;
ks.init(image.domain().lowerBound(),
3 image.domain().upperBound(), false);
```

• Extract a set of pixel of the image:

```
1 Z2i::DigitalSet set (image.domain());
SetFromImage<Z2i::DigitalSet>::append(set, image, 0, 108);
```

3.2 Extracting level sets contours with DGtal

Second tutorial exercise (see tuto2_LSC/README.md)

Three main steps in DGtal:

• Create a Khalimsky space:

(see file: tuto2_LSC.cpp)

```
1 Z2i::KSpace ks;
ks.init(image.domain().lowerBound(),
3 image.domain().upperBound(), false);
```

• Extract a set of pixel of the image:

```
1 Z2i::DigitalSet set (image.domain());
SetFromImage<Z2i::DigitalSet>::append(set, image, 0, 108);
```

• Track intergrid Cell and display them from Freman Chains objects:

```
SurfelAdjacency<2> sAdj(true);
std::vector<std::vector<Z2:::Point>> vCnt;
Surfaces<Z2:::KSpace>::extractAllPointContours4C(vCnt, ks, set, sAdj);
...
for (const auto &c: vCnt)
FreemanChain<int> fc (c);
...
```

3.2 Extracting level sets contours with DGtal

Second tutorial exercise (see tuto2_LSC/README.md)

Three main steps in DGtal:

• Create a Khalimsky space:

```
(see file: tuto2_LSC.cpp)
```

```
1 Z2i::KSpace ks;
ks.init(image.domain().lowerBound(),
3 image.domain().upperBound(), false);
```

• Extract a set of pixel of the image:

3.3 Example of geometric estimator

Third tutorial exercise (see tuto3_curvatures/README.md)

Computing curvature with DCA estimator [Roussillon & Lachaud 11].

 \Rightarrow Based on Digital Circular Arcs.

3.3 Example of geometric estimator

Third tutorial exercise (see tuto3_curvatures/README.md)

Computing curvature with DCA estimator [Roussillon & Lachaud 11].

 \Rightarrow Based on Digital Circular Arcs.

• Defines types for Range and Iterator on input curve:

```
(see file: tuto3_curvatures.cpp)
typedef GridCurve<>::IncidentPointsRange Range;
typedef Range::ConstIterator ClassicIterator;
Range r = curve.getIncidentPointsRange();
td::vector<double> estimations;
```

3.3 Example of geometric estimator

Third tutorial exercise (see tuto3_curvatures/README.md)

Computing curvature with DCA estimator [Roussillon & Lachaud 11].

 \Rightarrow Based on Digital Circular Arcs.

• Defines types for Range and Iterator on input curve:

```
(see file: tuto3.curvatures.cpp)
typedef GridCurve<>::IncidentPointsRange Range;
typedef Range::ConstIterator ClassicIterator;
Range r = curve.getIncidentPointsRange();
std::vector
```

• Construct estimator and apply it:

