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Abstract

The paper contributes to a multiscale theory of digital shapes by presenting
novel methods for a multiscale representation of digital lines and their inter-
sections according to the Stern-Brocot tree. We give a new definition of the
intersection (main conntected part) of two specific digital straight lines on the
same quadrant (First quadrant). More precisely, we give some new results about
the minimal set of parameters (i.e. slope (a,b), shift (µ), parity (even or odd),
and the coordinates of the upper leaning points) for each line and their inter-
sections.
keywords: multiscale geometry, standard lines, digital straight segment recog-
nition, Stern-Brocot tree, Digital Intersection

1. Introduction

Methods for recognizing a digital straight segment are known since the early
1980s, with basic ideas dating back to the late 1960s. Digital Straight Lines
(DSL) and Digital Straight Segments (DSS) have been known for many years to
be interesting tools for digital curve and shape analysis. When a straight line
is digitized on a square grid, they obtain a sequence of grid points defining a
digital straight segment. Methods of recognizing digital straight segments are
known since long. In one of the first methods, Freeman [8] suggested to analyze
the regularity in the pattern of the directions in the chain code [7] of a digital
curve. Anderson and Kim [1] have presented an analysis of the properties of the
DSS’s and suggested a different algorithm based on calculating the convex hull
of the points of digital curves to be analyzed.

In [15], Reveilles proposed an arithmetical definition that allows the repre-
sentation of naive digital lines as well as thicker and thiner line.
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In [13], Kovalevsky presented a new classification of digital curves into
boundary curves. Boundary curves and lines are a useful mean for fast drawing
of regions defined by their boundaries.

Discrete geometry is different from Euclidean geometry in many ways, and
the differences between the intersection of two Euclidean lines and two digital
lines is often used to illustrate this difference. Indeed, while the intersection
of two non parallel Euclidean lines is a Euclidean point, the intersection of two
digital lines can be a discrete point (pixel), a set of discrete points or even empty
on regular grids. Examples of digital lines intersection are depicted on Figure
1.
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Figure 1: Intersection of D1(3, 4, 3) drawn as red boxes and D2(3, 5, 2) drawn as brown boxes,
their intersection is drawn by green boxes. The endpoints of the main connected part are
drawn by hatched green boxes. These two lines are in the same quadrant.

In [15], Reveilles presented a criterion to analyze the connectivity of the
intersection of two digital naive lines with slopes between 0 and 1. But, he did
not give any information about the intersection of any two digital naive lines.

In [4], Debled et al. presented a definition of the set of intersection pixels of
two digital lines using a unimodular matrix. This definition enables the design
of an efficient algorithm to determine all the pixels of an intersection, given
the parameters of two lines. Sivignon et al. [17, 18] studied the geometrical
and arithmetical properties of the intersection of two digital lines or planes.
More precisely, some results about the connectivity, periodicity and minimal
parameters of this intersection have been reported. They have proposed a char-
acterization and an algorithm to find the minimal parameters of the intersection
of any two digital naive lines using two different methods (Preimage study and
Geometrical method) and emphasizing the links between them. They used the
method derived from the solution proposed in the paper of Harel and Tarjan
[9], for searching the nearest common ancestor of two nodes in a binary tree.

We recall in Section 2 some definitions and properties about rational frac-
tions, more particularly the relation between the rational fractions and the
Stern-Brocot tree. In Section 3, we calculate the intersection of two specific
digital straight lines D1 and D2 in which these two lines belong to the same
quadrant such that their intersection contains S. Moreover, we determine the
coordinates of the upper leaning points and the position µ of each DSL. We note
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here that we propose new results about the combinatorics of such digital line
intersections. We further show in Proposition 2, 3 (even and odd cases) that the
computational complexity is constant time O(1) to calculate the slope of the
two DSL. In Section 4, we calculate the intersection of any two digital straight
lines by using the arithmetic method. Section 5 determines the multiscale of
digital curve that is extracted from a digital shape.
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Figure 2: Positions of weakly exterior points on a digital straight line of characteristics (3, 7, 0).
Weakly exterior points are boxed and upper/lower leaning points are rectangular boxed with
rounded corners.

2. Digital straightness and continued fractions

We recall the definition of Digital Straight Line in the first quadrant. the
interior points and the weakly exterior points of a digital straight segment and
the relation between a DSL and a simple continued fraction.

