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Abstra
t. Deformable models like snakes are a 
lassi
al tool for image

segmentation. Highly deformable models extend them with the ability to

handle dynami
 topologi
al 
hanges, and therefore to extra
t arbitrary


omplex shapes. However, the resolution of these models largely depends

on the resolution of the image. As a 
onsequen
e, their time and memory


omplexity in
reases at least as fast as the size of input data. In this paper

we extend an existing highly deformable model, so that it is able to lo
ally

adapt its resolution with respe
t to its position. With this property, a

signi�
ant pre
ision is a
hieved in the interesting parts of the image,

while a 
oarse resolution is maintained elsewhere. The general idea is

to repla
e the Eu
lidean metri
 of the image spa
e by a deformed non-

Eu
lidean metri
, whi
h geometri
ally expands areas of interest. With

this approa
h, we obtain a new model that follows the robust framework

of 
lassi
al deformable models, while o�ering a signi�
ant independen
e

from both the size of input data and the geometri
 
omplexity of image


omponents.
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1 Introdu
tion

Deformable models were �rst introdu
ed in the �eld of image segmentation by

Kass, Witkin and Terzopoulos [5℄. Their behavior is governed by the minimiza-

tion of a fun
tional (energy), whi
h depends both on the mat
hing of the 
urve to

the 
ontour and on the smoothness of the 
urve. This segmentation framework

remains valid even with poor quality images with weak 
ontours. Furthermore,

the energy formulation is rather intuitive. This makes it easier to in
lude user

intera
tion as well as other kinds of 
onstraints in the segmentation pro
ess. The

deformable model framework has been extended with various tools that improve

both 
onvergen
e speed and segmentation quality (e.g. [13℄ and [2℄).

However, deformable models in their original formulation 
annot dynami
ally


hange their topology. This means that they 
an only extra
t image 
omponents

with the same topology as the initial model. As a 
onsequen
e, the model ini-

tialization requires hypotheses about its �nal expe
ted shape. In domains like

biomedi
al image analysis, this kind of hypotheses is sometimes diÆ
ult to jus-

tify. Indeed, the obje
ts in the images often have 
omplex shapes with several


onne
ted 
omponents and holes. Furthermore they are likely to be abnormal

and hen
e may have an unexpe
ted topology.



Several methods have been proposed to over
ome this limitation. These highly

deformable models are able to a
hieve automated or supervised topology adap-

tations, based on their geometri
 evolution. Nevertheless, although they largely

extend the appli
ation �eld of deformable models, these new methods 
ome in

general with an important in
rease of 
omputational 
osts. The following para-

graphs des
ribe some of these te
hniques and emphasize their time 
omplexities.

From now on we will assume that the size of a bi-dimensional image is n

2

and

that the number of verti
es ne
essary to des
ribe the shape of the image 
om-

ponents is O(n).

The �rst approa
h keeps the energy formulation as well as the expli
it shape

representation. The idea is to 
he
k the model at ea
h step of its evolution. Then,

if its topology is no longer 
onsistent, mesh re
on�gurations are performed to

solve the problems. Delingette and Montagnat [4℄ analyse the interse
tions of

their model with a regular grid. Dete
ting spe
ial 
on�gurations allows them to

dete
t and handle topologi
al 
hanges. M
Inerney and Terzopoulos [9℄ propose

a similar method that use a simpli
ial regular subdivision of the spa
e to dete
t

and solve topologi
al problems. This algorithm is less eÆ
ient than Delingette's

(O(n

2

) per iteration instead of O(n)), but has the advantage of being easy to

extend to the three-dimensional 
ase. The authors of [6℄ propose a di�erent

approa
h based on distan
e 
onstraints on the edges of the deformable model.

Although they formulate it for the three-dimensional 
ase, the prin
iple is valid

for the bi-dimensional 
ase too. With an appropriate data stru
ture the time


omplexity of this algorithm is redu
ed to O(n logn) per iteration.

Another approa
h [10℄ 
onsists in formulating the problem in term of front

propagation instead of minimizing an energy. In this 
ontext the model is no

longer represented expli
itly: it is viewed as a parti
ular level set of a s
alar

fun
tion f de�ned on the image spa
e and whi
h evolves with the time. This

level set propagates in the image spa
e with respe
t to two main 
onstraints: (i)

the propagation slows down in the neighborhood of high image gradients, (ii)

the level set propagates faster in pla
es where its 
urvature is important (this is

to preserve the 
ontour smoothness, see [1℄ and [8℄ for details). These 
onstraints

are expressed as di�erential equations involving f . Iteratively solving these equa-

tions makes the level set approa
h image 
omponents. With this formalism, the

topologi
al 
hanges are automati
ally embedded in the evolution of f . In addi-

tion it is very easy to extend this kind of model to higher dimensional spa
es.