```
SegmentComputer sc;
SCEstimator sce;
CurvatureEstimator estimator(sc, sce);
...
estimator.init( 1, r.begin(), r.end() );
estimator.eval( r.begin(), r.end(),
std::back_inserter(estimations) );
```

3.3 Example of geometric estimator

4. Practical session: Hands on DGtal

4. Practical session: Hands on DGtal

Pratical installation/exercices

Visit Github page: https://kerautret.github.io/ACPR19-DGPRTutorial

Test DGtal online with Jupyter notebook

- http://ker.iutsd.univ-lorraine.fr/notebook
- Login: use password: admin;123

Thanks for your attention !

- Réveilles 91 J.-P. Réveilles, Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d'état, Université Louis Pasteur, Strasbourg, 1991.
- [Feschet and Tougne 99] Feschet, Fabien and Tougne, Laure Optimal time computation of the tangent of a discrete curve: Application to the curvature

International Conference on Discrete Geometry for Computer Imagery Springer LNCS pp. 31–40 1999

[Debled06 *et al.*] Debled-Rennesson, I.; Feschet, F.; Rouyer-Degli Optimal Blurred Segments Decomposition of Noisy Shapes in Linear Times

Comp. & Graphics 30 (2006) 30-36

[Kovalevsky 01] Kovalevsky, V.

Curvature in Digital 2D Images

International Journal of Pattern Recognition and Artificial Intelligence 2001. 15. 1183-1200

[Vialard 96] Vialard, Anne

Chemin Euclidiens: Un modèle de représentation des contours discrets.

Université de Bordeaux 1, 1996

Kerautret, B. and Lachaud, J.-O. (2012).

Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation detection.

IEEE. Trans. on PAMI, in press (10.1109/TPAMI.2012.38).

Bertrand Kerautret, and Jacques-Olivier Lachaud, Meaningful Scales Detection: an Unsupervised Noise Detection Algorithm for Digital Contours, Image Processing On Line, 4 (2014), pp. 98-115.

http://dx.doi.org/10.5201/ipol.2014.75

Lachaud, J.-O (2006).

Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète.

Habilitation à diriger des recherches, Université Bordeaux 1, Talence, France (2006) (en français).

[Lachaud et al. 05]] Lachaud, J.-O. and Vialard, A. and de Vieilleville, F Analysis and comparative evaluation of discrete tangent estimators Proc. Int. Conf DGCI'2005 Volume 3429 of LNCS (Springer), 140-251 2005.

[Coeurjolly et al. 2001] Coeurjolly, D., Miguet, S., Tougne, L. Discrete curvature based on osculating circle estimation.

In proc. Int. workshop Visual Form, Volume 2059 of LNCS (Springer), 303-312 2001.

[Coeurjolly, Svensson 2003] Coeurjolly, David and Svensson, Stina Discrete curvature based on osculating circle estimation. Image Analysis, 247-254 2003.

[Coeurjolly et al. 2004] Coeurjolly, David and Gérard, Yan and Reveilles, J.-P. and Tougne, Laure

An elementary algorithm for digital arc segmentation *Discrete Applied Mathematics*, 138(1): 31–50 2004.

[Kerautret and Lachaud 2009] Kerautret, B., Lachaud, J.O. Curvature estimation along noisy digital contours by approximate global optimization.

Pattern Recognition 42(10), 2265 - 2278 (2009)

[Kerautret *et al.*2017] Kerautret, B., Ngo, P, Kenmochi, Y., Vacavant A. Greyscale Image Vectorization from Geometric Digital Contour Representations

20th International Conference on Discrete Geometry for Computer Imagery Volume 10502 of LNCS (Springer), 319-331 2017.

Arc segmentation in linear time.

In: Computer Analysis of Images and Patterns - 14th International Conference, CAIP 2011, Seville, Spain, August 29-31, 2011, Proceedings, Part I. (2011) 84-92

Sivignon, I.

In: A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance. Springer (2011) 333–345

Najman, L., Couprie, M.:

Building the component tree in quasi-linear time.

Trans. Img. Proc. 15 (2006) 3531-3539

[Sloboda et al. 98] F. Sloboda, B. Zatko, J. Stoer On approximation of planar one-dimensional continua Proceedings of Advances in Digital and Computational Geometry, 113-160 2004.

[De Vieilleville *et al.* 05] de Vieilleville, F. and Lachaud, J.-O. and Feschet, F.

Maximal digital straight segments and convergence of discrete geometric estimators

In proc. of Scandinavian Conf SCIA, Volume 3540 of LNCS (Springer), 988–1003 2005.

[Kanungo 96] Kanungo, T

Document Degradation Models and a Methodology for Degradation Model Validation,

Phd Thesis, University of Washington, 1996

[Nguyen, Debled et al. 07] Nguyen, T., Debled-Rennesson, I.

Curvature estimation in noisy curves.

In proc. of Int Conf CAIP, Volume 4673 of LNCS (Springer), 474-481 2007.

[Kerautret *et al.* 08] Kerautret, B. and Lachaud, J.-O. and Naegel, B. Curvature based corner detector for discrete, noisy and multi-scale contours

International Journal of Shape Modeling 14(2): 127-145, 2008

[Chang et al. 07] Chang, X., Gao, L., Li, Y.

Corner detection based on morphological disk element.

In: Proceedings of the 2007 American Control Conference, IEEE (2007) 1994-1999

📑 [Feschet 2010] Feschet, F.

Multiscale analysis from 1d parametric geometric decomposition of shapes.

In: IEEE (ed.) Int. Conf. on Pattern Recognition. pp. 2102-2105 (2010)

 [Sivignon 2011] I. Sivignon: A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance.
 In: Proc of DGCI 2011. pp. 333–345 (2011)

[Kerautret *et al.* 11] Kerautret, B. and Lachaud, J. O. and Nguyen, T. P. Circular arc reconstruction of digital contours with chosen Hausdorff error,

In proc. of DGCI, Volume 6607 of LNCS (Springer), 250-262 2011.

- [Malgouyres et al.2008] Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimation from noisy discretizations. In: Proc. DGCI. pp. 370–379 (2008)
- [NguyenDebled10] T. P. Nguyen et I. Debled-Rennesson
 Arc Segmentation in Linear Time,
 In proc. of Int Conf CAIP, Volume 6854 of LNCS (Springer), 84-92 2007.
- [T.P. Nguyen a2010] Nguyen, T.P.
 Etude des courbes discrètes: applications en analyse d'images.
 Ph.D. thesis, Nancy University LORIA (2010), (in french)
- [Roussillon & Lachaud 11] Tristan Roussillon, Jacques-Olivier Lachaud Accurate Curvature Estimation along Digital Contours with Maximal Digital Circular Arcs.

IWCIA 2011: 43-55