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Abstract. Deformable models like snakes are a classical tool for image
segmentation. Highly deformable models extend them with the ability to
handle dynamic topological changes, and therefore to extract arbitrary
complex shapes. However, the resolution of these models largely depends
on the resolution of the image. As a consequence, their time and memory
complexity increases at least as fast as the size of input data. In this paper
we extend an existing highly deformable model, so that it is able to locally
adapt its resolution with respect to its position. With this property, a
significant precision is achieved in the interesting parts of the image,
while a coarse resolution is maintained elsewhere. The general idea is
to replace the Euclidean metric of the image space by a deformed non-
Euclidean metric, which geometrically expands areas of interest. With
this approach, we obtain a new model that follows the robust framework
of classical deformable models, while offering a significant independence
from both the size of input data and the geometric complexity of image
components.

Keywords: image segmentation, deformable model, non-Euclidean ge-
ometry, topology adaptation, optimization

1 Introduction

Deformable models were first introduced in the field of image segmentation by
Kass, Witkin and Terzopoulos [5]. Their behavior is governed by the minimiza-
tion of a functional (energy), which depends both on the matching of the curve to
the contour and on the smoothness of the curve. This segmentation framework
remains valid even with poor quality images with weak contours. Furthermore,
the energy formulation is rather intuitive. This makes it easier to include user
interaction as well as other kinds of constraints in the segmentation process. The
deformable model framework has been extended with various tools that improve
both convergence speed and segmentation quality (e.g. [13] and [2]).

However, deformable models in their original formulation cannot dynamically
change their topology. This means that they can only extract image components
with the same topology as the initial model. As a consequence, the model ini-
tialization requires hypotheses about its final expected shape. In domains like
biomedical image analysis, this kind of hypotheses is sometimes difficult to jus-
tify. Indeed, the objects in the images often have complex shapes with several
connected components and holes. Furthermore they are likely to be abnormal
and hence may have an unexpected topology.



Several methods have been proposed to overcome this limitation. These highly
deformable models are able to achieve automated or supervised topology adap-
tations, based on their geometric evolution. Nevertheless, although they largely
extend the application field of deformable models, these new methods come in
general with an important increase of computational costs. The following para-
graphs describe some of these techniques and emphasize their time complexities.
From now on we will assume that the size of a bi-dimensional image is n? and
that the number of vertices necessary to describe the shape of the image com-
ponents is O(n).

The first approach keeps the energy formulation as well as the explicit shape
representation. The idea is to check the model at each step of its evolution. Then,
if its topology is no longer consistent, mesh reconfigurations are performed to
solve the problems. Delingette and Montagnat [4] analyse the intersections of
their model with a regular grid. Detecting special configurations allows them to
detect and handle topological changes. McInerney and Terzopoulos [9] propose
a similar method that use a simplicial regular subdivision of the space to detect
and solve topological problems. This algorithm is less efficient than Delingette’s
(O(n?) per iteration instead of O(n)), but has the advantage of being easy to
extend to the three-dimensional case. The authors of [6] propose a different
approach based on distance constraints on the edges of the deformable model.
Although they formulate it for the three-dimensional case, the principle is valid
for the bi-dimensional case too. With an appropriate data structure the time
complexity of this algorithm is reduced to O(nlogn) per iteration.

Another approach [10] consists in formulating the problem in term of front
propagation instead of minimizing an energy. In this context the model is no
longer represented explicitly: it is viewed as a particular level set of a scalar
function f defined on the image space and which evolves with the time. This
level set propagates in the image space with respect to two main constraints: (i)
the propagation slows down in the neighborhood of high image gradients, (ii)
the level set propagates faster in places where its curvature is important (this is
to preserve the contour smoothness, see [1] and [8] for details). These constraints
are expressed as differential equations involving f. Iteratively solving these equa-
tions makes the level set approach image components. With this formalism, the
topological changes are automatically embedded in the evolution of f. In addi-
tion it is very easy to extend this kind of model to higher dimensional spaces.
Nevertheless these advantages come with heavy computational costs: theoreti-
cally, the new values of f have to be re-computed over the whole image at each
step of the algorithm (each step would thus cost O(n?) operations). However
optimizations based on quad-trees or on the narrow band algorithm may re-
duce this complexity to O(nlogn) [11,12]. Note also that, user interactions or
other constraints are more difficult to embed in this kind of models compared
to explicit ones.

