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This paper proposes and evaluates a new method for reconstructing a polygonal representation from
arbitrary digital contours that are possibly damaged or coming from the segmentation of noisy data.
The method consists in two stages. In the first stage, a multi-scale analysis of the contour is conducted
so as to identify noisy or damaged parts of the contour as well as the intensity of the perturbation. All
the identified scales are then merged so that the input data is covered by a set of pixels whose size is
increased according to the local intensity of noise. The second stage consists in transforming this set of
resized pixels into an irregular isothetic object composed of an ordered set of rectangular and axis-
aligned cells. Its topology is stored as a Reeb graph, which allows an easy pruning of its unnecessary spu-
rious edges. Every remaining connected part has the topology of a circle and a polygonal representation is
independently computed for each of them. Four different geometrical algorithms, including a new one,
are reviewed for the latter task. These vectorization algorithms are experimentally evaluated and the
whole method is also compared to previous works on both synthetic and true digital images. For fair
comparisons, when possible, several error measures between the reconstruction and the ground truth
are given for the different techniques.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The vectorization (i.e. reconstruction into line segments) of dig-
ital objects obtained from segmentation, digitization or scanning
processes is a very common task in many image analysis systems
such as optical character recognition (OCR), license plate recogni-
tion (LPR), and sketch recognition [1,9,14,36,31,37,38]. The devel-
opment of raster-to-vector (R2V) algorithms is in constant
progress, responding to both technical and theoretical challenges
[30]. Indeed, in real-life applications, digital objects are not perfect
digitizations of ideal shapes but present noise, disconnections,
irregularities, etc.

To process this kind of image data, additional information is
provided such as a priori knowledge on studied shapes (for in-
stance, shapes are letters in OCR) or user supervision. For low level
image processing, classic approaches of contour (or edge) detection
generally need an external parameter that has to be tediously
ll rights reserved.
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tuned, and the output has to be filtered and post-processed
[5,10] (see Fig. 1 for an example with the Canny edge detector
and the Sobel operator, and with also a recent algorithm of edge
noise removal [13]).

The noisy digital contour (or a thick digital curve around it) can
be partitioned into thick (or blurred) segments [11,12]. Such ap-
proaches require a global thickness parameter and thus cannot
handle contours along which the amount of perturbation or noise
is not uniform (e.g. see Fig. 1a, top and bottom). The document vec-
torization method of [14] also assumes rather uniform noise so
that filtering and skeletonization are enough to take care of it.
Other methods like [19,27], which are based on different princi-
ples, also require a global scale parameter to compute polygonal
reconstructions. Other related works aim to compute an isothetic
hull from a noisy contour in order to build a polygonal contour
[3]. In this case, the user has to define the spacing of the grid used
to compute the orthogonal structure. In this various works, the
main parameter is related to the amount of noise in the image.

We proposed in a previous work [35] a novel unsupervised tech-
nique, divided into two main stages. We first used the pixel resizing
algorithm based on the multi-scale noise detector introduced in

http://dx.doi.org/10.1016/j.cviu.2012.07.006
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Fig. 1. The Canny edge detector (b–c) with two parameters and the Sobel operator (d) applied on two images. For the first image, even if we could obtain an interesting result,
a post-process is necessary to filter the output of the detectors in order to compute a linear contour. The second very noisy image cannot be efficiently handled by these
techniques used alone, even with various parameters. The third row shows a recent edge noise removal approach applied with several parameters [13].
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[15,17]. This set of resized pixels is transformed into an irregular
isothetic object composed of rectangular and axis-aligned cells.
The topology is stored into a Reeb graph [23]. The object is then
analyzed and vectorized using two geometrical algorithms, both
based on the preimage of straight parts (i.e. sequence of cells that
can be passed through by a straight line). These two polygonaliza-
tion algorithms are an improvement of the visibility cone approach
of [32].

Our system is comparable with the work of [24], where is
introduced a polygonalization technique based on a pixel resiz-
ing step, combined with a generalized preimage algorithm. How-
ever, this approach mixes up noise, arithmetic artefacts and high
curvature features when trying to detect noisy parts of contours.
It also needs a very complex topological control process [25],
represented as a skeleton, to handle objects not homotopic to
a cycle.

In this paper, we extend the approach introduced in [35], along
three directions. First, the Reeb graph, which contains the topology
of the irregular object, is better exploited in order to get a polygo-
nal representation of the input digital contour that is homeomor-
phic to a circle (one connected component and one hole) and
such that exactly two edges are incident to each vertex. This filter-
ing step also informs us if the processed irregular object can be
interpreted as a single cycle, and may loop back to the multi-scale
noise detector to have an analysis at a finer scale. Then, we propose
another geometrical algorithm that minimizes, for each k-arc (i.e.
parts of connected cells), the length of the polygonal representa-
tion. The output of this algorithm turns out to be a good trade-
off between minimizing the number of vertices and minimizing
the reconstruction error. Finally, we conduct a larger amount of
quantitative comparisons with other vectorization techniques in
order to validate our approach. We illustrate the global processing
chain of our system in Fig. 2.

