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Abstrat. Deformable models like snakes are a lassial tool for image

segmentation. Highly deformable models extend them with the ability to

handle dynami topologial hanges, and therefore to extrat arbitrary

omplex shapes. However, the resolution of these models largely depends

on the resolution of the image. As a onsequene, their time and memory

omplexity inreases at least as fast as the size of input data. In this paper

we extend an existing highly deformable model, so that it is able to loally

adapt its resolution with respet to its position. With this property, a

signi�ant preision is ahieved in the interesting parts of the image,

while a oarse resolution is maintained elsewhere. The general idea is

to replae the Eulidean metri of the image spae by a deformed non-

Eulidean metri, whih geometrially expands areas of interest. With

this approah, we obtain a new model that follows the robust framework

of lassial deformable models, while o�ering a signi�ant independene

from both the size of input data and the geometri omplexity of image

omponents.

Keywords: image segmentation, deformable model, non-Eulidean ge-

ometry, topology adaptation, optimization

1 Introdution

Deformable models were �rst introdued in the �eld of image segmentation by

Kass, Witkin and Terzopoulos [5℄. Their behavior is governed by the minimiza-

tion of a funtional (energy), whih depends both on the mathing of the urve to

the ontour and on the smoothness of the urve. This segmentation framework

remains valid even with poor quality images with weak ontours. Furthermore,

the energy formulation is rather intuitive. This makes it easier to inlude user

interation as well as other kinds of onstraints in the segmentation proess. The

deformable model framework has been extended with various tools that improve

both onvergene speed and segmentation quality (e.g. [13℄ and [2℄).

However, deformable models in their original formulation annot dynamially

hange their topology. This means that they an only extrat image omponents

with the same topology as the initial model. As a onsequene, the model ini-

tialization requires hypotheses about its �nal expeted shape. In domains like

biomedial image analysis, this kind of hypotheses is sometimes diÆult to jus-

tify. Indeed, the objets in the images often have omplex shapes with several

onneted omponents and holes. Furthermore they are likely to be abnormal

and hene may have an unexpeted topology.



Several methods have been proposed to overome this limitation. These highly

deformable models are able to ahieve automated or supervised topology adap-

tations, based on their geometri evolution. Nevertheless, although they largely

extend the appliation �eld of deformable models, these new methods ome in

general with an important inrease of omputational osts. The following para-

graphs desribe some of these tehniques and emphasize their time omplexities.

From now on we will assume that the size of a bi-dimensional image is n

2

and

that the number of verties neessary to desribe the shape of the image om-

ponents is O(n).

The �rst approah keeps the energy formulation as well as the expliit shape

representation. The idea is to hek the model at eah step of its evolution. Then,

if its topology is no longer onsistent, mesh reon�gurations are performed to

solve the problems. Delingette and Montagnat [4℄ analyse the intersetions of

their model with a regular grid. Deteting speial on�gurations allows them to

detet and handle topologial hanges. MInerney and Terzopoulos [9℄ propose

a similar method that use a simpliial regular subdivision of the spae to detet

and solve topologial problems. This algorithm is less eÆient than Delingette's

(O(n

2

) per iteration instead of O(n)), but has the advantage of being easy to

extend to the three-dimensional ase. The authors of [6℄ propose a di�erent

approah based on distane onstraints on the edges of the deformable model.

Although they formulate it for the three-dimensional ase, the priniple is valid

for the bi-dimensional ase too. With an appropriate data struture the time

omplexity of this algorithm is redued to O(n logn) per iteration.

Another approah [10℄ onsists in formulating the problem in term of front

propagation instead of minimizing an energy. In this ontext the model is no

longer represented expliitly: it is viewed as a partiular level set of a salar

funtion f de�ned on the image spae and whih evolves with the time. This

level set propagates in the image spae with respet to two main onstraints: (i)

the propagation slows down in the neighborhood of high image gradients, (ii)

the level set propagates faster in plaes where its urvature is important (this is

to preserve the ontour smoothness, see [1℄ and [8℄ for details). These onstraints

are expressed as di�erential equations involving f . Iteratively solving these equa-

tions makes the level set approah image omponents. With this formalism, the

topologial hanges are automatially embedded in the evolution of f . In addi-

tion it is very easy to extend this kind of model to higher dimensional spaes.