Finally, in a third approach, the energy minimization problem is formulated
in a purely discrete context [7]. Image components are viewed as sets of pixels
(or voxels). There is therefore no need to write specific algorithms to handle



topology changes. The energy of the components is computed according to the
local configuration of each element of its boundary (called a bel). The model
evolution is then performed by adding or removing pixels (or voxels) so as to
minimize the global energy. Complexity per iteration linearly depends on the
size of the model boundary. Namely, for a bi-dimensional image the time cost is
O(n) bel energy computations for each iteration. However, the time needed to
compute one bel energy is constant but rather important.

This argumentation shows that the computational costs of highly deformable
models largely depend on the size of input data. The images produced by acqui-
sition devices have higher and higher resolutions. As a consequence, computa-
tional cost of these segmentation algorithms becomes prohibitive. In this paper
we propose a highly deformable model which dynamically adapts its resolution
depending on its position in the image, and automatically changes its topology
according to the changes of its geometry. A fine resolution is thus achieved in
the interesting parts of the image while a coarse one is kept elsewhere. With this
technique, the complexity of the model is made significantly more independent
of the image resolution.

More precisely, the model we propose is an extension of the one presented
in [6]. In this model, the topological consistency is maintained using distances
estimations. However, to work properly, the model needs to have a regular den-
sity. To achieve adaptative resolution, our idea is to change the Euclidean metric
with a locally deformed metric that geometrically expands the interesting parts
of the image. The original model was designed to work with three-dimensional
images. In this paper, while we propose to extend a bi-dimensional version of this
model, our real goal is to later extend it to segment three-dimensional images.
A particular attention is thus paid to using only methods that remain available
in three-dimensional spaces.

In the first section of this paper, we describe more in details the model we
propose to extend. In the second section we define a more general notion of
distance that is used in the third section to define our new model. The last
section deals with the choice of the metric with respect to the image.

2 Initial Model

In this section we first make some recalls about the classical snake model, as
it was introduced by Kass, Witkin and Terzopoulos [5]. Then we describe the
highly deformable model we propose to extend. The last part of the section
explains how changing the metric of the image space allows us to locally change
the resolution of this model.

2.1 Classical Snake Model Formulation

Snakes are defined as curves C' : [0,1] — IR? that evolve in the image space so
as to minimize an energy functional expressed as

E(C) = /0 Eimage (C(U)) + Einternal(ca U) du . (1)



The energy functional is composed of two terms: the first term &;nqge €nsures
that the curve matches the contours of the image, the second term E&;niernal
forces the curve to remain rather smooth. The contour matching is ensured by
choosing Eimage 50 as to make it low in the neighborhood of image gradients. The
smoothness of the curve is obtained by penalizing both its length and curvature.
These remarks lead to the following choice for these energies

{ gimage(xay) = _||VG * I(.’I,',y)”

2
ginternal(c,u) = % ||%||2 + g ‘ d’c

du?

where I and G respectively denote the image function and a Gaussian smoothing
filter.

To find the curve that minimizes (1), the most common method consists
in discretizing the curve. Once this has been done, each discretized point is
considered as a particle having its own energy, and therefore evolving under
forces derivating from this energy. Namely these forces are

— an image-based force which attracts the particle towards image gradients,
an elastic force which attracts each particle towards its neighbors,

a curvature minimizing force which attracts each particle toward the straight
line joining its neighbors,

— a friction force that makes the system more stable.

This point of view has a significant advantage over the first formulation: it
makes it possible to introduce new forces that speed up the convergence of the
model or improve the segmentation (for examples see [13] and [2]). Moreover,
such a mechanical system is easy to extend to three dimensions [3, 6].

To determine the displacement of each particle at a given step, many authors
directly apply Newton’s laws of motion and then solve the resulting differential
equations (e.g. [13,2,4]). However, we propose to use the Lagrangian approach
to express the dynamics of each particle, since it can be formulated in non-
Euclidean spaces.