After recalling basic definitions about irregular isothetic objects
and their construction from a noisy digital contour (Section 2), we
show in Section 3 how to filter the obtained irregular object using
its Reeb graph in order to get a faithful representation of the input
digital contour. In Section 4, the vectorization techniques of [32,35]
is recalled and we introduce a novel approach based on the mini-
mal-length polygon inscribed in a polygonal object. As an experi-
mental validation, we compare the different reconstruction
algorithms and compare the whole method to other vectorization
techniques in Section 5. We also propose a hybrid polygonalization
method that combines two formerly presented polygonalization
techniques: it exploits the flat part or curved part tags that are a
byproduct of the multi-scale analysis.

2. Preamble and previous work

2.1. Definitions

In this section, we first recall the concept of irregular isothetic
grids (I-grids) in 2-D, with the following definitions [8,34].

Definition 1 (2-D I-grid). Let R be a closed rectangular subset of
R2. A 2-D I-grid G is a tiling of R with closed rectangular cells
whose edges are parallel to the X and Y axes, and whose interiors
have a pairwise empty intersection. The position of each cell R is
given by its center point ðxR; yRÞ 2 R2 and its length along X and Y
axes by lxR; l

y
R
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Fig. 2. Global processing chain of our system. Each part is also labeled with the
section number, where it is described.
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Definition 2 (ve-adjacency and e-adjacency). Let R1 and R2 be two
cells. R1 and R2 are ve-adjacent (vertex and edge adjacent) if:

or
jxR1 � xR2 j ¼

lxR1
þlxR2
2 and jyR1

� yR2
j 6

ly
R1
þly

R2
2

jyR1
� yR2

j ¼
lyR1
þlyR2
2 and jxR1 � xR2 j 6

lxR1
þlxR2
2

8><
>:

R1 and R2 are e-adjacent (edge adjacent) if we consider an exclusive
‘‘or’’ and strict inequalities in the above ve-adjacency definition. The
letter k may be interpreted as e or ve in the following definitions.

A k-path from R to R0 is a sequence of cells (Ri)16i6n with R = R1

and R0 = Rn such that for any i,2 6 i < n,Ri is k-adjacent to Ri�1 and
Ri+1.

Definition 3 (k-arc). Let A = (Ri)16i6n be a k-path from R1 to Rn.
Then A is a k-arc iff each cell Ri has exactly two k-adjacent cells in A
except R1 and Rn which have only one k-adjacent cell in A. The cells
R1 and Rn are called the extremities of A.
(b)
Fig. 3. (a) An example of an irregular object E (left), the final recoded structure with
arcs, the obtained polygonalization (right) and the Reeb graph associated to the
order defined on E (bottom) [33]. In (b), we show the recognized k-arcs and the
associated Reeb graph for some iterations of this algorithm, with respect to the �L

order.
Definition 4 (k-object). Let E be a set of cells, E is a k-object iff for
each couple of cells ðR;R0Þ 2 E� E, there exists a k-path between R
and R0 in E.

We consider an order relation based on the cells borders. We
denote the left, right, top and bottom borders of a cell R respec-
tively RL, RR, RT and RB. The abscissa of RL, for example, is equal to
xR � lx

R=2
� �

. In the following, we also denote by 6x (resp. 6y) the
natural order relation along X (resp. Y) axis. It is legitimate to use
the order 6x on left and right borders of cells and the order 6y

on top and bottom borders of cells.
Definition 5 (Order relation on an I-grid). Let R1 and R2 be two cells
of an I-grid G. We define the total order relation �L, based on the
cells borders:

8R1;R2 2 G;

R1�LR2 () RL
1 < xRL

2 _ RL
1 ¼ xRL

2 ^ RT
16yRT

2

� �
:

This order relation is of great importance both for the Reeb
graph computation and in the polygonalization stage, where it
leads to linear-time geometrical algorithms.
2.2. Representation of the topology of an irregular object

The procedure that transforms any irregular object into a graph
of k-arcs is fully described in [32], and we recall here the main
principles of this transformation.

The k-object E is scanned from left to right according to the or-
der induced by �L, given in Definition 5 (see Fig. 3 for an example).
The Reeb graph [23] of E, which is a way of representing its topol-
ogy, is built incrementally as follows. At the beginning, the inter-
section between E and the scanning vertical line has only one
connected part and the Reeb graph is created with one arc between
two nodes (b for begin and e for end). If a connected part splits into
several parts, we add a node (s for split) from which start as many
arcs as there are parts. Conversely, if two connected parts merge,
we link the corresponding arcs to a node (m for merge) (see Fig. 3).