Nevertheless these advantages 
ome with heavy 
omputational 
osts: theoreti-


ally, the new values of f have to be re-
omputed over the whole image at ea
h

step of the algorithm (ea
h step would thus 
ost O(n

2

) operations). However

optimizations based on quad-trees or on the narrow band algorithm may re-

du
e this 
omplexity to O(n logn) [11, 12℄. Note also that, user intera
tions or

other 
onstraints are more diÆ
ult to embed in this kind of models 
ompared

to expli
it ones.

Finally, in a third approa
h, the energy minimization problem is formulated

in a purely dis
rete 
ontext [7℄. Image 
omponents are viewed as sets of pixels

(or voxels). There is therefore no need to write spe
i�
 algorithms to handle



topology 
hanges. The energy of the 
omponents is 
omputed a

ording to the

lo
al 
on�guration of ea
h element of its boundary (
alled a bel). The model

evolution is then performed by adding or removing pixels (or voxels) so as to

minimize the global energy. Complexity per iteration linearly depends on the

size of the model boundary. Namely, for a bi-dimensional image the time 
ost is

O(n) bel energy 
omputations for ea
h iteration. However, the time needed to


ompute one bel energy is 
onstant but rather important.

This argumentation shows that the 
omputational 
osts of highly deformable

models largely depend on the size of input data. The images produ
ed by a
qui-

sition devi
es have higher and higher resolutions. As a 
onsequen
e, 
omputa-

tional 
ost of these segmentation algorithms be
omes prohibitive. In this paper

we propose a highly deformable model whi
h dynami
ally adapts its resolution

depending on its position in the image, and automati
ally 
hanges its topology

a

ording to the 
hanges of its geometry. A �ne resolution is thus a
hieved in

the interesting parts of the image while a 
oarse one is kept elsewhere. With this

te
hnique, the 
omplexity of the model is made signi�
antly more independent

of the image resolution.

More pre
isely, the model we propose is an extension of the one presented

in [6℄. In this model, the topologi
al 
onsisten
y is maintained using distan
es

estimations. However, to work properly, the model needs to have a regular den-

sity. To a
hieve adaptative resolution, our idea is to 
hange the Eu
lidean metri


with a lo
ally deformed metri
 that geometri
ally expands the interesting parts

of the image. The original model was designed to work with three-dimensional

images. In this paper, while we propose to extend a bi-dimensional version of this

model, our real goal is to later extend it to segment three-dimensional images.

A parti
ular attention is thus paid to using only methods that remain available

in three-dimensional spa
es.

In the �rst se
tion of this paper, we des
ribe more in details the model we

propose to extend. In the se
ond se
tion we de�ne a more general notion of

distan
e that is used in the third se
tion to de�ne our new model. The last

se
tion deals with the 
hoi
e of the metri
 with respe
t to the image.

2 Initial Model

In this se
tion we �rst make some re
alls about the 
lassi
al snake model, as

it was introdu
ed by Kass, Witkin and Terzopoulos [5℄. Then we des
ribe the

highly deformable model we propose to extend. The last part of the se
tion

explains how 
hanging the metri
 of the image spa
e allows us to lo
ally 
hange

the resolution of this model.

2.1 Classi
al Snake Model Formulation

Snakes are de�ned as 
urves C : [0; 1℄! IR

2

that evolve in the image spa
e so

as to minimize an energy fun
tional expressed as

E(C) =

Z

1

0

E

image

(C(u)) + E

internal

(C; u) du : (1)



The energy fun
tional is 
omposed of two terms: the �rst term E

image

ensures

that the 
urve mat
hes the 
ontours of the image, the se
ond term E

internal

for
es the 
urve to remain rather smooth. The 
ontour mat
hing is ensured by


hoosing E

image

so as to make it low in the neighborhood of image gradients. The

smoothness of the 
urve is obtained by penalizing both its length and 
urvature.

These remarks lead to the following 
hoi
e for these energies

(

E

image

(x; y) = �krG � I(x; y)k

E

internal

(C; u) =

�

2
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du
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+
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2

where I and G respe
tively denote the image fun
tion and a Gaussian smoothing

�lter.

