
DGtal: Digital Geometry Tools and Algorithms Library
1D Geometry

Tristan Roussillon

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Objectives

Tools that help in analysing any one-dimensional discrete structures in a generic framework.

Examples in digital geometry

digital curves

2d, 3d, nd
4-connected, 8-connected, disconnected
pixels, interpixels, points
open or closed

chain codes

Constant structures, not mutable

Tristan Roussillon DGtal 2 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Structures

2 characteristics

discrete

one-dimensional

2 notions

element

local order (next and previous element)

Tristan Roussillon DGtal 3 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Iterators

Iterator

operator* (to get the element)

operator++, operator- - (to point to the next and previous element)

Reachability

An iterator j is reachable from an iterator i if and only if i can be made equal to j with finitely many
applications of the operator++.

Range

If j is reachable from i, one can iterate over the range of elements bounded by i and j, from the one
pointed to by i and up to but not including the one pointed to by j. Such a range is valid and is denoted
by [i,j).

Tristan Roussillon DGtal 4 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Open/Linear structures

Classic iterator

past-the-end value

[begin, end) is the whole range

[i, j) is not always valid

[i, i) is the empty range

begin endj i

Tristan Roussillon DGtal 5 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Closed/Circular structures

CGAL circular iterator (circulator)

no past-the-end value

[i, j) is always valid

[i, i) is the whole range

As long as i ̸= j, the range [i, j) behaves like a classic iterator range.

ij

Tristan Roussillon DGtal 6 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Scanning backward

Reverse iterator

A reverse iterator is an adaptor for scanning backward. The operator++ of the adaptor calls the
operator– of the underlying (circular)iterator and conversely. You can use the STL reverse iterator.

Tricky part

Operator* of the adaptor calls operator- - of the underlying (circular)iterator before calling its operator*.

begin endj i

Tristan Roussillon DGtal 7 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

GridCurve

GridCurve is an (open or closed) n-dimensional oriented grid curve. It stores a list of alternated
(signed) 0-cells and 1-cells.

Tristan Roussillon DGtal 8 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

GridCurve

Ranges

GridCurve provides many ranges as nested types to iterate over different kinds of elements:

nd

SCellsRange
PointsRange
MidPointsRange
ArrowsRange

2d TODO

InnerPointsRange
OuterPointsRange
IncidentPointsRange
CodesRange

Tristan Roussillon DGtal 9 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

GridCurve

Ranges

GridCurve provides many ranges as nested types to iterate over different kinds of elements:

nd

SCellsRange
PointsRange
MidPointsRange
ArrowsRange

2d TODO

InnerPointsRange
OuterPointsRange
IncidentPointsRange
CodesRange

Tristan Roussillon DGtal 9 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

GridCurve

Ranges

GridCurve provides many ranges as nested types to iterate over different kinds of elements:

nd

SCellsRange
PointsRange
MidPointsRange
ArrowsRange

2d TODO

InnerPointsRange
OuterPointsRange
IncidentPointsRange
CodesRange

Tristan Roussillon DGtal 9 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

GridCurve

Ranges

GridCurve provides many ranges as nested types to iterate over different kinds of elements:

nd

SCellsRange
PointsRange
MidPointsRange
ArrowsRange

2d TODO

InnerPointsRange
OuterPointsRange
IncidentPointsRange
CodesRange

Tristan Roussillon DGtal 9 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

GridCurve

Ranges

GridCurve provides many ranges as nested types to iterate over different kinds of elements:

nd

SCellsRange
PointsRange
MidPointsRange
ArrowsRange

2d TODO

InnerPointsRange
OuterPointsRange
IncidentPointsRange
CodesRange

Tristan Roussillon DGtal 9 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

GridCurve

Ranges

GridCurve provides many ranges as nested types to iterate over different kinds of elements:

nd

SCellsRange
PointsRange
MidPointsRange
ArrowsRange

2d TODO

InnerPointsRange
OuterPointsRange
IncidentPointsRange
CodesRange

Tristan Roussillon DGtal 9 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

GridCurve

Ranges

GridCurve provides many ranges as nested types to iterate over different kinds of elements:

nd

SCellsRange
PointsRange
MidPointsRange
ArrowsRange

2d TODO

InnerPointsRange
OuterPointsRange
IncidentPointsRange
CodesRange

Tristan Roussillon DGtal 9 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

GridCurve

Ranges

GridCurve provides many ranges as nested types to iterate over different kinds of elements:

nd

SCellsRange
PointsRange
MidPointsRange
ArrowsRange

2d TODO

InnerPointsRange
OuterPointsRange
IncidentPointsRange
CodesRange

Tristan Roussillon DGtal 9 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Code

FreemanChain

FreemanChain is 2-dimensional and 4-connected digital curve stored as a string of codes 0,1,2,3. As
GridCurve, it provides a CodesRange.