Moreover, the initial set of cells is recoded into a new one (with-
out changing the shape of the object however) so that each arc of
the Reeb graph corresponds to a k-arc having cells of increasing left
border. We merge with the cell having the smallest left border all
its k-adjacent cells by using the following update procedure.
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Update procedure Let A be a k-arc in E such that R1 is its right-
most extremity. Let R2 be a cell of E that is k-adjacent to A at R1

and such that RL
1 < xRL

2 (and thus should be added to A). If
RL

2 ¼ xRR
1, one just add R2 to A after R1, else the procedure updates

the k-arc A at R1, and may recode the end of A. For that, it first
builds the greatest common rectangle (GCR) F2 of R1 and R2. This
GCR is the greatest rectangle that can be contained in R1 [ R2 [32]:

Definition 6 (Greatest common rectangle). Let R1 and R2 be two k-
adjacent rectangles. The rectangle F2 is the greatest common
rectangle (GCR) of R1 and R2 iff

(i) F2 # R1 [ R2;
(ii) R1 \ R2 # F2;

(iii) there is no rectangle greater than F2 by inclusion respecting
(i) and (ii).

Then the rectangles R1 � F2 and R2 � F2 are denoted by F1 and F3

respectively. The k-arc A is finally updated with respect to five
main configurations, by replacing R1 in A by the sequence
(F1,F2,F3) (see Fig. 4, empty rectangles are not added).

The greatest rectangle is well defined. Indeed, the tiling prop-
erty implies that R1 \ R2 has dimension 0 or 1. When the dimension
is 0, the greatest rectangle is exactly the point R1 \ R2. Otherwise
the greatest rectangle has one side bounded by R1 \ R2, hence the
length of this side is the length of R1 \ R2. Looking for the greatest
rectangle is just looking for the rectangle whose other side has
greatest length.

We show in the next section how we prune some nodes and
arcs of the Reeb graph (and thus remove some k-arcs from the
recoding of E) so that the resulting irregular object is homotopic
to a circle: this is indeed what we expect from a digital contour
which is the boundary of a connected digital shape.
(a) (b)
Fig. 4. Description of rectangles F1, F2 and F3 in the update procedure. When RR

1 < xRR
2 (a a

when RR
1 ¼ xRR

2, F3 = ; and finally F1 = ; in the case RL
1 ¼ xRL

2.
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(a) Source image. (b) Subsampling process
and tangential cover of A.

Fig. 5. Illustration of the meaningful scale detection obtained on a noisy digital conto
illustrated with a grid size equals to 5 (gray contour (b)). The tangential cover of the point
scale profile obtained for the two points A and B. The image (d) shows the resulting noise
is displayed with a box size equals to its first scale i1 of the meaningful scale interval (i
Guided by the Reeb graph, the computation of the polygonal
representation of E is then performed by vectorizing indepen-
dently each remaining k-arc.

3. Topological reconstruction of a noisy contour

We now propose to analyze noisy digital contour by using
Kerautret and Lachaud’s local noise detector [15,17]. This is a
method for estimating locally if the digital contour is damaged,
what is the amount of degradation and what is the finest resolution
at which this part of the contour could be considered as noise-free
(called the meaningful scale). The main idea of the approach is to
exploit the asymptotic properties of the length of the maximal
straight segments by using a subsampling process applied on the
digital contour (see Fig. 5b). From this analysis, a multi-scale pro-
file is determined (Fig. 5c) and allows to compute a meaningful
scale defined as the first scale interval (i1, i2) for which the mul-
ti-scale profile is decreasing. For instance, for the point A, located
on a regular contour part, the meaningful scale is equal to (1,8)
while for the point B located on a noisy area, the meaningful scale
is reduced to (2,8). A noise level is deduced from the meaningful
scale and defined as i1 � 1. An example of noise estimation for all
the points of a digital contour is given on Fig. 5d.

From this resulting meaningful scale, each contour point is then
covered by a pixel whose size is the resolution determined by the
above-mentionned meaningful scale detection. The higher the
amount of noise is, the bigger the pixels are. In Fig. 6b and g, we show
another example of the output of this parameter-free algorithm ap-
plied to the two noisy digital objects depicted in Fig. 6a and f.

As shown in Fig. 6b and g, the resized pixels overlap and thus
cannot be viewed as an irregular isothetic object (Definition 1).
However each resized pixel contains a given number of pixels (at
the initial resolution) so that the set of resized pixels covers a
(c) (d) (e)
nd b), R1 � F2 = F1 and R2 � F2 = F3, else R1 � F2 = {F1,F3} (c, d and e). If RR

1 ¼ xRL
2, F2 = ;,

 1

10

00

1  10
Scale

Multiscale profile of point A
Multiscale profile of point B

i1 i2

(c) Multiscale profiles. (d) Noise levels.

ur (b) extracted from image (a). The subsampling process of the initial contour is
A is also represented for this subsampled contour. The plot (c) illustrates the multi-
level obtained for all the points of the digital contour. For each point the noise level

1, i2).
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Fig. 7. The multi-scale detector applied to the digital object (a) leads to an irregular object that does not contain any hole (b). Since the Reeb graph has only a single edge (f),
our filtering procedure is able to detect this anomaly. We loop back with the detector, which is run with a lower maximal resolution (c). For instance, we have to loop again
twice (d,e) to obtain a valid object with a (tiny) hole inside it (g).