Nevertheless these advantages ome with heavy omputational osts: theoreti-

ally, the new values of f have to be re-omputed over the whole image at eah

step of the algorithm (eah step would thus ost O(n

2

) operations). However

optimizations based on quad-trees or on the narrow band algorithm may re-

due this omplexity to O(n logn) [11, 12℄. Note also that, user interations or

other onstraints are more diÆult to embed in this kind of models ompared

to expliit ones.

Finally, in a third approah, the energy minimization problem is formulated

in a purely disrete ontext [7℄. Image omponents are viewed as sets of pixels

(or voxels). There is therefore no need to write spei� algorithms to handle



topology hanges. The energy of the omponents is omputed aording to the

loal on�guration of eah element of its boundary (alled a bel). The model

evolution is then performed by adding or removing pixels (or voxels) so as to

minimize the global energy. Complexity per iteration linearly depends on the

size of the model boundary. Namely, for a bi-dimensional image the time ost is

O(n) bel energy omputations for eah iteration. However, the time needed to

ompute one bel energy is onstant but rather important.

This argumentation shows that the omputational osts of highly deformable

models largely depend on the size of input data. The images produed by aqui-

sition devies have higher and higher resolutions. As a onsequene, omputa-

tional ost of these segmentation algorithms beomes prohibitive. In this paper

we propose a highly deformable model whih dynamially adapts its resolution

depending on its position in the image, and automatially hanges its topology

aording to the hanges of its geometry. A �ne resolution is thus ahieved in

the interesting parts of the image while a oarse one is kept elsewhere. With this

tehnique, the omplexity of the model is made signi�antly more independent

of the image resolution.

More preisely, the model we propose is an extension of the one presented

in [6℄. In this model, the topologial onsisteny is maintained using distanes

estimations. However, to work properly, the model needs to have a regular den-

sity. To ahieve adaptative resolution, our idea is to hange the Eulidean metri

with a loally deformed metri that geometrially expands the interesting parts

of the image. The original model was designed to work with three-dimensional

images. In this paper, while we propose to extend a bi-dimensional version of this

model, our real goal is to later extend it to segment three-dimensional images.

A partiular attention is thus paid to using only methods that remain available

in three-dimensional spaes.

In the �rst setion of this paper, we desribe more in details the model we

propose to extend. In the seond setion we de�ne a more general notion of

distane that is used in the third setion to de�ne our new model. The last

setion deals with the hoie of the metri with respet to the image.

2 Initial Model

In this setion we �rst make some realls about the lassial snake model, as

it was introdued by Kass, Witkin and Terzopoulos [5℄. Then we desribe the

highly deformable model we propose to extend. The last part of the setion

explains how hanging the metri of the image spae allows us to loally hange

the resolution of this model.

2.1 Classial Snake Model Formulation

Snakes are de�ned as urves C : [0; 1℄! IR

2

that evolve in the image spae so

as to minimize an energy funtional expressed as

E(C) =

Z

1

0

E

image

(C(u)) + E

internal

(C; u) du : (1)



The energy funtional is omposed of two terms: the �rst term E

image

ensures

that the urve mathes the ontours of the image, the seond term E

internal

fores the urve to remain rather smooth. The ontour mathing is ensured by

hoosing E

image

so as to make it low in the neighborhood of image gradients. The

smoothness of the urve is obtained by penalizing both its length and urvature.

These remarks lead to the following hoie for these energies

(

E

image

(x; y) = �krG � I(x; y)k

E

internal

(C; u) =

�

2
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�
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where I and G respetively denote the image funtion and a Gaussian smoothing

�lter.