To �nd the 
urve that minimizes (1), the most 
ommon method 
onsists

in dis
retizing the 
urve. On
e this has been done, ea
h dis
retized point is


onsidered as a parti
le having its own energy, and therefore evolving under

for
es derivating from this energy. Namely these for
es are

{ an image-based for
e whi
h attra
ts the parti
le towards image gradients,

{ an elasti
 for
e whi
h attra
ts ea
h parti
le towards its neighbors,

{ a 
urvature minimizing for
e whi
h attra
ts ea
h parti
le toward the straight

line joining its neighbors,

{ a fri
tion for
e that makes the system more stable.

This point of view has a signi�
ant advantage over the �rst formulation: it

makes it possible to introdu
e new for
es that speed up the 
onvergen
e of the

model or improve the segmentation (for examples see [13℄ and [2℄). Moreover,

su
h a me
hani
al system is easy to extend to three dimensions [3, 6℄.

To determine the displa
ement of ea
h parti
le at a given step, many authors

dire
tly apply Newton's laws of motion and then solve the resulting di�erential

equations (e.g. [13, 2, 4℄). However, we propose to use the Lagrangian approa
h

to express the dynami
s of ea
h parti
le, sin
e it 
an be formulated in non-

Eu
lidean spa
es.

Now, 
onsider a parti
le of mass m, its position being des
ribed by x =

(x

1

; : : : ; x

n

), moving under the a
tion of the for
e F . Let T denote its kineti


energy (T =

1

2

m _x � _x). Let Æx be a small variation of the parti
le traje
tory

(Æx(t

1

) = Æx(t

2

) = 0). Then, the dynami
s of the parti
le is des
ribed by the

least a
tion prin
iple whi
h postulates (for all possible Æx):

Z

t

2

t

1

(ÆT + F � Æx) dt = 0 : (2)

In parti
ular, it has to be true for Æx = (0; : : : ; 0; Æx

i

; 0; : : : ; 0). Equation (2)

may then be written as

8i;

Z

t

2

t

1

�

�T

�x

i

Æx

i

�

d

dt

�T

� _x

i

Æx

i

+ F � Æx

�

dt = 0 : (3)



In an Eu
lidean spa
e with the usual dot produ
t, F � Æx = F

i

Æx

i

. Hen
e

equation (3) leads to

8i;

�T

�x

i

�

d

dt

�T

� _x

i

+ F

i

= 0 : (4)

Repla
ing T with

1

2

m

P

n

i=1

_x

2

i

(whi
h is true in Eu
lidean spa
es only) and writ-

ing the equations for ea
h possible value of i result in the well known Newton's

laws of motion: m�x = F . The Lagrangian formalism may thus be 
onsidered as

a variational prin
iple equivalent to the Newton's laws, but with the advantage

of being independent of the Eu
lidean stru
ture of the spa
e.

2.2 Highly Deformable Model

As said in the introdu
tion, 
lassi
al snake models are unable to handle topolog-

i
al 
hanges. Highly deformable models are extensions to the basi
 snake model

that over
ome this limitation. This se
tion des
ribes the bi-dimensional version

of the highly deformable model we propose to extend [6℄, and how it is able to

dynami
ally adapt its topology to keep it 
onsistent with its geometry.

General Des
ription. Our deformable model is an oriented (not ne
essarily


onne
ted) 
losed polygonal 
urve that evolves in the image spa
e. To preserve

a 
onsistent orientation of the model, it is ne
essary to avoid self-interse
tions.

The main idea is to dete
t them before they o

ur. When a problem is expe
ted

to arise, it is solved using appropriate lo
al topologi
al operators. By this way,

we ensure that the orientation of the model remains 
onsistent at ea
h step of

its evolution. The following subse
tions detail ea
h step of this algorithm.

Collision Dete
tion. Dete
tion is made possible by imposing distan
e 
on-

straints between the verti
es of the model. Let Æ and � be real numbers satisfy-

ing 0 < Æ and 2 � �. Then, suppose that for ea
h edge (a; b) of the model, the

Eu
lidean distan
e d

E

(a; b) between a and b satis�es

Æ � d

E

(a; b) � �Æ : (5)

That means that all verti
es are rather evenly spa
ed on the model mesh (pro-

vided that � is 
lose to 2). Now let us show how this is helpful to dete
t self

interse
tions of the model.