Conversion between FreemanChain and GridCurve

TODO

Tristan Roussillon DGtal 10 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Segments

A segment is a valid and not empty range. The concept CSegment is such that:

Types

Self

ConstIterator

Methods

begin()

end()

Tristan Roussillon DGtal 11 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Class of segments

A class of segments can be defined from a valid property P. P is valid iff P is true for any range of only
one element and for any not empty range of any segment.

Examples

- to be a DSS

- to be a balanced word

x to contain at least k elements (k > 1)

Tristan Roussillon DGtal 12 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Segment computer

Detection problem

Deciding whether a given segment belongs to a class of segments defined from a valid property P or
not. If P is valid, the detection of a segment can be performed in an incremental way: a segment is
initialized at a starting element and then can be extended to the neighbors elements if the property P
still holds.

Segment computer

Segment that can control its own extension (so that the property P remains true)

CSegment

CTrivialSegmentComputer

CForwardSegmentComputer

CBidirectionalSegmentComputerCDynamicSegmentComputer

CDynamicBidrectionalSegmentComputer

Tristan Roussillon DGtal 13 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

CTrivialSegmentComputer
Refinement of CSegment that provides in addition the following methods:

void init (const ConstIterator& it) : set the segment to the element pointed to by it.

bool isExtendable () : return ’true’ if the segment can be extended to the element pointed to by
end() and ’false’ otherwise (no extension is performed).

bool extend () : return ’true’ and extend the segment to the element pointed to by end() if it is
possible, return ’false’ and does not extend the segment otherwise.

Detection of a segment

//s is a segment computer
//[begin,end) is a range
s.init(begin);
while ((s.end() != end) && (s.extend())) {}

Avoiding infinite loops with circulators

//s is a segment computer
//c is a circulator
s.init(c);
while ((s.end() != s.begin()) && (s.extend())) {}

Tristan Roussillon DGtal 14 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

List of segment computers

ArithmeticalDSS

ArithmeticalDSS3d

CombinatorialDSS

GeometricalDSS

GeometricalDCA

ThickSegment

ConvexPart

...

other based on linear programming

Tristan Roussillon DGtal 15 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Useful functions

The code can be different if an iterator or a circulator is used as the nested ConstIterator type.
Moreover, some tasks can be made faster for a given kind of segment computer than for another kind
of segment computer. That’s why many generic functions are provided in SegmentComputerUtils.h:

maximalExtension, oppositeEndMaximalExtension, maximalSymmetricExtension,

maximalRetraction, oppositeEndMaximalRetraction,

longestSegment (init the segment computer),

firstMaximalSegment, lastMaximalSegment, mostCenteredMaximalSegment,

previousMaximalSegment, nextMaximalSegment,

Tristan Roussillon DGtal 16 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Segmentation

Definition

A given range contains a finite set of segments verifying a valid property P. A segmentation is a subset
of the whole set of segments, such that:

1 each element of the range belongs to a segment of the subset

2 no segment contains another segment of the subset

Due to (2), the segments of a segmentation can be ordered without ambiguity (according to the
relative position of their first element for instance).

Types

SegmentComputerIterator

dereference operator: return an instance of a segment computer.

intersectPrevious(), intersectNext(): return ’true’ if the current segment intersects, respectively,
the previous and the next one (when they exist), ’false’ otherwise.

Methods

init method taking as input parameters:

begin/end (circular)iterators of the range to be segmented

an instance of segment computer

Tristan Roussillon DGtal 17 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Greedy segmentation

//types definition
typedef PointVector<2,int> Point;
typedef std::vector<Point> Range;
typedef Range::const_iterator ConstIterator;
typedef ArithmeticalDSS<ConstIterator,int,8> SegmentComputer;
typedef GreedySegmentation<SegmentComputer> Segmentation;

Range curve;
... //create curve

//Segmentation
SegmentComputer recognitionAlgorithm;
Segmentation theSegmentation(curve.begin(), curve.end(), recognitionAlgorithm);

Segmentation::SegmentComputerIterator i = theSegmentation.begin();
Segmentation::SegmentComputerIterator end = theSegmentation.end();
for (; i != end; ++i) {

SegmentComputer current(*i);
trace.info() << current << std::endl; //standard output

}

Tristan Roussillon DGtal 18 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Greedy segmentation

...
typedef Range::const_reverse_iterator ConstIterator;

...
Segmentation theSegmentation(curve.rbegin(), curve.rend(), recognitionAlgorithm);

...

Tristan Roussillon DGtal 19 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Saturated segmentation

...
typedef SaturatedSegmentation<SegmentComputer> Segmentation;

...

Tristan Roussillon DGtal 20 / 21

Iterators/Circulators and Ranges Classes Segments and segment computers Segmentations

Segmentation of subranges

theSegmentation.setSubRange(beginIt, endIt);
theSegmentation.setMode("myMode");

greedy

"Truncate" (default)
"Truncate+1"
"DoNotTruncate"

saturated

"First",
"MostCentered" (default)
"Last"

Tristan Roussillon DGtal 21 / 21

	Iterators/Circulators and Ranges
	Classes
	Segments and segment computers
	Segmentations