To �nd the urve that minimizes (1), the most ommon method onsists

in disretizing the urve. One this has been done, eah disretized point is

onsidered as a partile having its own energy, and therefore evolving under

fores derivating from this energy. Namely these fores are

{ an image-based fore whih attrats the partile towards image gradients,

{ an elasti fore whih attrats eah partile towards its neighbors,

{ a urvature minimizing fore whih attrats eah partile toward the straight

line joining its neighbors,

{ a frition fore that makes the system more stable.

This point of view has a signi�ant advantage over the �rst formulation: it

makes it possible to introdue new fores that speed up the onvergene of the

model or improve the segmentation (for examples see [13℄ and [2℄). Moreover,

suh a mehanial system is easy to extend to three dimensions [3, 6℄.

To determine the displaement of eah partile at a given step, many authors

diretly apply Newton's laws of motion and then solve the resulting di�erential

equations (e.g. [13, 2, 4℄). However, we propose to use the Lagrangian approah

to express the dynamis of eah partile, sine it an be formulated in non-

Eulidean spaes.

Now, onsider a partile of mass m, its position being desribed by x =

(x

1

; : : : ; x

n

), moving under the ation of the fore F . Let T denote its kineti

energy (T =

1

2

m _x � _x). Let Æx be a small variation of the partile trajetory

(Æx(t

1

) = Æx(t

2

) = 0). Then, the dynamis of the partile is desribed by the

least ation priniple whih postulates (for all possible Æx):

Z

t

2

t

1

(ÆT + F � Æx) dt = 0 : (2)

In partiular, it has to be true for Æx = (0; : : : ; 0; Æx

i

; 0; : : : ; 0). Equation (2)

may then be written as

8i;

Z

t

2

t

1

�

�T

�x

i

Æx

i

�

d

dt

�T

� _x

i

Æx

i

+ F � Æx

�

dt = 0 : (3)



In an Eulidean spae with the usual dot produt, F � Æx = F

i

Æx

i

. Hene

equation (3) leads to

8i;

�T

�x

i

�

d

dt

�T

� _x

i

+ F

i

= 0 : (4)

Replaing T with

1

2

m

P

n

i=1

_x

2

i

(whih is true in Eulidean spaes only) and writ-

ing the equations for eah possible value of i result in the well known Newton's

laws of motion: m�x = F . The Lagrangian formalism may thus be onsidered as

a variational priniple equivalent to the Newton's laws, but with the advantage

of being independent of the Eulidean struture of the spae.

2.2 Highly Deformable Model

As said in the introdution, lassial snake models are unable to handle topolog-

ial hanges. Highly deformable models are extensions to the basi snake model

that overome this limitation. This setion desribes the bi-dimensional version

of the highly deformable model we propose to extend [6℄, and how it is able to

dynamially adapt its topology to keep it onsistent with its geometry.

General Desription. Our deformable model is an oriented (not neessarily

onneted) losed polygonal urve that evolves in the image spae. To preserve

a onsistent orientation of the model, it is neessary to avoid self-intersetions.

The main idea is to detet them before they our. When a problem is expeted

to arise, it is solved using appropriate loal topologial operators. By this way,

we ensure that the orientation of the model remains onsistent at eah step of

its evolution. The following subsetions detail eah step of this algorithm.

Collision Detetion. Detetion is made possible by imposing distane on-

straints between the verties of the model. Let Æ and � be real numbers satisfy-

ing 0 < Æ and 2 � �. Then, suppose that for eah edge (a; b) of the model, the

Eulidean distane d

E

(a; b) between a and b satis�es

Æ � d

E

(a; b) � �Æ : (5)

That means that all verties are rather evenly spaed on the model mesh (pro-

vided that � is lose to 2). Now let us show how this is helpful to detet self

intersetions of the model.

Let (u; v) be an edge of the deformable model. Suppose that a vertex p rosses

over (u; v). Then it is easy to verify that there is a time interval during whih the

distane from p to the edge (u; v) is less than a partiular threshold. It follows

that, during this time interval, the distane from p to either u or v is less than

�

E

�Æ, where �

E

is an appropriate real number (see Fig. 1a-b).