Definition 1. [15] The set of points (x, y) of the digital plane verifying µ ≤
ax − by < µ + |a| + |b|, with a and b are relatively prime integer numbers and
µ is an integer number, is called standard line with slope a/b (0 < a ≤ b and
gcd(a, b) = 1) and shift µ (e.g. see Fig. 2).

The standard lines are the 4-connected discrete lines. The quantity r(a,b)(P ) =
ax − by is the remainder of the points P = (x, y) in the digital line of charac-
teristics (a, b, µ). The points whose remainder is µ (resp. µ + |a| + |b| − 1) are
called upper (resp. lower) leaning points.

The original DR95 [5] (reported in Klette and Rosenfeld [11]) algorithm
recognizes näıve digital straight lines but it is easily adapted to standard lines.
It extracts the characteristics (a, b, µ), with minimal a+ b. The evolution of the
characteristics is based on a simple test: each time we try to add a new point
4−connected to the current digital straight segment, we compute its remainder
with respect to the DSS parameters. According to this value the point can be
added or not. If it is greater than or equal to µ+a+b+1 or less than or equal to
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µ− 2 the point is said to be exterior to the digital straight segment and cannot
be added. Otherwise the point can be added to the segment to form a longer
DSS and falls into two categories:

• interior points, with a remainder between µ and µ+a+b−1 both included;

• weakly exterior points, with a remainder of µ−1 for upper weakly exterior
points and µ + a + b for lower weakly exterior points. Only in this case
are the characteristics updated.

We also recall a few properties about patterns composing DSS and their close
relations with continued fractions. They constitute a powerful tool to describe
discrete lines with rational slopes (see Berstel and de Luca [2] for more details).
All definitions and propositions stated below hold for DSS with slopes in the
first quadrant. We can also transform this work to any quadrant.

Given a standard line (a, b, µ), we call pattern of characteristics (a, b) the
succession of Freeman moves between any two consecutive upper leaning points.
The Freeman moves defined between any two consecutive lower leaning points
is the previous word read from back to front and is called the reversed pattern.
As noted by several authors (e.g. see Reveilles [15], Klette and Rosenfeld [11],
Voss 1991 [19], the work of deVieilleville and Lachaud reported in [3] or Kiryati
et al. 1991 [10]), the pattern of any slope can be constructed from the continued
fraction of the slope. We recall that a simple continued fraction is an expression:

z = a
b = [u0, u1, u2, ..., ui, ..., un] = u0 + 1

u1+
1

...+ 1
un−1+ 1

un

,

where n is the depth of the fraction, and u0, u1, etc, are all integers and called
the partial quotients. We call k-th convergent to the simple continued fraction
formed of the k first partial quotients: zk = pk

qk
= [u0, u1, u2, ..., uk].

We recall a few more relations regarding the way convergents are related:

∀k ≥ 1 pkqk−1 − pk−1qk = (−1)k+1 (1)

p0 = 0 p−1 = 1 ∀k ≥ 1 pk = ukpk−1 + pk−2 (2)

q0 = 1 q−1 = 0 ∀k ≥ 1 qk = ukqk−1 + qk−2 (3)

Continued fractions can be finite or infinite, we focus on the case of rational
slopes of lines in the first quadrant, that is finite continued fractions between
0 and 1. Then for each i, ui is a strictly positive integer. In order to have a
unique writing we consider that the last partial quotient is greater or equal to
two except for slope 1 = [0, 1].
Let us now explain how to compute the pattern associated with a rational slope
z in the first quadrant.
Consider E a mapping from the set of positive rational number smaller than one
onto Freeman code words defined as follows.The function E takes a continued
fraction z as input to build recursively the pattern of a DSS of slope z in the
first quadrant.

E(z−2) = 0, E(z−1) = 1, and,∀i ≥ 0,

{
E(z2i+1) = E(z2i)

u2i+1E(z2i−1),
E(z2i) = E(z2i−2)E(z2i−1)u2i .