Now, consider a particle of mass m, its position being described by x =
(z1,...,%,), moving under the action of the force F. Let T denote its kinetic
energy (I' = im & - &). Let dx be a small variation of the particle trajectory
(6x(t1) = dx(t2) = 0). Then, the dynamics of the particle is described by the
least action principle which postulates (for all possible dz):

/t2(6T+F-6a:)dt:0. )

In particular, it has to be true for dx = (0,...,0,dz;,0,...,0). Equation (2)
may then be written as

. [ ror d oT



In an Euclidean space with the usual dot product, F' - dx = F;0x;. Hence
equation (3) leads to
oT  d oT
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Replacing T’ with 1m >°7" | @7 (which is true in Euclidean spaces only) and writ-
ing the equations for each possible value of i result in the well known Newton’s
laws of motion: m@& = F'. The Lagrangian formalism may thus be considered as
a variational principle equivalent to the Newton’s laws, but with the advantage
of being independent of the Euclidean structure of the space.

+F=0. (4)
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2.2 Highly Deformable Model

As said in the introduction, classical snake models are unable to handle topolog-
ical changes. Highly deformable models are extensions to the basic snake model
that overcome this limitation. This section describes the bi-dimensional version
of the highly deformable model we propose to extend [6], and how it is able to
dynamically adapt its topology to keep it consistent with its geometry.

General Description. Our deformable model is an oriented (not necessarily
connected) closed polygonal curve that evolves in the image space. To preserve
a consistent orientation of the model, it is necessary to avoid self-intersections.
The main idea is to detect them before they occur. When a problem is expected
to arise, it is solved using appropriate local topological operators. By this way,
we ensure that the orientation of the model remains consistent at each step of
its evolution. The following subsections detail each step of this algorithm.

Collision Detection. Detection is made possible by imposing distance con-
straints between the vertices of the model. Let 6 and ¢ be real numbers satisfy-
ing 0 < § and 2 < (. Then, suppose that for each edge (a,b) of the model, the
Euclidean distance dg(a,b) between a and b satisfies

6 < dp(a,b) < (6. ()

That means that all vertices are rather evenly spaced on the model mesh (pro-
vided that (¢ is close to 2). Now let us show how this is helpful to detect self
intersections of the model.

Let (u,v) be an edge of the deformable model. Suppose that a vertex p crosses
over (u,v). Then it is easy to verify that there is a time interval during which the
distance from p to the edge (u,v) is less than a particular threshold. It follows
that, during this time interval, the distance from p to either u or v is less than
Ag(d, where Ag is an appropriate real number (see Fig. la-b).

Theoretically, without additional hypothesis, Ag should be greater than 1 to
ensure that no self-intersection may occur without being detected. However, if
the initial model configuration is consistent, and if the motion of the particles



Fig. 1. Collision detection and handling: a point p cannot crosses over (u,v) without
entering circle C,, or C, (a) and (b). When a collision is detected (b), a local reconfig-
uration is performed (c): new vertices are created around v and p. These vertices are
connected in the appropriate way. Then the vertices v and p are deleted.

is small enough, smaller values of Ay may be chosen. In particular, if the vertex
speed is assumed to be less than vz, AE = 1/2 + Uy /(0 is a suitable choice.

With this property, if the inequality (5) is satisfied at each step of the evolu-
tion of the model, then self-intersections are detected by checking the inequality

for each pair of non-neighbor vertices of the model. Each time this inequality is
not verified, a local reconfiguration of the model is performed in order to restore
the constraint. Let us describe these reconfigurations.

Local Reconfigurations. As said in the previous paragraph, two kinds of
constraints have to be maintained:

— constraints between neighbor vertices, given by (5),
— constraints between non-neighbor vertices, given by (6).

Consider an edge of the deformable model that does not respect the constraint
(5). If it is shorter than the ¢ threshold, then the constraint is recovered by
merging the two vertices at the extremities of the edge. Symmetrically, if the
edge is longer than the (J threshold, then it is split into two equal edges by
inserting a new vertex in the middle of the original edge. Note that this kind of
transformations affect the local resolution of the model, but not its topology.