Fig. 6. From a noisy contour (a), we build a set of resized pixels (b). Then, we filter the result of our vectorization algorithm by removing k-arcs that do not belong to the
polygonal minimal contour (the ones pointed by arrows). To do so, we remove their associated edges in the Reeb graph (d), which lead to the desired polygonal contour (e).
More complex topologies may also be considered, thanks to two more passes in our filtering procedure (h, i), which create a valid polygonal contour (j).
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subset of the input image. This subset, which is an irregular iso-
thetic object, is transformed into a new one, whose cells have
increasing left border (see Section 2.2). It is in turn filtered before
the polygonal reconstruction.

The input digital contour is the interpixel contour of a 4-con-
nected set of pixels. Since it is the boundary of a simply connected
shape, it is expected to be homeomorphic to a circle. However, as
in [24], the set of resized pixels and the resulting irregular object
may not be homotopic to the input digital contour nor to a circle.
It may contain either no hole or more than one hole. Thanks to
the Reeb graph, which encodes the topology of the irregular object,
we can decide whether we are in a general case (one hole) or not
(none or more than one hole). If there is no hole, the filtering pro-
cedure is stopped and the set of resized pixels is computed again,
but with a lower maximal resolution in the noise detector (param-
eter n in [15]). This filtering procedure is repeated until one hole is
detected or until the resolution reaches the one of the input image.
The latter case can happen only for one pixel-wide digital contours,
which is not a reasonable input for a shape boundary and which
can be independently processed.

In the general case, we choose not to process the k-arcs asso-
ciated to the Reeb graph arcs that do not belong to the cycle.



Fig. 8. In this example, the Reeb graph is first pruned by removing external nodes
(b). Then, the second phase removes the pointed edge in the graph, which leads to a
disconnection (c). In this case, we loop back to the noise detector like in the case,
where no hole is detected (see Fig. 7).

A. Vacavant et al. / Computer Vision and Image Understanding 117 (2013) 438–450 443
Thus the polygonal reconstruction is expected to be a simple
closed polygon, for which exactly two edges are incident to each
vertex. For instance, only reconstructing the k-arcs associated to
the Reeb graph arcs of the (unique) cycle in Fig. 6d is a way of
avoiding extra polygonal lines in the k-arcs pointed by arrows
in Fig. 6c.

The filtering procedure consists in two steps. First, we remove
all degree-one nodes and their incident edges. This removes all
sub-trees in the graph. Either the remaining subgraph is empty
(no hole) or there is only one connected set of nodes whose degrees
are each greater than two (at least one hole). (See the first part of
Algorithm 1). If the procedure leads to a graph with no hole, then it
means that the processed irregular object does not contain any
hole. In this case, we loop back to the multi-scale noise detector
and re-run it with a lower maximal resolution. This iterative
process that progressively decreases the maximal resolution is
illustrated in Fig. 7.

Next, in order to get an irregular object that is homotopic to the
initial digital contour, we remove internal connections, i.e. arcs
whose terminating nodes have a degree strictly greater than two
(see second row of Fig. 6 and end of Algorithm 1). If the procedure
leads to a graph with several connected components, then it means
that the processed irregular object contains very thin parts. In this
case, we loop back to the multi-scale noise detector and re-run it
with a lower maximal resolution. This iterative process is illus-
trated in Fig. 8.

The whole filtering process is illustrated in Fig. 6h and i and the
proof of the correctness of Algorithm 1 is given in Appendix A. In
the next section, we describe and compare several methods to vec-
torize the resulting irregular object, so as to get a simple closed
polygon Fig. 6j.
Algorithm 1. Filtering process.

4. Unsupervised polygonalization of noisy digital contours
Guided by the pruned Reeb graph, the computation of the
polygonal representation of E is performed by reconstructing inde-
pendently each remaining k-arc. In order to easily glue together
each polygonal line into one global structure, each polygonal line
is set to begin at the center of the first cell and to end at the center
of the last cell of the vectorized k-arc. Between these two points,
any polygonal line is valid. But among them, we are looking for
the one that represents the most faithfully the k-arc (and the
underlying unknown shape). It is reasonable to think that this
polygonal line must belong to the set of polygonal lines that en-
tirely lie within the k-arc. That is why most of the techniques we
present below check if the computed polygonal line passes through
the intersections between two successive k-adjacent cells. Due to
the construction of the k-arcs (see Section 2.2), these intersections
are vertical straight segments (possibly degenerated as a point) of
increasing x-coordinate: they are called input ranges. Their extrem-
ity of greatest (resp. smallest) y-coordinate is called upper (resp.
lower) input point.

In the subsections below, we recall the vectorization techniques
of [32,35] before introducing a new method that minimizes the
length of the resulting polygonal line.