(4)
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Let us take for example the fraction 5
17 = [0; 3, 2, 2]. The pattern of any DSS

with this slope is thus:

E(z3) = E([0; 3, 2, 2]) = E([0; 3, 2])2 · E([0; 3]) 000010001000010001 · 0001
E(z2) = E([0; 3, 2]) = E([0]) · E([0; 3])2 0 · 00010001
E(z1) = E([0; 3]) = 0001 0001
E(z0) = E([0]) = 0 0

Figure 3: Stern-Brocot tree

The idea under its construction is to begin with the two fractions 0
1 and

1
0 and to repeat the insertion of the mediant of these two fractions as follows:

insert the median m+m′

n+n′ between m
n and m′

n′ . The sequence of partial quotients
defines the sequence of right and left moves down the tree. Many works deal
with the relations between irreducible rational fractions and digital lines (see
Dorst and Smeulders [14] for characterization with Farey series, and Yaacoub
[21] for a link with decomposition into continuous fractions). In [5], Debled
first introduced the link between this tree and the recognition of digital line.
Recognizing a piece of a digital line is like going down the Stern-Brocot tree
up to the directional vector of the line. To sum up, the classical online DSS
recognition algorithm DR95 updates the DSS slope when adding a point that
is just exterior to the current line (weak exterior points). The slope evolution
is analytically given by next property.

Proposition 1. [3] The slope evolution in DR95 depends on the parity of the
depth of its slope, the type of weakly exterior point added to the right or to the
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Figure 4: Slope evolution of a ULU DSS of slope 2
3

with two patterns (and one reverse
pattern). Top row: add the upper weakly exterior point U ′ to the right of the DSS, slope
becomes 5

7
. Bottom row: add the upper weakly exterior point U ′ to the left of the DSS, slope

becomes 5
8

.

left (UWE and LWE stands respectively for upper and lower weakly exterior)
and the number of patterns or reversed patterns in the current DSS. This is
summed up in the table below, where the slope is [0, u1, ..., un], n = 2i even or
n = 2i+ 1 odd, δ pattern(s) and δ′ reversed pattern(s):

• Right side : an illustration is given in Fig. 4, top row
Even n Odd n

UWE [0, u1, ..., u2i, δ] [0, u1, ..., u2i+1 − 1, 1, δ]
LWE [0, u1, ..., u2i − 1, 1, δ′] [0, u1, ..., u2i+1, δ

′]

• Left side : an illustration is given in Fig. 4, bottom row
Even n Odd n

UWE [0, u1, ..., u2i − 1, 1, δ] [0, u1, ..., u2i+1, δ]
LWE [0, u1, ..., u2i, δ

′] [0, u1, ..., u2i+1 − 1, 1, δ′]

We may look again at our example of fraction 5
17 . The path in the Stern-

Brocot tree from the root 0
1 to this fraction is the list of nodes 0

1 , 11 , 12 , 13 , 14 ,
2
7 , 3

10 , 5
17 . Any DSS in a DSL of slope 5

17 has a slope which is one of these
fractions. We notice that the k-th convergent of 5

17 is a fraction of the previous
list.

3. Digital lines intersection.

In the previous section, we provide the slope evolution of a DSS S when we
add a weakly exterior point (upper or lower) to the left or to the right of a DSS.
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This section shows how to, from a given DSS S, define two digital straight
lines D1(S) and D2(S) such that S ⊆ MCP (D1(S), D2(S)) (MCP stands for
”main connected part” and is defined in definition 2) and study the precise
structure of MCP (D1(S), D2(S)) (Proposition 2 and 3). These two lines are
related to the downward moves in the Stern-Brocot tree during a DSS recog-
nition. Their patterns are placed so that one starts at the first upper leaning
point and the other ends at the last upper leaning point (see Fig. 4, or the paper
of deVieilleville and Lachaud [3] for more details about the patterns).

These two digital straight lines D1(S) and D2(S) are built using Theorem 1,
by adding an upper (or lower) weakly exterior point at the front or at the back
of S. Lemma 1 gives the remainders and the coordinates of the upper leaning
points of these two DSLs.

Theorem 1. [3] Given a DSS S with even slope z2i = p2i
q2i

= [0, u1, ..., u2i] (or

with odd slope z2i+1 = p2i+1

q2i+1
= [0, u1, ..., u2i+1]), their exist two digital straight

lines D1(S) and D2(S) with slopes as defined in the table below such that S ⊂
D1(S) ∩D2(S).