If we now consider a pair of vertices that does not respect (6), then the
transformations described on Fig. lc have to be performed. The topology of
the model is thus changed. Detecting all these pairs of vertices with a naive
method would have a time complexity of O(n?) for a model with O(n) vertices.
Nevertheless a hierarchical subdivision of space with quad-trees reduces the costs
to an average time complexity of O(nlogn).

It is important to note that this approach to topology adaptation also works
for three-dimensional image segmentation. In this context, the deformable model
is a triangulated surface, and with an adapted value of Ag, all the statements
made before remain true.



2.3 Influence of Distance Estimations

As said before, the evolution of the model, and especially its resolution, largely
depend on distance estimations. When the length of an edge is to small, vertices
are merged, and when the length of an edge is too high, new vertices are inserted
in the mesh. Therefore, the parameter § determines the resolution of the model:
the smaller it is, the greater the resolution becomes.

Since (5) has to be true for each edge of the model, increasing the resolution
of the deformable model only in a restricted interesting part of the image cannot
be achieved without increasing the resolution everywhere, that is, even where it
is not needed. This implies a significant increase of the time and memory costs
of the segmentation algorithm.

Suppose now that we change the way distances are measured instead of
changing the value of §. Namely, suppose that distances are overestimated in
the interesting parts of the image, while they are underestimated elsewhere. In
all areas where distances are overestimated, the lengths of the edges seem to be
greater so that they tend to exceed the (§ threshold. Therefore, new vertices
are inserted to split the edges. As a consequence, the model resolution increases.
Symmetrically, in places where distances are underestimated, the lengths of the
edges seem to be smaller. To prevent the edge length from falling under 4, neigh-
bor vertices are merged, so that the resolution decreases.

The extension we propose is based on these remarks. Our idea is to replace
the Euclidean metric with a deformed one, in order to geometrically expand the
areas of interest. With this new definition of distances, it becomes possible to
perceptibly increase the resolution of the model in restricted parts of the image
without significantly increasing the cost of the segmentation algorithm.

Nevertheless, changing the distance notion rises many problems:

— first we have to find a more general definition of distances and to design
algorithms to measure these distances between arbitrary points,

— then the motion equations of the deformable model particles have to be
rewritten in this context,

— lastly, it is important to discuss how distances are defined with respect to
the image.

The following paragraphs successively deal with each of these problems.

3 Riemannian geometry

The new definition of distances is based on Riemannian geometry. Giving all
the background on this mathematical theory is beyond the scope of this arti-
cle, therefore we only describe the notions which are used to define our new
deformable model. Moreover, to clarify the presentation, everything will be de-
scribed in IR?. The given statements however remain true in higher dimensional
spaces.



3.1 Metrics

In an Euclidean space, the length of an elementary displacement ds = (dx,dy)
is given by the relation
ds|| = dz? + dy* .

It only depends on the values of dx and dy. In particular, the origin of the
displacement has no influence on its length.

In a non-Euclidean space this is no longer true. Suppose for example that
the rectangle [—m, m[x] — T, [ is the map of a sphere, obtained with the usual
parameterization using the longitude § and latitude ¢. Then the length of a
elementary displacement ds = (df, d¢) changes whether the displacement occurs
near one pole or near the equator of the sphere (actually it may be written
lds|| = R? cos? ¢ df* + R%*d¢?, where R denotes the sphere radius).

To measure the length of arcs in a non-Euclidean space, a mapping which
measures the lengths of elementary displacements anywhere in this space must
be given. This mapping is derived from the notion of metric.