4.1. Greedy decomposition into visibility cones

This method, introduced in [32] and inspired from [26], is dri-
ven by an iterative construction of a visibility cone (VC for visibility
cone). For instance, in Fig. 9a, a simple k-arc is decomposed into
two visibility cones, which leads to a polygonal line composed of
two segments.

The method can be roughly described as follows. We first ini-
tialize the cone apex with the center of the first cell and its base
with the lower and upper points of the first input range. Then,
the cone is updated for each new input range so that there is
at least one ray coming from the cone apex and passing through
all the input ranges. When a new input range cannot be visible
from the cone apex, a new cone is set up, and its apex is added
to the polygonal line. This point is the middle of the intersection
between the bisector of the previous cone and the last scanned
cell.



(a) VC (b) S2

(c) C2 (d) MLP

Fig. 9. The four versions of polygonalization on a single k-arc. Output of the VC (visibility cone) method in (a). Output of the S2 (simple and straight) method in (b), C2
(complex and convex) method in (c), both based on the preimage of each straight part. MLP (minimum length polygon) in (d).

Fig. 10. Illustration of our contribution on an object digitized with a quadtree (a). (b) is the complete preimage computed on each k-arc encoding the object. One could note
that the k-arc at the bottom is decomposed into two straight k-arcs. In (c), we present the reconstruction of a single k-arc, and the associated preimage and upper/lower
convex hull points. We also depict the complete polygonal reconstruction of the object, constructed inside the preimage (d), and the final contour obtained with our filtering
procedure explained in the previous section. We also show the computation of the complete preimage (g) for the noisy contour (f), and the final reconstructions S2 (h), C2 (i),
MLP (j).
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Even if this algorithm is linear-time, it is a greedy approach that
could lead to some very short segments and acute angles (Fig. 9a).
This is why two other solutions have been proposed in [35]. We re-
call them in the next subsection.

4.2. Greedy decomposition into straight parts

The two methods we present here consist in decomposing a gi-
ven k-arc A into straight parts, i.e. sets of k-adjacent cells that can
cover a straight line (see for instance Fig. 9b). In the general case,
there are infinitely many straight lines that pass through a straight
part and the union of all the transversal lines is called preimage.
Note that all the transversal lines are considered here and not only
those passing through a given point as in the visibility cone ap-
proach of the previous subsection. We use O’Rourke’s algorithm
[22] to incrementally decide whether A is straight or not and com-
pute its preimage. Once a straight part has been detected, if the last
cell of this part is not the last cell of A, we start the recognition of a



Table 1
Theoretical comparison of the four proposed polygonalization methods.

Criteria VC S2 C2 MLP

Is unique No No No Yes
Stays inside the k-arc Yes No Yes Yes
Is centered within the k-arc No No Yes No
Respects the straight parts No Yes No No
Respects the convex and concave parts No No No Yes
Minimizes the length/angle variation No No No Yes
Minimizes the number of segments No No No No

Table 2
Error measures from contour reconstructions of Fig. 11. The mean minimal euclidean
distance (Ed) and error on tangent orientations h2

err

� �
were computed for each

algorithms version on different scales h.

VC C2 S2 MLP

h = 1 n 33 60 9 31
Ed 0.80 0.83 2.73 1.25

h2
err

0.12 0.06 0.07 0.05

h = 0.5 n 69 91 12 41
Ed 0.74 0.65 2.99 0.78

h2
err

0.12 0.04 0.05 0.02
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new straight part and so on. The whole process is linear-time. In
Fig. 9, a simple k-arc is decomposed into two straight parts whose
preimage is drawn in light blue.

A first and simple approach to transform this decomposition
into a polygonal line is to link, for each straight part, the straight
lines passing through the middle of the first and last input ranges.
We call this method S2 (Simple and Straight). Even if the resulting
polygonal line may be partly out of the k-arc (Fig. 9b), this is an
interesting way of decomposing a k-arc because the resulting
polygonal line contains few segments and preserves the straight
parts.

However, in order to get a polygonal line that entirely lies with-
in the k-arc, we propose another solution that takes into account
the shape of the preimage of each straight part (C2, meaning Com-
plex and Curved).

The preimage is implicitly described by some consecutive verti-
ces of the lower (resp. upper) part of the convex hull of the upper
(resp. lower) input points. The idea is to incrementally compute
the polygonal line that is lying in the middle of the preimage. More
precisely, for each input range whose upper or lower input point
belongs to the preimage, a new vertex is set to the middle of the
intersection between the preimage and a vertical line passing
through the input points (see [35] for more details).