Upper weakly exterior Lower weakly exterior

S has an even slope
D1(S) δp2i+p2i−1

δq2i+q2i−1

(δ′+1)p2i−p2i−1

(δ′+1)q2i−q2i−1

D2(S) (δ+1)p2i−p2i−1

(δ+1)q2i−q2i−1

δ′p2i+p2i−1

δ′q2i+q2i−1

S has an odd slope
D1(S) δp2i+1+p2i

δq2i+1+q2i

(δ′+1)p2i+1−p2i
(δ′+1)q2i+1−q2i

D2(S) (δ+1)p2i+1−p2i
(δ+1)q2i+1−q2i

δ′p2i+1+p2i
δ′q2i+1+q2i

Proof. Let S has an even depth and slope
p2i
q2i

= [u0, u1, ..., u2i], then:

1. D1 has slope z12i+1 =
p12i+1

q12i+1
= [u0, u1, ..., u2i, δ] by adding an UWE to the

right (Proposition 1):
p12i+1

q12i+1
=

u1
2i+1p

1
2i+p

1
2i−1

u1
2i+1q

1
2i+q

1
2i−1

= δp2i+p2i−1

δq2i+q2i−1

2. D2 has slope z22i+2 =
p22i+2

q22i+2
= [u0, u1, ..., u2i − 1, 1, δ] by adding an UWE

to the left (Proposition 1):
p22i+2

q22i+2
=

u2
2i+2p

2
2i+1+p

2
2i

u2
2i+2q

2
2i+1+q

2
2i

=
u2
2i+2(u

2
2i+1p

2
2i+p

2
2i−1)+p

2
2i

u2
2i+2(u

2
2i+1q

2
2i+q

2
2i−1)+q

2
2i

=
δ(1×p22i+p

2
2i−1)+p

2
2i

δ(1×q22i+q22i−1)+q
2
2i

=

(δ+1)p22i+δp
2
2i−1

(δ+1)q22i+δq
2
2i−1

= (δ+1)[(u2i−1)p2i−1+p2i−2]+δp2i−1

(δ+1)[(u2i−1)q2i−1+q2i−2]+δq2i−1
= (δ+1)(u2ip2i−1+p2i−2)−p2i−1

(δ+1)(u2iq2i−1+q2i−2)−q2i−1

= (δ+1)p2i−p2i−1

(δ+1)q2i−q2i−1

3. D1 has slope z12i+2 =
p12i+2

q12i+2
= [u0, u1, ..., u2i − 1, 1, δ′] by adding an LWE

to the left (Proposition 1):
p12i+2

q12i+2
=

u1
2i+2p

1
2i+1+p

1
2i

u1
2i+2q

1
2i+1+q

1
2i

=
u1
2i+2(u

1
2i+1p

1
2i+p

1
2i−1)+p

1
2i

u1
2i+2(u

1
2i+1q

1
2i+q

1
2i−1)+q

1
2i

=
δ′(1×p12i+p

1
2i−1)+p

1
2i

δ′(1×q12i+q12i−1)+q
1
2i

=
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(δ′+1)p12i+δ
′p12i−1

(δ′+1)q12i+δ
′q12i−1

= (δ′+1)[(u2i−1)p2i−1+p2i−2]+δ
′p2i−1

(δ′+1)[(u2i−1)q2i−1+q2i−2]+δ′q2i−1
= (δ′+1)(u2ip2i−1+p2i−2)−p2i−1

(δ′+1)(u2iq2i−1+q2i−2)−q2i−1

= (δ′+1)p2i−p2i−1

(δ′+1)q2i−q2i−1

4. D2 has slope z22i+1 =
p22i+1

q22i+1
= [u0, u1, ..., u2i, δ

′] by adding an LWE to the

right (Proposition 1):
p22i+1

q22i+1
=

u2
2i+1p

2
2i+p

2
2i−1

u2
2i+1q

2
2i+q

2
2i−1

= δ′p2i+p2i−1

δ′q2i+q2i−1

Definition 2. The main connected part Sm = MCP (D1(S), D2(S)) of two spe-
cific digital straight lines D1(S) and D2(S) denotes the centered connected region
of the intersection of both DSLs and contains S. Sm is defined by w1E(zn)δw2,
where w1 is the prefix of Sm before the first upper leaning point of S, w2 is
the suffix of Sm after the last upper leaning point of S, and δ is the number of
patterns of S. w1 (resp. w2) is also the suffix (resp. prefix) of S. The slope of
Sm is equal to the slope of S.

In the next lemma, we focus only on the calculation of the upper leaning points
of two digital straight lines already denoted D1(S) and D2(S). We do not need
to study the LUL case, because we can transform it to ULU case (see Fig. 8,a,b).