Let (u; v) be an edge of the deformable model. Suppose that a vertex p 
rosses

over (u; v). Then it is easy to verify that there is a time interval during whi
h the

distan
e from p to the edge (u; v) is less than a parti
ular threshold. It follows

that, during this time interval, the distan
e from p to either u or v is less than

�

E

�Æ, where �

E

is an appropriate real number (see Fig. 1a-b).

Theoreti
ally, without additional hypothesis, �

E

should be greater than 1 to

ensure that no self-interse
tion may o

ur without being dete
ted. However, if

the initial model 
on�guration is 
onsistent, and if the motion of the parti
les
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Fig. 1. Collision dete
tion and handling: a point p 
annot 
rosses over (u; v) without

entering 
ir
le C

u

or C

v

(a) and (b). When a 
ollision is dete
ted (b), a lo
al re
on�g-

uration is performed (
): new verti
es are 
reated around v and p. These verti
es are


onne
ted in the appropriate way. Then the verti
es v and p are deleted.

is small enough, smaller values of �

E

may be 
hosen. In parti
ular, if the vertex

speed is assumed to be less than v

max

, �

E

= 1=2+ v

max

=�Æ is a suitable 
hoi
e.

With this property, if the inequality (5) is satis�ed at ea
h step of the evolu-

tion of the model, then self-interse
tions are dete
ted by 
he
king the inequality

�

E

�Æ � d

E

(u; v) (6)

for ea
h pair of non-neighbor verti
es of the model. Ea
h time this inequality is

not veri�ed, a lo
al re
on�guration of the model is performed in order to restore

the 
onstraint. Let us des
ribe these re
on�gurations.

Lo
al Re
on�gurations. As said in the previous paragraph, two kinds of


onstraints have to be maintained:

{ 
onstraints between neighbor verti
es, given by (5),

{ 
onstraints between non-neighbor verti
es, given by (6).

Consider an edge of the deformable model that does not respe
t the 
onstraint

(5). If it is shorter than the Æ threshold, then the 
onstraint is re
overed by

merging the two verti
es at the extremities of the edge. Symmetri
ally, if the

edge is longer than the �Æ threshold, then it is split into two equal edges by

inserting a new vertex in the middle of the original edge. Note that this kind of

transformations a�e
t the lo
al resolution of the model, but not its topology.

If we now 
onsider a pair of verti
es that does not respe
t (6), then the

transformations des
ribed on Fig. 1
 have to be performed. The topology of

the model is thus 
hanged. Dete
ting all these pairs of verti
es with a naive

method would have a time 
omplexity of O(n

2

) for a model with O(n) verti
es.

Nevertheless a hierar
hi
al subdivision of spa
e with quad-trees redu
es the 
osts

to an average time 
omplexity of O(n logn).

It is important to note that this approa
h to topology adaptation also works

for three-dimensional image segmentation. In this 
ontext, the deformable model

is a triangulated surfa
e, and with an adapted value of �

E

, all the statements

made before remain true.



2.3 In
uen
e of Distan
e Estimations

As said before, the evolution of the model, and espe
ially its resolution, largely

depend on distan
e estimations. When the length of an edge is to small, verti
es

are merged, and when the length of an edge is too high, new verti
es are inserted

in the mesh. Therefore, the parameter Æ determines the resolution of the model:

the smaller it is, the greater the resolution be
omes.

Sin
e (5) has to be true for ea
h edge of the model, in
reasing the resolution

of the deformable model only in a restri
ted interesting part of the image 
annot

be a
hieved without in
reasing the resolution everywhere, that is, even where it

is not needed. This implies a signi�
ant in
rease of the time and memory 
osts

of the segmentation algorithm.

Suppose now that we 
hange the way distan
es are measured instead of


hanging the value of Æ. Namely, suppose that distan
es are overestimated in

the interesting parts of the image, while they are underestimated elsewhere. In

all areas where distan
es are overestimated, the lengths of the edges seem to be

greater so that they tend to ex
eed the �Æ threshold. Therefore, new verti
es

are inserted to split the edges. As a 
onsequen
e, the model resolution in
reases.

Symmetri
ally, in pla
es where distan
es are underestimated, the lengths of the

edges seem to be smaller. To prevent the edge length from falling under Æ, neigh-

bor verti
es are merged, so that the resolution de
reases.

The extension we propose is based on these remarks. Our idea is to repla
e

the Eu
lidean metri
 with a deformed one, in order to geometri
ally expand the

areas of interest. With this new de�nition of distan
es, it be
omes possible to

per
eptibly in
rease the resolution of the model in restri
ted parts of the image

without signi�
antly in
reasing the 
ost of the segmentation algorithm.