This method leads to smooth polygonal lines (small angle vari-
ations between two consecutive edges) that are well centered
within the k-arc (Fig. 9c). However they usually have a lot of seg-
ments, and their geometry does not necessarily reflect the local
convexity or concavity of the underlying shape (see for instance
the last part of the polygonal line depicted in Fig. 9c).
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(a) Source (b) Multi-scale levels (c) VC
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Fig. 11. Illustration of the reconstruction algorithms applied on different image scale. Th
The reconstructed polygons associated to Alg-VC (that uses previous work), C2, S2, MLP
4.3. Minimal length polygonal line

In this subsection, we propose to compute, among the set of
polygonal lines that entirely lie within a given k-arc A, the one of
minimal length that joins the centers of the first and last cells of
A. This polygonal line, which always exists and which is unique
(when there are no collinear vertices), has been introduced in
[20,28] as the minimal length polygon (MLP). Its n-dimensional ver-
sion is known as relative convex hull [29]. In the case of input
ranges of increasing x-coordinate, the MLP is nothing else than a
sequence of upper or lower parts of convex hulls. Since the input
points are sorted according to the x-coordinate, their computation
can be incremental and linear-time due to the simple Andrew’s
monotone chain algorithm [2]. Fig. 9d illustrates the MLP recon-
struction of a k-arc.

The method uses a visibility cone whose apex is always a MLP
vertex. We first initialize the cone apex with the center of the first
cell and its base with the lower and upper points of the first input
range. Then, the lower (resp. upper) part of the convex hull of the
upper (resp. lower) input points are incrementally computed and
the cone is updated while there is at least one ray coming from
the cone apex and separating the two convex hulls. When a new
input range is located strictly above (resp. below) the visibility
cone, the apex of a new cone is set to the vertex of maximal x-coor-
dinate of the lower (resp. upper) convex hull that is visible from
the upper (resp. lower) point of the new input range. All the verti-
ces of the lower (resp. upper) convex hull scanned during this up-
date process are stored in the MLP vertices list.
(d) C2 (e) S2 (f) MLP

(j) C2 (k) S2 (l) MLP

e images (b,h) show the multi-scale levels obtained from the source contours (a,g).
are given respectively on (c–f) and (i–l). Geometric measures are give in Table 2.



(a) Source (b) MS (c) VC (d) C2

(e) S2 (f) MLP (g) Ngu09 [26], Nguyen Criteria (h) Ngu09 [26], Marji Criteria

(i) Siv11 [33] d 3 (j) Siv11 [33] d 5 (k) Liu08 [23] s 0.01 (l) Liu08 [23] s 0.03= = = =

Fig. 12. Comparisons of the proposed approaches (b–f) with others recent parameter free approaches [21] (g,h) and with parametric approaches (j–l) [27,19]. Detailed
comparisons on geometric measures are given on Table 3.
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The resulting polygonal line reflects well the local convexity or
concavity of the underlying shape. It not only minimizes its length
but also the number of its inflection points, hence it is rather smooth.
4.4. Comparison and discussion

We show in Fig. 10 an example of the previous vectorization
techniques on two irregular objects: one is the result of a quadtree
decomposition, the other one uses the multi-scale noise detection.

All four presented methods have a linear-time complexity.
However theyyield different polygonal reconstructions. The differ-
ences are summed up in Table 1. Unlike the other methods, S2 does
not lead to a polygonal line that stays within the k-arc, but it
respects the straight parts. MLP and C2 lead to smoother polygonal
lines than VC (MLP leads to the smoothest polygonal line since it
minimizes its length). The polygonal line computed from C2 is
the most centered within the k-arc, but the MLP is unique and re-
spects the convex and concave parts. Note that none of the meth-
ods minimizes the number of segments, even if the S2 method
usually yields smaller polygonal line (see next section).
5. Experimental results

5.1. Comparative study

To experiment the quality of the proposed algorithms, we first
consider a polygonal shape that was perturbed by a Gaussian noise,
with different standard deviations (r0 = 0,r1 = 75,r2 = 125, r3 =
175). These images were generated with two different grid sizes
h = 1 and 0.5 (Fig. 11a and g). The resized pixels (illustrated on
images of Fig. 11b and h) were obtained from the digital contours
extracted by using a simple threshold (set to 128) (images (b,h))
and boundary tracking algorithm. In order to measure the resulting
quality of the four reconstructions illustrated on images (c–f) and
(i–l) we applied various measures given on Table 2. These mea-
sures are the total number of points (n), the mean minimal euclid-
ean distance (Ed) between the source contour points Pi to the
resulting polygon, and the error on tangent orientations h2

err

� �
.

The measure Ed was obtained after associating each contour points
Pi of the initial shape (non noisy) to the nearest consecutive vertex
pair Vk, Vk+1. These associations were also used to determine the
tangent error h2

err , where herr is the angle between the tangent



Table 3
Geometric measures of the reconstructed shapes of Fig. 12. The different proposed
algorithms (four first columns of first tabular) can be compared with other parameter
free approaches [21] (two last columns of first tabular). The second tabular gives
measures obtained from recent parametric approaches for comparisons [27,19].

VC C2 S2 MLP Ngu09 [21] Marji [21]

n 211 457 100 212 52 24
dH 6 6.07 8.92 6.34 10.81 10.63
Ed 0.757 0.713 1.236 0.842 1.221 2.878

h2
err

0.130 0.076 0.071 0.040 0.062 0.131

Siv11 [27] Liu08 [19]

d = 3 d = 5 s = 0.01 s = 0.03

n 157 85 176 75
dH 9.98 8.544 11.401 11.401
Ed 1.068 1.808 0.859 1.917

h2
err

0.103 0.104 0.128 0.0619

Fig. 14. Extraction of a region of interest in MRI of heart with C2.