We call a metric, or a Riemannian metric a mapping g that associates a dot
product g, ,) with each point (z,y) of the space, provided that g is of class Cct.
At a given point of the space, the dot product g(, ,) induces a norm which may
be used to measure the lengths of elementary displacements starting from (z,y):
l|ds|| = g(w7y)(ds,ds)%. Then, let ¢ : [0,1] — R? be an arc. Its lengths L(c)
may be expressed as

1
2

1
£(e) = [ (getu(€(w, () * du. 7
0
Metrics are conveniently defined with a matrix form. Indeed, g(, ) is a dot
product, and hence it is a symmetric positive definite bilinear form. In the bi-
dimensional case, it may therefore be expressed as

T g11(z,y) gi2(z,y)
(u,v) > u" x <g12($,y) oo x,y)) XU, (8)

—~

where the g;; are functions of class C'. From now on, in order to make the
equations simpler and since no confusion may arise, g;; will denote g;;(x,y).
Note that if we choose the metric given by the identity matrix, an elementary
displacement ds = (dz,dy) has a length given by ||ds|| = dz* + dy?. Namely,
the Euclidean metric may be interpreted as a particular Riemannian metric.

3.2 New Definition of Distances

Given this metric definition, it becomes easy to build a new definition of the
distances between two points: the Riemannian distance between two points A
and B is denoted dr(A, B) and its value is given by

dr(A, B) =inf {L(c) | ¢ € C*([0,1],IR?), ¢(0) = A, ¢(1) = B}



where C'([0,1],1R?) denotes the set containing all the arcs of class C* in the
IR? space. Informally speaking, the Riemannian distance between two points is
the length of one shortest path between these points. When such a path exists,
which is always true in a compact space, it is called a geodesic.

3.3 Effective Distance Estimations

Although this definition complies with intuition, its major drawback is that
computing exact distances is difficult. Indeed, contrary to what occurs in the
Euclidean space, shortest paths are no longer straight lines. Finding a minimal
path between two given points may be efficiently achieved by using a relaxation
method to minimize the discretized version of (7). The length of the discretized
path is then easy to compute.

However, one may verify that in an area of the space where g remains con-
stant, geodesics are straight lines. Since g is of class C', g may be considered as
constant on small neighborhoods of space. Therefore, the geodesic connecting
two given points may be viewed as a straight line, provided these two points
are close enough from each other (which is the case for neighbor vertices of our
model).

4 New Formulation of the Deformable Model

Changing the space metric has two consequences, each of which is described in
the following subsections:

— the motion equations are modified, which affects the model dynamics,
— the collision detection method has to take the metric change in account.
4.1 New Laws of Motion

To define the new dynamics of our deformable model, we have to write the
differential equations which describe the motion of each particle. Therefore, we
rewrite the least action principle (2) with the new dot product defined by the
metric. With this dot product, we have:

1 PR | n o
{T =gm&-&=5m . gijdid;
P n .. - -

F bz = Zi,j:l gij Fid;

Choosing 6z = (0,...,0,dz;,0,...,0) leads to

i t2 [ 5T d oT n
Vi, /t1 (a—xlémz - Ea_xlém’ + ;gkiFk(smi dt=0. (9)

Once 0x; has been factored, one may deduce
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Using now the new expression of 7" leads to the motion equations

n
Vk, miy +m Y Thii; =F, (11)
i,j=1
where the I'% coefficients are known as the Christoffel’s symbols, and are given
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(g*! denotes the coefficient at position (k, ) in the inverse matrix of (g;;)1<i,j<n)-
Note that the Newton’s laws are obtained from (11) by choosing the identity
matrix for g;; (i.e. by making the space Euclidean).

From these equations our new model can be defined as a set of moving
particles each of which follows (11). Its behavior is thus totally determined by the
choice of F'. As usual F' defines the sum of the image force, the elastic force, the
curvature force, and the friction force. These forces do not need to be adapted
to the Riemannian framework, since the metric is already embedded into the
motion equations. The only necessary change is to replace the Euclidean distance
measurement, with the Riemannian one in the computations of the elastic forces.
Of course, new forces such as those proposed in [13] or [2] are likely to be
introduced to enhance the behavior of the model.

4.2 Topology Constraints

In this section we show that the constraint (6) remains a good way of detecting
where and when topology changes have to be performed. We will thus assume
that the regularity constraint (5) written for a Riemannian metric holds:

0 <dg(u,v) <(6, (13)

for each edge of the deformable model. Now, let us prove that self-intersections
may be detected in the same way as before, namely, by comparing the distances
between non-neighbor vertices with a particular threshold.