Nevertheless, 
hanging the distan
e notion rises many problems:

{ �rst we have to �nd a more general de�nition of distan
es and to design

algorithms to measure these distan
es between arbitrary points,

{ then the motion equations of the deformable model parti
les have to be

rewritten in this 
ontext,

{ lastly, it is important to dis
uss how distan
es are de�ned with respe
t to

the image.

The following paragraphs su

essively deal with ea
h of these problems.

3 Riemannian geometry

The new de�nition of distan
es is based on Riemannian geometry. Giving all

the ba
kground on this mathemati
al theory is beyond the s
ope of this arti-


le, therefore we only des
ribe the notions whi
h are used to de�ne our new

deformable model. Moreover, to 
larify the presentation, everything will be de-

s
ribed in IR

2

. The given statements however remain true in higher dimensional

spa
es.



3.1 Metri
s

In an Eu
lidean spa
e, the length of an elementary displa
ement ds = (dx; dy)

is given by the relation

kdsk = dx

2

+ dy

2

:

It only depends on the values of dx and dy. In parti
ular, the origin of the

displa
ement has no in
uen
e on its length.

In a non-Eu
lidean spa
e this is no longer true. Suppose for example that

the re
tangle [��; �[�℄�

�

2

;

�

2

[ is the map of a sphere, obtained with the usual

parameterization using the longitude � and latitude �. Then the length of a

elementary displa
ement ds = (d�; d�) 
hanges whether the displa
ement o

urs

near one pole or near the equator of the sphere (a
tually it may be written

kdsk = R

2


os

2

� d�

2

+R

2

d�

2

, where R denotes the sphere radius).

To measure the length of ar
s in a non-Eu
lidean spa
e, a mapping whi
h

measures the lengths of elementary displa
ements anywhere in this spa
e must

be given. This mapping is derived from the notion of metri
.

We 
all a metri
, or a Riemannian metri
 a mapping g that asso
iates a dot

produ
t g

(x;y)

with ea
h point (x; y) of the spa
e, provided that g is of 
lass C

1

.

At a given point of the spa
e, the dot produ
t g

(x;y)

indu
es a norm whi
h may

be used to measure the lengths of elementary displa
ements starting from (x; y):

kdsk = g

(x;y)

(ds;ds)

1

2

. Then, let 
 : [0; 1℄ ! IR

2

be an ar
. Its lengths L(
)

may be expressed as

L(
) =

Z

1

0

�

g


(u)

(


0

(u); 


0

(u))

�

1

2

du . (7)

Metri
s are 
onveniently de�ned with a matrix form. Indeed, g

(x;y)

is a dot

produ
t, and hen
e it is a symmetri
 positive de�nite bilinear form. In the bi-

dimensional 
ase, it may therefore be expressed as

(u;v)! u

T

�

�

g

11

(x; y) g

12

(x; y)

g

12

(x; y) g

22

(x; y)

�

� v , (8)

where the g

ij

are fun
tions of 
lass C

1

. From now on, in order to make the

equations simpler and sin
e no 
onfusion may arise, g

ij

will denote g

ij

(x; y).

Note that if we 
hoose the metri
 given by the identity matrix, an elementary

displa
ement ds = (dx; dy) has a length given by kdsk = dx

2

+ dy

2

. Namely,

the Eu
lidean metri
 may be interpreted as a parti
ular Riemannian metri
.

3.2 New De�nition of Distan
es

Given this metri
 de�nition, it be
omes easy to build a new de�nition of the

distan
es between two points: the Riemannian distan
e between two points A

and B is denoted d

R

(A;B) and its value is given by

d

R

(A;B) = inf

�

L(
) j 
 2 C

1

([0; 1℄; IR

2

); 
(0) = A; 
(1) = B

	



where C

1

([0; 1℄; IR

2

) denotes the set 
ontaining all the ar
s of 
lass C

1

in the

IR

2

spa
e. Informally speaking, the Riemannian distan
e between two points is

the length of one shortest path between these points. When su
h a path exists,

whi
h is always true in a 
ompa
t spa
e, it is 
alled a geodesi
.

3.3 E�e
tive Distan
e Estimations

Although this de�nition 
omplies with intuition, its major drawba
k is that


omputing exa
t distan
es is diÆ
ult. Indeed, 
ontrary to what o

urs in the

Eu
lidean spa
e, shortest paths are no longer straight lines. Finding a minimal

path between two given points may be eÆ
iently a
hieved by using a relaxation

method to minimize the dis
retized version of (7). The length of the dis
retized

path is then easy to 
ompute.