Fig. 15. Extraction of the aspen leaf from the background and construction of a
precise polygonal model of it.
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vector defined from Vk, Vk+1 and the tangent provided by the
k �MST estimator [18] applied on the source (undamaged) discrete
contour.

The experiments confirm the awaited improvements provided
by the Algorithm C2 in comparison with the use of the algorithm
based on visibility cone [32] (denoted as Alg-VC). It is visible espe-
cially for the tangent error measure h2

err but also for the distance er-
ror Ed. The second variant Algorithm S2 produces a more compact
representation while preserving a moderate tangent error h2

err .
However this last algorithm is less convenient on the point of view
of the Ed error. On the point of view of the tangent error measure
h2

err , the algorithm MLP appears to give the best results on each im-
age size.

Finally, we compare our methods with algorithms developed by
Nguyen and Debled–Rennesson [21] which are based on a global
optimization scheme in association with the Marji’s criteria (MC)
or another one proposed by the authors (NC). In Fig. 12, we present
the polygonal contour obtained from our methods, and from the
NC and MC algorithms which are both parameter free approaches.
For each experiment, we measure the Hausdorff error (dH) and the
previously described errors (see Table 3). The comparisons show
that the proposed approaches are less compact than both the NC
or MC but provide better precision for the dH and Ed errors. On
the point of view of the tangent orientation error h2

err our ap-
proaches with C2 or S2 are comparable with the one of the NC
algorithm, while MLP outperforms all. Other complementary
comparisons were also performed with two recent parametric
Fig. 13. The meaningful boxes extracted from scanned characters (ce
methods. The first one is the polygonal reconstruction from the vi-
sual curvature [19] which uses a parameter associated to the scale
of the contour analysis. The second one exploits another way to
take into accounts the noise by using the Fréchet distance defined
nter), and the final reconstruction we propose with C2 (bottom).



(a) (b) 0.0, (c) 0.3, (d) 0.6, (e) 1.0,
f 100%, n 35 f 36%, n 68 f 21%, n 104 f 0%, n 170

(f) (g) 0.0, (h) 0.1, (i) 0.6, (j) 1.0,
f 100%, n 53 f 70%, n 55 f 25%, n 173 f 0%, n 257
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Fig. 16. From the curved/flat feature extracted (red:curved, blue:flat) with the multi-scale detector (a,g), we propose an adaptive reconstruction with several values for g. For
each case, we also give the final percentage of flat k-arcs f, and the number of points in the reconstruction n. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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between the initial discrete contour and the resulting polygon [27].
We apply the reconstructions with several parameter settings
illustrated on Fig. 12i–l. The parameters were first manually tuned
to favor the closeness to initial data with some noisy areas on the
last quadrant (d = 3 s = 0.01) and the second one gives the priority
to the noise removal (d = 5, s = 0.03). The measure of Table 2 con-
firms the performance of the proposed methods since the MLP
based algorithm outperforms all the geometric measures for all
set of parameters.
5.2. Complex image analysis

The Algorithm C2 was also experimented on real images of
characters, acquired from a photographed document. A given
threshold was used to extract the digital contours on which the re-
sized pixels were computed (as illustrated on the second row
Fig. 13). We thus show that our vectorization algorithm could be
applied in document analysis systems.

Our algorithms may also be used in the polygonal modeling of
region of interest in many image analysis applications. Here, we
depict the extraction of a part of an heart in an MRI (Magnetic Res-
onance Imaging) in Fig. 14. Despite the presence of noise in the im-
age, we are able to propose a clean reconstruction of the selected
region.

We also present a last application of our work in a project of leaf
recognition for smartphones.1 In this context, leaves may be de-
tected in very complex environments by computing a distance
map with Gaussian mixture models [6,7]. Thanks to this map, we
are able to compute a polygonal model of the leaf, even if the back-
ground color model is very close to the one of the treated object (see
Fig. 15).
5.3. Adaptive polygonalization by combined curved/flat
reconstructions

Here, we propose to combine the two versions S2 and C2 we
have introduced before in order to adaptively reconstruct noisy
shapes. The meaningful scale detection we use [15] is able to dis-
1 http://liris.cnrs.fr/reves/content/en/index.php.
tinguish curved and flat parts of the input noisy contour. In
Fig. 16a and g, we show extracted resized pixels of a digital con-
tour. In our system, for each k-arc, we count the number of flat
and curved points included inside it, respectively nf and nc. This
k-arc is said curved if we have:

nc

nc þ nf
P g; ð1Þ

where g 2 [0,1] is a given threshold. In this case, we apply the C2
version, and S2 one otherwise. We give in Fig. 16 some examples
of reconstructions with various values for g, for two images.
6. Discussion and future works