To do so, we use a relation that compares the Riemannian metrics to the
Euclidean metric. We need to consider the lower and upper bounds of the eigen-
values of the metric matrix used in (8). They will respectively be denoted pipin,
and e, With these notations, the relation between the Euclidean and the
Riemannian distances is expressed as

umindE(MaN)Q S dR(MaN)2 S Nmasz(MaN)2 . (14)



This inequality is very useful since we can deduce from it that the constraint
(6) can still be used to detect topology changes even in non-Euclidean spaces.
Furthermore, it allows us to check efficiently whether this constraint holds.

Let (u,v) be an edge of our deformable model, and p be a vertex that moves
towards (u,v). Let m denote the point of (u,v) which minimizes dr(m, p). With-
out loss of generality, we may assume that dgr(m,u) < dgr(m,v). The triangular
inequality is expressed as

dR(p7 u) < dR(p7 ’ITL) + dR(m7u) .
From (13) and (14), and from the fact that dg(u,m) < 1dg(u,v) we obtain

/’l/mﬂ/.’l) d Nmaw C(S .

dR(p7 U’) < dR(p7 m) + R(u7v) < dR(p7 ’ITL) +

Hmin Hmin
If p crosses over (u,v), there is a time interval during which dgr(p,m) < e
Therefore, comparing dg(p, ) with e+ ﬁ@ detects self intersections. If v,,,4.
is the upper bound of the particles displacement between two steps of the model
evolution, a good choice for € is v;4,. The constraint between non-neighbor
vertices is hence expressed as

Himaz 5 4 e < dp(u,v) . (15)
2/1'mz'n

With A\g = §z2e= + fme= this is written as

/\RC(S S dR(U,’U) . (16)

Note that with the Euclidean metric, tmin = Mmaz, SO that we get back the
value Ap that was used for the original model.

5 Metric Choice

In this section, we explain how the knowledge of the local metric eigenvalues and
eigenvectors is useful to properly choose the metric according to the image.

5.1 Metrics Properties

In this paragraph we adopt a local point of view, and it is assumed that metrics
are smooth enough to be considered as locally constant.

At a given point of the image space, the metric is given as a symmetric
positive definite matrix G with two eigenvectors v; and v2 and their associated
eigenvalues p1 and po. If the vectors vy and vs are choosen with a unitary
Euclidean length, then the Riemannian length of @ = v, + z2v2 is given as

@llr = \/ et + ppas . (17)



The unit ball induced by the norm G
is an ellipse with its semi axes oriented
according to v and vz. The lengths of
the semi axes are given by 1/,/u1 and
1/\/m2. The length of a vector depends
on its direction:

lvmllr = llkvillr = k\/pn

lvmllr = |lkvzllr = k2

l|lvellr = k\/,ul cos2 0 + p2sin? @

Fig. 2. Local behavior of metrics

Then, as shown in Fig. 2, the local unit ball is an ellipse with an orientation
and a size that depend on the local spectral decomposition of G. One may easily
verify that the unit balls of a metric with two equal eigenvalues are Euclidean
unit balls up to a scale factor. These metrics are thus called isotropic metrics,
while metrics with two different eigenvalues are called anisotropic metrics.

Reciprocally, it is easy to get the symmetric positive definite matrix cor-
responding to given eigenvectors and eigenvalues. The eigenvectors are used to
define locally the main directions of the metric, and the eigenvalues determine to
what extent the space is expanded along to these directions. In the next section
we explain how we use these statements to choose the image space metrics.

5.2 Metric Definition over the Image

Isotropic Metrics. Isotropic metrics are the easiest to use and define (they
may indeed be written g(x,y) x I, where I denote the identity matrix). Therefore,
in a first approach, we will only use metrics of this kind. Two methods to define
metrics are then considered.

The first method is to let the user himself choose the interesting parts of
the image. The metric ¢ is set to high values in these areas, and remains low
elsewhere (namely equal to 1, to get back the classical Euclidean behavior of the
model). An example of segmentation using this method is shown in Fig. 3.