Lemma 1. Let D1(S) and D2(S) be two digital straight lines. Assume that the
main connected part MCP (D1(S), D2(S)) = Sm(a, b, µ) has an even complexity
(or an odd complexity) with the intercept µ = a(x− x0)− b(y− y0) where (x, y)
is the coordinate of the leftmost upper leaning point of Sm and (x0, y0) defines
the origin of the pixels in Z2. Then the remainders of D1(S) and D2(S) are
respectively δµ + µp and (δ + 1)µ − δ − µp (or the remainders of D1(S) and
D2(S) are respectively δµ − δ + µp and (δ + 1)µ − µp ), where µp = pn−1(x −
x0) − qn−1(y − y0) and pn−1

qn−1
is the (n − 1)-th convergent of pn

qn
(pnqn = a

b ), and

the coordinates of the upper leaning points are given by (An illustration of this
lemma is given in Figure 5).

D1(S) D2(S)
Sm has an even slope (x− x0, y − y0) + k(δq2i +

q2i−1, δp2i + p2i−1)
(x − x0 + δq2i, y − y0 +
δp2i) + k((δ + 1)q2i −
q2i−1, (δ + 1)p2i − p2i−1)

Sm has an odd slope (x − x0 + δq2i+1, y −
y0 + δp2i+1) + k(δq2i+1 +
q2i, δp2i+1 + p2i)

(x − x0, y − y0) + k((δ +
1)q2i+1−q2i, (δ+1)p2i+1−
p2i)

Proof. If Sm has an even depth, then the slope of D1(S) is δp2i+p2i−1

δq2i+q2i−1
and the

slope of D2(S) is (δ+1)p2i−p2i−1

(δ+1)q2i−q2i−1
. The remainders of the upper leaning points in

D1(S) and D2(S) are calculated as follows:
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rD1((x− x0, y − y0) + k(δq2i + q2i−1, δp2i + p2i−1))

=rD1((x− x0, y − y0)) + krD1((δq2i + q2i−1, δp2i + p2i−1))

=rD1((x− x0, y − y0)) + k[(δp2i + p2i−1)(δq2i + q2i−1)− (δq2i + q2i−1)(δp2i + p2i−1)]

=rD1((x− x0, y − y0)) + k × 0

=(δp2i + p2i−1)(x− x0)− (δq2i + q2i−1)(y − y0)

=δ[p2i(x− x0)− q2i(y − y0)] + (p2i−1(x− x0)− q2i−1(y − y0))

=δµ+ µp

and
rD2

((x− x0 + δq2i, y − y0 + δp2i) + k((δ + 1)q2i − q2i−1, (δ + 1)p2i − p2i−1))

=rD2
((x− x0 + δq2i, y − y0 + δp2i)) + krD2

(((δ + 1)q2i − q2i−1, (δ + 1)p2i − p2i−1))

=rD2
((x− x0 + δq2i, y − y0 + δp2i)) + k[((δ + 1)p2i − p2i−1)[(δ + 1)q2i − q2i−1]−

((δ + 1)q2i − q2i−1)[(δ + 1)p2i − p2i−1]]

=rD2
((x− x0 + δq2i, y − y0 + δp2i)) + k × 0

=(x− x0 + δq2i)[(δ + 1)p2i − p2i−1]− (y − y0 + δp2i)[(δ + 1)q2i − q2i−1]

=(δ + 1)[p2i(x− x0)− q2i(y − y0)] + δ(p2iq2i−1 − q2ip2i−1)− (p2i−1(x− x0)−
q2i−1(y − y0))

=(δ + 1)µ− δ × 1− µp
=(δ + 1)µ− δ − µp.

The proof of the second case is analogous to the first one.

3.1. Slopes

We propose here two propositions (Proposition 2 and 3) that give the ex-
act combinatorial structure (slope and repetition of the pattern) of the main
connected part of D1(S) and D2(S), which is denoted by Sm.