In this paper, we address the problem of vectorization of noisy
digital contours. We transform the resized pixels obtained by
Kerautret and Lachaud’s algorithm [15] into an irregular isothetic
object recoded in a set of k-arcs whose topology is stored into a
Reeb graph. We first show how to use the Reeb graph in order to
prune the set of k-arcs so that it is homotopic to the initial digital
contour. Then we review different geometrical algorithms (VC, S2,
C2), and propose a new one (MLP), in order to build a polygonal
representation of each k-arc. The resulting polygonal structure is
obtained by gluing together the independent polygonal lines. The
whole polygonalization process takes a linear-time in the number
of cells. We have shown in the experiments that our proposals are
very efficient w.r.t. to several other techniques of the literature. We
have also presented applications in image analysis that reveal the
interest of our system, and an original way to combine two com-
plementary methods of polygonalization (S2 and C2).

Our experiments suggest that the MLP reconstruction appears
to be the best reconstruction method for the vectorization prob-
lem. It optimizes the multiple objective criteria that we have com-
pared and provides a nice geometric reconstruction on flat and
curved parts even in the presence of noise. This is certainly due
to the fact that the length is a well-known first-order regularizer.
It presents a slight drawback: it tends to shorten the curve, and
the stronger the noise the shorter the reconstructed curve.

A more desirable approach of regularization would be to center
at most the reconstructed curve within the bounds extracted by

http://liris.cnrs.fr/reves/content/en/index.php
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the first stage. This was our objective when proposing method C2,
but MLP achieves generally better objective results since it is re-
lated to a well-known regularizer. Furthermore, combining S2
and C2 is also promising, but has the drawback of introducing a
parameter in the method. Method MLP has the advantage of not
introducing any new parameter, and this is an important feature
in a vectorization process.

We are currently experimenting another approach to this prob-
lem, which is to use a regularizer of higher order. Instead of com-
puting the shortest polygonal curve (i.e. the curve that minimizesR

C ds and stays within the bounds), we reconstruct the curve that
minimizes its squared curvature (i.e. the curve that minimizesR

C j2ds). The reconstructed curve will naturally be more centered
within the specified bounds while keeping some desirable proper-
ties. Combining the noise detector, the topological reconstruction
and this reconstruction method (see the works of Kerautret and La-
chaud [16] and Bretin et al. [4]) is the object of future works. Note
however that this kind of approach will certainly have to mix prim-
itives of first and second order like straight segments and circular
arcs, which is not anymore a simple vectorization.

Besides, we plan to work on noisy 3-D surfaces, and develop a
complete framework in a similar way as the one presented in this
article. We thus have to adapt the noise detector in order to com-
pute a multi-scale representation of the input object. Then, we
would like to compute the Reeb graph, and use this topological tool
to guide an original polyhedrization algorithm that process over-
lapping irregular 3-D cells. We could also study the computation
of an isothetic contour of the input noisy object, as it has been pro-
posed in 2-D by [3].
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Appendix A. Proof of the correctness of the Reeb graph filtering
procedure

Lemma 1 Validity of Algorithm 1. Algorithm 1 returns true if the
filtering process yields a subgraph that contains one and only one
cycle, but false otherwise.
Proof. Algorithm 1 consists in two steps. The first one iteratively
removes nodes of degree one and their unique indicent arcs (i).
The second one iteratively removes arcs incident to two nodes of
degree strictly greater than two (ii). Let us see what is the impact
of these two steps on the graph structure.

(i) A the end of the first step, since the input graph is connected,
only two cases may occur: either there is only one node (of
degree zero), or there is a connected set of nodes (of degree
greater than or equal to two). The first case occurs only if the
input graph is a tree (a connected graph without any cycle).
This can be shown by structural induction. The base case is
any tree of only one node. Then, connecting with a new
arc, a new node to any node of a tree yields a tree bigger
of one node and one arc, because no cycle has been created.
Due to the previous result, it is clear by contradiction that
the second and last case occurs only if the input graph has
one cycle or more.
In the first case the algorithm stops and returns false, other-
wise it performs the second step in order to keep only one
cycle.
(ii) If the resulting graph is not connected after the second step,
the algorithm retuns false. Otherwise, we prove below that it
returns true because it contains one and only one cycle.

Due to the construction of the Reeb graph according to the
order � L, after the removal of all degree one nodes, there is at least
one minimal node sw and one maximal node mw in the resulting
graph. In the initial Reeb graph, there is a tree rooted at sw (resp.
mw), which contains all the nodes smaller (resp. greater) than sw

(resp. mw), and which is removed during the first step. Otherwise
sw (resp. mw) is not the minimal (resp. maximal) node of the
resulting graph, which raises a contradiction. This means that sw

and mw are both of degree two after the first step.

As a consequence, at the end of the second step, the set of
connected nodes contains at least two nodes of degree two (sw and
mw), but no node of degree strictly greater than two (removed).
Since there is no node of degree strictly less than two (due to the
first step), there is exactly one cycle, which concludes the proof. h
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