However, one may verify that in an area of the spa
e where g remains 
on-

stant, geodesi
s are straight lines. Sin
e g is of 
lass C

1

, g may be 
onsidered as


onstant on small neighborhoods of spa
e. Therefore, the geodesi
 
onne
ting

two given points may be viewed as a straight line, provided these two points

are 
lose enough from ea
h other (whi
h is the 
ase for neighbor verti
es of our

model).

4 New Formulation of the Deformable Model

Changing the spa
e metri
 has two 
onsequen
es, ea
h of whi
h is des
ribed in

the following subse
tions:

{ the motion equations are modi�ed, whi
h a�e
ts the model dynami
s,

{ the 
ollision dete
tion method has to take the metri
 
hange in a

ount.

4.1 New Laws of Motion

To de�ne the new dynami
s of our deformable model, we have to write the

di�erential equations whi
h des
ribe the motion of ea
h parti
le. Therefore, we

rewrite the least a
tion prin
iple (2) with the new dot produ
t de�ned by the

metri
. With this dot produ
t, we have:

�

T =

1

2

m _x � _x =

1

2

m

P

n

i;j=1

g

ij

_x

i

_x

j

F � Æx =

P

n

i;j=1

g

ij

F

i

Æx

j

:

Choosing Æx = (0; : : : ; 0; Æx

i

; 0; : : : ; 0) leads to

8i;

Z

t

2

t

1

 

�T

�x

i

Æx

i

�

d

dt

�T

� _x

i

Æx

i

+

n

X

k

g

ki

F

k

Æx

i

!

dt = 0 : (9)

On
e Æx

i

has been fa
tored, one may dedu
e



8i;

�T

�x

i

�

d

dt

�T

� _x

i

+

n

X

k=1

g

ki

F

i

= 0 : (10)

Using now the new expression of T leads to the motion equations

8k; m�x

k

+m

n

X

i;j=1

�

k

ij

_x

i

_x

j

= F

k

; (11)

where the �

k

ij


oeÆ
ients are known as the Christo�el's symbols, and are given

by

�

k

ij

=

1

2

n

X

l=1

g

kl

�

�g

il

�x

j

+

�g

lj

�x

i

�

�g

ij

�x

l

�

; (12)

(g

kl

denotes the 
oeÆ
ient at position (k; l) in the inverse matrix of (g

ij

)

1�i;j�n

).

Note that the Newton's laws are obtained from (11) by 
hoosing the identity

matrix for g

ij

(i.e. by making the spa
e Eu
lidean).

From these equations our new model 
an be de�ned as a set of moving

parti
les ea
h of whi
h follows (11). Its behavior is thus totally determined by the


hoi
e of F . As usual F de�nes the sum of the image for
e, the elasti
 for
e, the


urvature for
e, and the fri
tion for
e. These for
es do not need to be adapted

to the Riemannian framework, sin
e the metri
 is already embedded into the

motion equations. The only ne
essary 
hange is to repla
e the Eu
lidean distan
e

measurement with the Riemannian one in the 
omputations of the elasti
 for
es.

Of 
ourse, new for
es su
h as those proposed in [13℄ or [2℄ are likely to be

introdu
ed to enhan
e the behavior of the model.

4.2 Topology Constraints

In this se
tion we show that the 
onstraint (6) remains a good way of dete
ting

where and when topology 
hanges have to be performed. We will thus assume

that the regularity 
onstraint (5) written for a Riemannian metri
 holds:

Æ � d

R

(u; v) � �Æ ; (13)

for ea
h edge of the deformable model. Now, let us prove that self-interse
tions

may be dete
ted in the same way as before, namely, by 
omparing the distan
es

between non-neighbor verti
es with a parti
ular threshold.

To do so, we use a relation that 
ompares the Riemannian metri
s to the

Eu
lidean metri
. We need to 
onsider the lower and upper bounds of the eigen-

values of the metri
 matrix used in (8). They will respe
tively be denoted �

min

and �

max

. With these notations, the relation between the Eu
lidean and the

Riemannian distan
es is expressed as

�

min

d

E

(M ;N )

2

� d

R

(M ;N)

2

� �

max

d

E

(M ;N)

2

: (14)



This inequality is very useful sin
e we 
an dedu
e from it that the 
onstraint

(6) 
an still be used to dete
t topology 
hanges even in non-Eu
lidean spa
es.