Proposition 2. Let S be a digital straight segment of even slope z2i =
[0, u1, u2, . . . , u2i] and let D1(S) and D2(S) be two specific digital straight lines.
We have D1(S) has an odd slope z2i+1 with z2i+1 = [0, u1, · · · , u2i, δ] and D2(S)
has an even slope z′2i+2 with z′2i+2 = [0, u1, · · · , u2i − 1, 1, δ], with the slope of
D1(S) is greater than the slope of D2(S) (from Theorem 1). Then the intersec-
tion Sm (main connected part) of D1(S) and D2(S) is exactly w1E(z2i)

δw2,
with w1 = E(z1)u2 · · · E(z2i−2k−1)u2i−2k · · · E(z2i−3)u2i−2 E(z2i−1)u2i−1

= #1
k=i−1E(z2i−2k−1)u2i−2k E(z2i−1)u2i−1 and w2 = E(z2i−2)u2i−1 · · ·

E(z2i−2k)u2i−2k+1 · · · E(z2)u3 E(z0)u1 = #i
k=1E(z2i−2k)u2i−2k+1 (# is the con-

catenation of E(.)) The parity of the depth of Sm is also even.

E(z2i)
δ

. . . E(z2i+1) E(z2i+1)
E(z′2i+2) E(z′2i+2) . . .

Sm
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of their intersection. The leaning points of D1(S) (resp. of D2(S)) are drawn as boxes (resp.
as circles). The black line represents the word of the segment Sm. S is a DSS of two patterns
δ = 2 and characteristics ( 2

3
, µ = 0) included in Sm.

Proof. D1 of odd slope z2i+1 and D2 of even slope z
′

2i+2, then from (4), we have:

E(z2i+1) = E(z2i)
u2i+1E(z2i−1) = E(z2i)

δE(z2i−1).

and

z2i = [0, u1, u2, · · · , u2i−2, u2i−1, u2i]
z2i+1 = [0, u1, u2, · · · , u2i−2, u2i−1, u2i, u2i+1]

= [0, u1, u2, · · · , u2i−2, u2i−1, u2i, δ]

z
′

2i+2 =
[
0, u

′

1, u
′

2, · · · , u
′

2i−2, u
′

2i−1, u
′

2i, u
′

2i+1, u
′

2i+2

]
= [0, u1, u2, · · · , u2i−2, u2i−1, u2i − 1, 1, δ]

z
′

2i−2 = [0, u1, u2, · · · , u2i−2] = z2i−2

z
′

2i−1 = [0, u1, u2, · · · , u2i−1] = z2i−1

z
′

2i+1 = [0, u1, u2, · · · , u2i−2, u2i−1, u2i − 1, 1]

= [0, u1, u2, · · · , u2i−2, u2i−1, u2i − 1 + 1]

= [0, u1, u2, · · · , u2i−2, u2i−1, u2i] = z2i.

E(z
′

2i+2) = E(z
′

2i)E(z
′

2i+1)u2i+2 = E(z
′

2i)E(z
′

2i+1)δ

= E(z′2i−2)E(z′2i−1)u
′
2iE(z′2i+1)δ = E(z2i−2)E(z2i−1)u2i−1E(z2i)

δ.

It is clear that E(z2i)
δ is the first common part between E(z2i+1) and E(z

′

2i+2)
(Figure 5 exemplifies the construction of this intersection) and the slope of Sm
is equal to the slope of S. In the following, we calculate the largest prefix inter-
section between E(z2i−1) of E(z2i+1) and E(z2i−2) E(z2i−1)u2i−1 of E(z

′

2i+2) in
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the right of E(z2i)
δ (resp. the largest suffix intersection between E(z2i) E(z2i−1)

and E(z2i−2) E(z2i−1)u2i−1 in the left of E(z2i)
δ).

In the first case, we have:

E(z2i−1) = E(z2i−2)u2i−1E(z2i−3) = E(z2i−2)u2i−1E(z2i−4)u2i−3E(z2i−5)

= E(z2i−2)u2i−1E(z2i−4)u2i−3E(z2i−6)u2i−5E(z2i−7)

= . . .

= #i−2
k=1E(z2i−2k)u2i−2k+1E(z3)

= #i−2
k=1E(z2i−2k)u2i−2k+1E(z2)u3E(z1)

= #i−1
k=1E(z2i−2k)u2i−2k+1E(z0)u1E(z−1)

= #i
k=1E(z2i−2k)u2i−2k+1E(z−1)

E(z2i−2)E(z2i−1)u2i−1 = E(z2i−2)E(z2i−1)E(z2i−1)u2i−2

= E(z2i−2)E(z2i−2)u2i−1E(z2i−3)E(z2i−1)u2i−2

= E(z2i−2)u2i−1E(z2i−2)E(z2i−3)E(z2i−1)u2i−2

= E(z2i−2)u2i−1E(z2i−4)E(z2i−3)u2i−2E(z2i−3)E(z2i−1)u2i−2

= E(z2i−2)u2i−1E(z2i−4)E(z2i−3)E(z2i−3)u2i−2E(z2i−1)u2i−2

= E(z2i−2)u2i−1E(z2i−4)E(z2i−4)u2i−3E(z2i−5)E(z2i−3)u2i−2

E(z2i−1)u2i−2

= E(z2i−2)u2i−1E(z2i−4)u2i−3E(z2i−4)E(z2i−5)E(z2i−3)u2i−2

E(z2i−1)u2i−2

= . . .