Theoretially, without additional hypothesis, �

E

should be greater than 1 to

ensure that no self-intersetion may our without being deteted. However, if

the initial model on�guration is onsistent, and if the motion of the partiles
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Fig. 1. Collision detetion and handling: a point p annot rosses over (u; v) without

entering irle C

u

or C

v

(a) and (b). When a ollision is deteted (b), a loal reon�g-

uration is performed (): new verties are reated around v and p. These verties are

onneted in the appropriate way. Then the verties v and p are deleted.

is small enough, smaller values of �

E

may be hosen. In partiular, if the vertex

speed is assumed to be less than v

max

, �

E

= 1=2+ v

max

=�Æ is a suitable hoie.

With this property, if the inequality (5) is satis�ed at eah step of the evolu-

tion of the model, then self-intersetions are deteted by heking the inequality

�

E

�Æ � d

E

(u; v) (6)

for eah pair of non-neighbor verties of the model. Eah time this inequality is

not veri�ed, a loal reon�guration of the model is performed in order to restore

the onstraint. Let us desribe these reon�gurations.

Loal Reon�gurations. As said in the previous paragraph, two kinds of

onstraints have to be maintained:

{ onstraints between neighbor verties, given by (5),

{ onstraints between non-neighbor verties, given by (6).

Consider an edge of the deformable model that does not respet the onstraint

(5). If it is shorter than the Æ threshold, then the onstraint is reovered by

merging the two verties at the extremities of the edge. Symmetrially, if the

edge is longer than the �Æ threshold, then it is split into two equal edges by

inserting a new vertex in the middle of the original edge. Note that this kind of

transformations a�et the loal resolution of the model, but not its topology.

If we now onsider a pair of verties that does not respet (6), then the

transformations desribed on Fig. 1 have to be performed. The topology of

the model is thus hanged. Deteting all these pairs of verties with a naive

method would have a time omplexity of O(n

2

) for a model with O(n) verties.

Nevertheless a hierarhial subdivision of spae with quad-trees redues the osts

to an average time omplexity of O(n logn).

It is important to note that this approah to topology adaptation also works

for three-dimensional image segmentation. In this ontext, the deformable model

is a triangulated surfae, and with an adapted value of �

E

, all the statements

made before remain true.



2.3 Inuene of Distane Estimations

As said before, the evolution of the model, and espeially its resolution, largely

depend on distane estimations. When the length of an edge is to small, verties

are merged, and when the length of an edge is too high, new verties are inserted

in the mesh. Therefore, the parameter Æ determines the resolution of the model:

the smaller it is, the greater the resolution beomes.

Sine (5) has to be true for eah edge of the model, inreasing the resolution

of the deformable model only in a restrited interesting part of the image annot

be ahieved without inreasing the resolution everywhere, that is, even where it

is not needed. This implies a signi�ant inrease of the time and memory osts

of the segmentation algorithm.

Suppose now that we hange the way distanes are measured instead of

hanging the value of Æ. Namely, suppose that distanes are overestimated in

the interesting parts of the image, while they are underestimated elsewhere. In

all areas where distanes are overestimated, the lengths of the edges seem to be

greater so that they tend to exeed the �Æ threshold. Therefore, new verties

are inserted to split the edges. As a onsequene, the model resolution inreases.

Symmetrially, in plaes where distanes are underestimated, the lengths of the

edges seem to be smaller. To prevent the edge length from falling under Æ, neigh-

bor verties are merged, so that the resolution dereases.

The extension we propose is based on these remarks. Our idea is to replae

the Eulidean metri with a deformed one, in order to geometrially expand the

areas of interest. With this new de�nition of distanes, it beomes possible to

pereptibly inrease the resolution of the model in restrited parts of the image

without signi�antly inreasing the ost of the segmentation algorithm.

Nevertheless, hanging the distane notion rises many problems:

{ �rst we have to �nd a more general de�nition of distanes and to design

algorithms to measure these distanes between arbitrary points,

{ then the motion equations of the deformable model partiles have to be

rewritten in this ontext,

{ lastly, it is important to disuss how distanes are de�ned with respet to

the image.