Furthermore, it allows us to 
he
k eÆ
iently whether this 
onstraint holds.

Let (u; v) be an edge of our deformable model, and p be a vertex that moves

towards (u; v). Let m denote the point of (u; v) whi
h minimizes d

R

(m; p). With-

out loss of generality, we may assume that d

R

(m;u) � d

R

(m; v). The triangular

inequality is expressed as

d

R

(p; u) � d

R

(p;m) + d

R

(m;u) :

From (13) and (14), and from the fa
t that d

E

(u;m) �

1

2

d

E

(u; v) we obtain

d

R

(p; u) � d

R

(p;m) +

�

max

2�

min

d

R

(u; v) � d

R

(p;m) +

�

max

2�

min

�Æ :

If p 
rosses over (u; v), there is a time interval during whi
h d

R

(p;m) � �.

Therefore, 
omparing d

R

(p; u) with �+

�

max

2�

min

�Æ dete
ts self interse
tions. If v

max

is the upper bound of the parti
les displa
ement between two steps of the model

evolution, a good 
hoi
e for � is v

max

. The 
onstraint between non-neighbor

verti
es is hen
e expressed as

�

max

2�

min

�Æ + v

max

� d

R

(u; v) : (15)

With �

R

=

�

max

2�

min

+

v

max

�Æ

this is written as

�

R

�Æ � d

R

(u; v) : (16)

Note that with the Eu
lidean metri
, �

min

= �

max

, so that we get ba
k the

value �

E

that was used for the original model.

5 Metri
 Choi
e

In this se
tion, we explain how the knowledge of the lo
al metri
 eigenvalues and

eigenve
tors is useful to properly 
hoose the metri
 a

ording to the image.

5.1 Metri
s Properties

In this paragraph we adopt a lo
al point of view, and it is assumed that metri
s

are smooth enough to be 
onsidered as lo
ally 
onstant.

At a given point of the image spa
e, the metri
 is given as a symmetri


positive de�nite matrix G with two eigenve
tors v

1

and v

2

and their asso
iated

eigenvalues �

1

and �

2

. If the ve
tors v

1

and v

2

are 
hoosen with a unitary

Eu
lidean length, then the Riemannian length of x = x

1

v

1

+ x

2

v

2

is given as

kxk

R

=

q

�

1

x

2

1

+ �

2

x

2

2

: (17)
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ed by the norm G

is an ellipse with its semi axes oriented

a

ording to v
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Fig. 2. Lo
al behavior of metri
s

Then, as shown in Fig. 2, the lo
al unit ball is an ellipse with an orientation

and a size that depend on the lo
al spe
tral de
omposition of G. One may easily

verify that the unit balls of a metri
 with two equal eigenvalues are Eu
lidean

unit balls up to a s
ale fa
tor. These metri
s are thus 
alled isotropi
 metri
s,

while metri
s with two di�erent eigenvalues are 
alled anisotropi
 metri
s.

Re
ipro
ally, it is easy to get the symmetri
 positive de�nite matrix 
or-

responding to given eigenve
tors and eigenvalues. The eigenve
tors are used to

de�ne lo
ally the main dire
tions of the metri
, and the eigenvalues determine to

what extent the spa
e is expanded along to these dire
tions. In the next se
tion

we explain how we use these statements to 
hoose the image spa
e metri
s.

5.2 Metri
 De�nition over the Image

Isotropi
 Metri
s. Isotropi
 metri
s are the easiest to use and de�ne (they

may indeed be written g(x; y)�I , where I denote the identity matrix). Therefore,

in a �rst approa
h, we will only use metri
s of this kind. Two methods to de�ne

metri
s are then 
onsidered.

The �rst method is to let the user himself 
hoose the interesting parts of

the image. The metri
 g is set to high values in these areas, and remains low

elsewhere (namely equal to 1, to get ba
k the 
lassi
al Eu
lidean behavior of the

model). An example of segmentation using this method is shown in Fig. 3.

The se
ond method is to automati
ally determine the areas of interest. In

the deformable 
ontours framework, these pla
es are typi
ally 
hara
terized by

high values of the gradient norm. Therefore, a good 
hoi
e for the fun
tion g is

g(x; y) = 1+ krIk �G

�

, where G

�

denotes the usual Gaussian smoothing �lter.

This ensures that the model resolution in
reases nearby strong image 
ontours,

while remaining 
oarse elsewhere.