The second method is to automatically determine the areas of interest. In
the deformable contours framework, these places are typically characterized by
high values of the gradient norm. Therefore, a good choice for the function g is
g(z,y) = 1+||VI|| *G,, where G, denotes the usual Gaussian smoothing filter.
This ensures that the model resolution increases nearby strong image contours,
while remaining coarse elsewhere.

Anisotropic Metrics. The metrics previously described are simple and intu-
itive. However, they do not take advantage of all the properties of Riemannian
metrics. With anisotropic metrics, space deformations depend on the direction.
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Fig. 3. Results with a user-defined metric. The images (a), (b) and (c) show different
evolution steps of the segmentation algorithm. The image (d) shows details of the upper
left and lower right parts of the image (c), and emphasizes the resolution difference
between the two parts of the image. The metric is isotropic and has high values in
the upper right corner of the image. In the lower left corner, it is equivalent to the
Euclidean metric. This is shown in the picture (e), where the circles represent the
local unit ball of the metric. Note that this experience also validates the automated
topological changes of the model in a space with a deformed metric.

The following paragraph shows how that kind of metric improves the segmenta-
tion.

Consider the metric g defined as the Euclidean metric in the image places
where the gradient norm is low or nul. Suppose that elsewhere, g is the metric
with the spectral decomposition (v1, 1), (v, u2), with v4 = VI, uy = |[VI|],
vy = v11 and w2 =1,

In places where there are no strong contours, the deformable model behaves
as if the metric were Euclidean. Therefore, no new vertices are created, and
the model resolution remains coarse. In the neighborhood of a contour, the de-
formable model mesh may either cross over or follow the contour. Suppose that
it crosses over the contour. In a small neighborhood the mesh is roughly par-
allel to v1. With our choice for u; edge lengths are overestimated. Therefore
the model locally increases its resolution, which provides it with more degrees of
freedom. In contrast, suppose that the model mesh follows the contour. Then the
mesh is roughly parallel to va (i.e. orthogonal to VI), and with our choice for
1o, distances are estimated as in the Euclidean case. Consequently, the model
resolution remains coarse, and the number of vertices used to describe the image
component remains low.

The different methods considered before are experimented and compared on
computer generated images in Fig. 4 and 5. Additional results with a MR brain
image are shown on Fig. 6.

6 Conclusion

We have proposed a bi-dimensional highly deformable model that dynamically
and locally adapt its resolution. Hence, a fine resolution is achieved in the in-
teresting parts of the image while a coarse resolution is kept elsewhere. By this
way, the segmentation algorithm complexity is made significantly more indepen-
dent from the size ot input data. In a bi-dimensional image, dividing twice the
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Fig. 4. Segmentation with different automatically computed metrics: the model is ini-
tialized around the figure. The image (a) shows the result obtained with the Euclidean
metric with the lowest model resolution that allows to distinguish the two connected
components of the image. The image (c) shows the result obtained with the isotropic
Riemannian metric described in image (b). The picture (e) shows the segmentation
obtained with the anisotropic Riemannian metric described in Fig. (d).

I

a e

Metric |Time (s)|Complexity
(a) Euclidean | 3.88 | 186,567
(b) Isotropic 49.72 152,860
(c) Anisotropic| 8.33 55,258

Fig. 5. Statistics: the graph represents the evolution of the number of vertices of the
model with respect to the iteration number, and for different metrics. The segmented
image is the same as in Fig. 4. This emphasizes that our new model is able to extract
image components with significantly less vertices than the initial model, especially if
anisotropic metrics are used (curve ¢ on the graph). It also shows that the use of
deformed metrics speeds up the model convergence. Computation times remain higher
than with an Euclidean metric, however, many optimizations are likely to be performed
to reduce the computational cost per vertex.

model resolution divides the number of vertices by two. For three-dimensional
image, the same loss of resolution divides four times the number of vertices.
Consequently, highly deformable models with adaptative resolution would be
even more useful for three-dimensional image segmentation. The model we have
extended was initially designed for this purpose. Moreover, all the tools that are
used to define our new deformable model remain available in three-dimensional
spaces. We are thus currently working on a three-dimensional version of this
model.
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