The following paragraphs suessively deal with eah of these problems.

3 Riemannian geometry

The new de�nition of distanes is based on Riemannian geometry. Giving all

the bakground on this mathematial theory is beyond the sope of this arti-

le, therefore we only desribe the notions whih are used to de�ne our new

deformable model. Moreover, to larify the presentation, everything will be de-

sribed in IR

2

. The given statements however remain true in higher dimensional

spaes.



3.1 Metris

In an Eulidean spae, the length of an elementary displaement ds = (dx; dy)

is given by the relation

kdsk = dx

2

+ dy

2

:

It only depends on the values of dx and dy. In partiular, the origin of the

displaement has no inuene on its length.

In a non-Eulidean spae this is no longer true. Suppose for example that

the retangle [��; �[�℄�

�

2

;

�

2

[ is the map of a sphere, obtained with the usual

parameterization using the longitude � and latitude �. Then the length of a

elementary displaement ds = (d�; d�) hanges whether the displaement ours

near one pole or near the equator of the sphere (atually it may be written

kdsk = R

2

os

2

� d�

2

+R

2

d�

2

, where R denotes the sphere radius).

To measure the length of ars in a non-Eulidean spae, a mapping whih

measures the lengths of elementary displaements anywhere in this spae must

be given. This mapping is derived from the notion of metri.

We all a metri, or a Riemannian metri a mapping g that assoiates a dot

produt g

(x;y)

with eah point (x; y) of the spae, provided that g is of lass C

1

.

At a given point of the spae, the dot produt g

(x;y)

indues a norm whih may

be used to measure the lengths of elementary displaements starting from (x; y):

kdsk = g

(x;y)

(ds;ds)

1

2

. Then, let  : [0; 1℄ ! IR

2

be an ar. Its lengths L()

may be expressed as

L() =

Z

1

0

�

g

(u)

(

0

(u); 

0

(u))

�

1

2

du . (7)

Metris are onveniently de�ned with a matrix form. Indeed, g

(x;y)

is a dot

produt, and hene it is a symmetri positive de�nite bilinear form. In the bi-

dimensional ase, it may therefore be expressed as

(u;v)! u

T

�

�

g

11

(x; y) g

12

(x; y)

g

12

(x; y) g

22

(x; y)

�

� v , (8)

where the g

ij

are funtions of lass C

1

. From now on, in order to make the

equations simpler and sine no onfusion may arise, g

ij

will denote g

ij

(x; y).

Note that if we hoose the metri given by the identity matrix, an elementary

displaement ds = (dx; dy) has a length given by kdsk = dx

2

+ dy

2

. Namely,

the Eulidean metri may be interpreted as a partiular Riemannian metri.

3.2 New De�nition of Distanes

Given this metri de�nition, it beomes easy to build a new de�nition of the

distanes between two points: the Riemannian distane between two points A

and B is denoted d

R

(A;B) and its value is given by

d

R

(A;B) = inf

�

L() j  2 C

1

([0; 1℄; IR

2

); (0) = A; (1) = B

	



where C

1

([0; 1℄; IR

2

) denotes the set ontaining all the ars of lass C

1

in the

IR

2

spae. Informally speaking, the Riemannian distane between two points is

the length of one shortest path between these points. When suh a path exists,

whih is always true in a ompat spae, it is alled a geodesi.

3.3 E�etive Distane Estimations

Although this de�nition omplies with intuition, its major drawbak is that

omputing exat distanes is diÆult. Indeed, ontrary to what ours in the

Eulidean spae, shortest paths are no longer straight lines. Finding a minimal

path between two given points may be eÆiently ahieved by using a relaxation

method to minimize the disretized version of (7). The length of the disretized

path is then easy to ompute.

However, one may verify that in an area of the spae where g remains on-

stant, geodesis are straight lines. Sine g is of lass C

1

, g may be onsidered as

onstant on small neighborhoods of spae. Therefore, the geodesi onneting

two given points may be viewed as a straight line, provided these two points

are lose enough from eah other (whih is the ase for neighbor verties of our

model).