Anisotropi
 Metri
s. The metri
s previously des
ribed are simple and intu-

itive. However, they do not take advantage of all the properties of Riemannian

metri
s. With anisotropi
 metri
s, spa
e deformations depend on the dire
tion.



a b c d e

Fig. 3. Results with a user-de�ned metri
. The images (a), (b) and (
) show di�erent

evolution steps of the segmentation algorithm. The image (d) shows details of the upper

left and lower right parts of the image (
), and emphasizes the resolution di�eren
e

between the two parts of the image. The metri
 is isotropi
 and has high values in

the upper right 
orner of the image. In the lower left 
orner, it is equivalent to the

Eu
lidean metri
. This is shown in the pi
ture (e), where the 
ir
les represent the

lo
al unit ball of the metri
. Note that this experien
e also validates the automated

topologi
al 
hanges of the model in a spa
e with a deformed metri
.

The following paragraph shows how that kind of metri
 improves the segmenta-

tion.

Consider the metri
 g de�ned as the Eu
lidean metri
 in the image pla
es

where the gradient norm is low or nul. Suppose that elsewhere, g is the metri


with the spe
tral de
omposition (v

1

; �

1

), (v

2

; �

2

), with v

1

= rI , �

1

= krIk,

v

2

= v

1

?

and �

2

= 1.

In pla
es where there are no strong 
ontours, the deformable model behaves

as if the metri
 were Eu
lidean. Therefore, no new verti
es are 
reated, and

the model resolution remains 
oarse. In the neighborhood of a 
ontour, the de-

formable model mesh may either 
ross over or follow the 
ontour. Suppose that

it 
rosses over the 
ontour. In a small neighborhood the mesh is roughly par-

allel to v

1

. With our 
hoi
e for �

1

edge lengths are overestimated. Therefore

the model lo
ally in
reases its resolution, whi
h provides it with more degrees of

freedom. In 
ontrast, suppose that the model mesh follows the 
ontour. Then the

mesh is roughly parallel to v

2

(i.e. orthogonal to rI), and with our 
hoi
e for

�

2

, distan
es are estimated as in the Eu
lidean 
ase. Consequently, the model

resolution remains 
oarse, and the number of verti
es used to des
ribe the image


omponent remains low.

The di�erent methods 
onsidered before are experimented and 
ompared on


omputer generated images in Fig. 4 and 5. Additional results with a MR brain

image are shown on Fig. 6.

6 Con
lusion

We have proposed a bi-dimensional highly deformable model that dynami
ally

and lo
ally adapt its resolution. Hen
e, a �ne resolution is a
hieved in the in-

teresting parts of the image while a 
oarse resolution is kept elsewhere. By this

way, the segmentation algorithm 
omplexity is made signi�
antly more indepen-

dent from the size ot input data. In a bi-dimensional image, dividing twi
e the



a b c d e

Fig. 4. Segmentation with di�erent automati
ally 
omputed metri
s: the model is ini-

tialized around the �gure. The image (a) shows the result obtained with the Eu
lidean

metri
 with the lowest model resolution that allows to distinguish the two 
onne
ted


omponents of the image. The image (
) shows the result obtained with the isotropi


Riemannian metri
 des
ribed in image (b). The pi
ture (e) shows the segmentation

obtained with the anisotropi
 Riemannian metri
 des
ribed in Fig. (d).
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Metri
 Time (s) Complexity

(a) Eu
lidean 3:88 186; 567

(b) Isotropi
 49:72 152; 860

(
) Anisotropi
 8:33 55; 258

Fig. 5. Statisti
s: the graph represents the evolution of the number of verti
es of the

model with respe
t to the iteration number, and for di�erent metri
s. The segmented

image is the same as in Fig. 4. This emphasizes that our new model is able to extra
t

image 
omponents with signi�
antly less verti
es than the initial model, espe
ially if

anisotropi
 metri
s are used (
urve 
 on the graph). It also shows that the use of

deformed metri
s speeds up the model 
onvergen
e. Computation times remain higher

than with an Eu
lidean metri
, however, many optimizations are likely to be performed

to redu
e the 
omputational 
ost per vertex.

model resolution divides the number of verti
es by two. For three-dimensional

image, the same loss of resolution divides four times the number of verti
es.

Consequently, highly deformable models with adaptative resolution would be

even more useful for three-dimensional image segmentation. The model we have

extended was initially designed for this purpose. Moreover, all the tools that are

used to de�ne our new deformable model remain available in three-dimensional

spa
es. We are thus 
urrently working on a three-dimensional version of this

model.
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