4 New Formulation of the Deformable Model

Changing the spae metri has two onsequenes, eah of whih is desribed in

the following subsetions:

{ the motion equations are modi�ed, whih a�ets the model dynamis,

{ the ollision detetion method has to take the metri hange in aount.

4.1 New Laws of Motion

To de�ne the new dynamis of our deformable model, we have to write the

di�erential equations whih desribe the motion of eah partile. Therefore, we

rewrite the least ation priniple (2) with the new dot produt de�ned by the

metri. With this dot produt, we have:

�

T =

1

2

m _x � _x =

1

2

m

P

n

i;j=1

g

ij

_x

i

_x

j

F � Æx =

P

n

i;j=1

g

ij

F

i

Æx

j

:

Choosing Æx = (0; : : : ; 0; Æx

i

; 0; : : : ; 0) leads to

8i;

Z

t

2

t

1

 

�T

�x

i

Æx

i

�

d

dt

�T

� _x

i

Æx

i

+

n

X

k

g

ki

F

k

Æx

i

!

dt = 0 : (9)

One Æx

i

has been fatored, one may dedue



8i;

�T

�x

i

�

d

dt

�T

� _x

i

+

n

X

k=1

g

ki

F

i

= 0 : (10)

Using now the new expression of T leads to the motion equations

8k; m�x

k

+m

n

X

i;j=1

�

k

ij

_x

i

_x

j

= F

k

; (11)

where the �

k

ij

oeÆients are known as the Christo�el's symbols, and are given

by

�

k

ij

=

1

2

n

X

l=1

g

kl

�

�g

il

�x

j

+

�g

lj

�x

i

�

�g

ij

�x

l

�

; (12)

(g

kl

denotes the oeÆient at position (k; l) in the inverse matrix of (g

ij

)

1�i;j�n

).

Note that the Newton's laws are obtained from (11) by hoosing the identity

matrix for g

ij

(i.e. by making the spae Eulidean).

From these equations our new model an be de�ned as a set of moving

partiles eah of whih follows (11). Its behavior is thus totally determined by the

hoie of F . As usual F de�nes the sum of the image fore, the elasti fore, the

urvature fore, and the frition fore. These fores do not need to be adapted

to the Riemannian framework, sine the metri is already embedded into the

motion equations. The only neessary hange is to replae the Eulidean distane

measurement with the Riemannian one in the omputations of the elasti fores.

Of ourse, new fores suh as those proposed in [13℄ or [2℄ are likely to be

introdued to enhane the behavior of the model.

4.2 Topology Constraints

In this setion we show that the onstraint (6) remains a good way of deteting

where and when topology hanges have to be performed. We will thus assume

that the regularity onstraint (5) written for a Riemannian metri holds:

Æ � d

R

(u; v) � �Æ ; (13)

for eah edge of the deformable model. Now, let us prove that self-intersetions

may be deteted in the same way as before, namely, by omparing the distanes

between non-neighbor verties with a partiular threshold.

To do so, we use a relation that ompares the Riemannian metris to the

Eulidean metri. We need to onsider the lower and upper bounds of the eigen-

values of the metri matrix used in (8). They will respetively be denoted �

min

and �

max

. With these notations, the relation between the Eulidean and the

Riemannian distanes is expressed as

�

min

d

E

(M ;N )

2

� d

R

(M ;N)

2

� �

max

d

E

(M ;N)

2

: (14)



This inequality is very useful sine we an dedue from it that the onstraint

(6) an still be used to detet topology hanges even in non-Eulidean spaes.

Furthermore, it allows us to hek eÆiently whether this onstraint holds.

Let (u; v) be an edge of our deformable model, and p be a vertex that moves

towards (u; v). Let m denote the point of (u; v) whih minimizes d

R

(m; p). With-

out loss of generality, we may assume that d

R

(m;u) � d

R

(m; v). The triangular

inequality is expressed as

d

R

(p; u) � d

R

(p;m) + d

R

(m;u) :

From (13) and (14), and from the fat that d

E

(u;m) �

1

2

d

E

(u; v) we obtain

d

R

(p; u) � d

R

(p;m) +

�

max

2�

min

d

R

(u; v) � d

R

(p;m) +

�

max

2�

min

�Æ :

If p rosses over (u; v), there is a time interval during whih d

R

(p;m) � �.

Therefore, omparing d

R

(p; u) with �+

�

max

2�

min

�Æ detets self intersetions. If v

max

is the upper bound of the partiles displaement between two steps of the model

evolution, a good hoie for � is v

max

. The onstraint between non-neighbor

verties is hene expressed as

�

max

2�

min

�Æ + v

max

� d

R

(u; v) : (15)

With �

R

=

�

max

2�

min

+

v

max

�Æ

this is written as

�

R

�Æ � d

R

(u; v) : (16)

Note that with the Eulidean metri, �

min

= �

max

, so that we get bak the

value �

E

that was used for the original model.

5 Metri Choie

In this setion, we explain how the knowledge of the loal metri eigenvalues and

eigenvetors is useful to properly hoose the metri aording to the image.

5.1 Metris Properties

In this paragraph we adopt a loal point of view, and it is assumed that metris

are smooth enough to be onsidered as loally onstant.

At a given point of the image spae, the metri is given as a symmetri

positive de�nite matrix G with two eigenvetors v

1

and v

2

and their assoiated

eigenvalues �

1

and �

2

. If the vetors v

1

and v

2

are hoosen with a unitary

Eulidean length, then the Riemannian length of x = x

1

v

1

+ x

2

v

2

is given as

kxk

R

=

q

�

1

x

2

1

+ �

2

x

2

2

: (17)



v

M

v

m

v

�

v

1

v

2

1

p

�

2

1

p

�

1

The unit ball indued by the norm G

is an ellipse with its semi axes oriented

aording to v

1

and v

2

. The lengths of

the semi axes are given by 1=

p

�

1

and

1=

p

�

2

. The length of a vetor depends

on its diretion:

kv

M

k

R

= kkv

1

k

R

= k

p

�

1

kv

m

k

R

= kkv

2

k

R

= k

p

�

2

kv

�

k

R

= k

p

�

1

os

2

� + �

2

sin

2

�

Fig. 2. Loal behavior of metris

Then, as shown in Fig. 2, the loal unit ball is an ellipse with an orientation

and a size that depend on the loal spetral deomposition of G. One may easily

verify that the unit balls of a metri with two equal eigenvalues are Eulidean

unit balls up to a sale fator. These metris are thus alled isotropi metris,

while metris with two di�erent eigenvalues are alled anisotropi metris.

Reiproally, it is easy to get the symmetri positive de�nite matrix or-

responding to given eigenvetors and eigenvalues. The eigenvetors are used to

de�ne loally the main diretions of the metri, and the eigenvalues determine to

what extent the spae is expanded along to these diretions. In the next setion

we explain how we use these statements to hoose the image spae metris.

5.2 Metri De�nition over the Image

Isotropi Metris. Isotropi metris are the easiest to use and de�ne (they

may indeed be written g(x; y)�I , where I denote the identity matrix). Therefore,

in a �rst approah, we will only use metris of this kind. Two methods to de�ne

metris are then onsidered.

The �rst method is to let the user himself hoose the interesting parts of

the image. The metri g is set to high values in these areas, and remains low

elsewhere (namely equal to 1, to get bak the lassial Eulidean behavior of the

model). An example of segmentation using this method is shown in Fig. 3.

The seond method is to automatially determine the areas of interest. In

the deformable ontours framework, these plaes are typially haraterized by

high values of the gradient norm. Therefore, a good hoie for the funtion g is

g(x; y) = 1+ krIk �G

�

, where G

�

denotes the usual Gaussian smoothing �lter.

This ensures that the model resolution inreases nearby strong image ontours,

while remaining oarse elsewhere.

Anisotropi Metris. The metris previously desribed are simple and intu-

itive. However, they do not take advantage of all the properties of Riemannian

metris. With anisotropi metris, spae deformations depend on the diretion.
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Fig. 3. Results with a user-de�ned metri. The images (a), (b) and () show di�erent

evolution steps of the segmentation algorithm. The image (d) shows details of the upper

left and lower right parts of the image (), and emphasizes the resolution di�erene

between the two parts of the image. The metri is isotropi and has high values in

the upper right orner of the image. In the lower left orner, it is equivalent to the

Eulidean metri. This is shown in the piture (e), where the irles represent the

loal unit ball of the metri. Note that this experiene also validates the automated

topologial hanges of the model in a spae with a deformed metri.

The following paragraph shows how that kind of metri improves the segmenta-

tion.

Consider the metri g de�ned as the Eulidean metri in the image plaes

where the gradient norm is low or nul. Suppose that elsewhere, g is the metri

with the spetral deomposition (v

1

; �

1

), (v

2

; �

2

), with v

1

= rI , �

1

= krIk,

v

2

= v

1

?

and �

2

= 1.

In plaes where there are no strong ontours, the deformable model behaves

as if the metri were Eulidean. Therefore, no new verties are reated, and

the model resolution remains oarse. In the neighborhood of a ontour, the de-

formable model mesh may either ross over or follow the ontour. Suppose that

it rosses over the ontour. In a small neighborhood the mesh is roughly par-

allel to v

1

. With our hoie for �

1

edge lengths are overestimated. Therefore

the model loally inreases its resolution, whih provides it with more degrees of

freedom. In ontrast, suppose that the model mesh follows the ontour. Then the

mesh is roughly parallel to v

2

(i.e. orthogonal to rI), and with our hoie for

�

2

, distanes are estimated as in the Eulidean ase. Consequently, the model

resolution remains oarse, and the number of verties used to desribe the image

omponent remains low.

The di�erent methods onsidered before are experimented and ompared on

omputer generated images in Fig. 4 and 5. Additional results with a MR brain

image are shown on Fig. 6.

6 Conlusion

We have proposed a bi-dimensional highly deformable model that dynamially

and loally adapt its resolution. Hene, a �ne resolution is ahieved in the in-

teresting parts of the image while a oarse resolution is kept elsewhere. By this

way, the segmentation algorithm omplexity is made signi�antly more indepen-

dent from the size ot input data. In a bi-dimensional image, dividing twie the
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Fig. 4. Segmentation with di�erent automatially omputed metris: the model is ini-

tialized around the �gure. The image (a) shows the result obtained with the Eulidean

metri with the lowest model resolution that allows to distinguish the two onneted

omponents of the image. The image () shows the result obtained with the isotropi

Riemannian metri desribed in image (b). The piture (e) shows the segmentation

obtained with the anisotropi Riemannian metri desribed in Fig. (d).
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(a) Eulidean 3:88 186; 567

(b) Isotropi 49:72 152; 860

() Anisotropi 8:33 55; 258

Fig. 5. Statistis: the graph represents the evolution of the number of verties of the

model with respet to the iteration number, and for di�erent metris. The segmented

image is the same as in Fig. 4. This emphasizes that our new model is able to extrat

image omponents with signi�antly less verties than the initial model, espeially if

anisotropi metris are used (urve  on the graph). It also shows that the use of

deformed metris speeds up the model onvergene. Computation times remain higher

than with an Eulidean metri, however, many optimizations are likely to be performed

to redue the omputational ost per vertex.

model resolution divides the number of verties by two. For three-dimensional

image, the same loss of resolution divides four times the number of verties.

Consequently, highly deformable models with adaptative resolution would be

even more useful for three-dimensional image segmentation. The model we have

extended was initially designed for this purpose. Moreover, all the tools that are

used to de�ne our new deformable model remain available in three-dimensional

spaes. We are thus urrently working on a three-dimensional version of this

model.
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