= #i−2
k=1E(z2i−2k)u2i−2k+1E(z2)E(z3)#1

k=i−2E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−2

= #i−2
k=1E(z2i−2k)u2i−2k+1E(z2)E(z2)u3E(z1)#1

k=i−2E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−2

= #i−2
k=1E(z2i−2k)u2i−2k+1E(z2)u3E(z2)E(z1)#1

k=i−2E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−2

= #i−1
k=1E(z2i−2k)u2i−2k+1E(z0)E(z1)u2E(z1)#1

k=i−2E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−2

= #i−1
k=1E(z2i−2k)u2i−2k+1E(z0)E(z1)E(z1)u2#1

k=i−2E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−2

= #i−1
k=1E(z2i−2k)u2i−2k+1E(z0)E(z0)u1E(z−1)#1

k=i−1E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−2

= #i−1
k=1E(z2i−2k)u2i−2k+1E(z0)u1E(z0)E(z−1)#1

k=i−1E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−2

= #i
k=1E(z2i−2k)u2i−2k+1E(z0)E(z−1)#1

k=i−1E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−2

11



Then their prefix intersection is #i
k=1E(z2i−2k)u2i−2k+1 .

In the second case, we have:

E(z2i)E(z2i−1) = E(z2i−2)E(z2i−1)u2iE(z2i−1)

= E(z2i−2)E(z2i−1)E(z2i−1)u2i

= E(z2i−2)E(z2i−1)E(z2i−1)E(z2i−1)u2i−1

= E(z2i−2)E(z2i−1)E(z2i−2)u2i−1E(z2i−3)E(z2i−1)u2i−1

= E(z2i−2)E(z2i−1)E(z2i−2)u2i−1−1E(z2i−2)E(z2i−3)E(z2i−1)u2i−1

(Let L = E(z2i−2)E(z2i−1)E(z2i−2)u2i−1−1)

= LE(z2i−4)E(z2i−3)u2i−2E(z2i−3)E(z2i−1)u2i−1

= LE(z2i−4)E(z2i−3)E(z2i−3)u2i−2E(z2i−1)u2i−1

= LE(z2i−4)E(z2i−4)u2i−3E(z2i−5)E(z2i−3)u2i−2E(z2i−1)u2i−1

= LE(z2i−4)u2i−3E(z2i−4)E(z2i−5)E(z2i−3)u2i−2E(z2i−1)u2i−1

= . . .

= L#i−2
k=2E(z2i−2k)u2i−2k+1E(z4)E(z3)#1

k=i−3E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−1

= L#i−2
k=2E(z2i−2k)u2i−2k+1E(z2)E(z3)u4E(z3)#1

k=i−3E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−1

= L#i−2
k=2E(z2i−2k)u2i−2k+1E(z2)E(z3)E(z3)u4#1

k=i−3E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−1

= L#i−2
k=2E(z2i−2k)u2i−2k+1E(z2)E(z2)u3E(z1)#1

k=i−2E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−1

= L#i−2
k=2E(z2i−2k)u2i−2k+1E(z2)u3E(z2)E(z1)#1

k=i−2E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−1

= L#i−1
k=2E(z2i−2k)u2i−2k+1E(z0)E(z1)u2E(z1)#1

k=i−2E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−1

= L#i−1
k=2E(z2i−2k)u2i−2k+1E(z0)E(z1)#1

k=i−1E(z2i−2k−1)u2i−2k

E(z2i−1)u2i−1

E(z2i−2)E(z2i−1)u2i−1 = E(z2i−4)E(z2i−3)u2i−2E(z2i−1)u2i−1

= E(z2i−6)E(z2i−5)u2i−4E(z2i−3)u2i−2E(z2i−1)u2i−1

= . . .

= E(z4)#1
k=i−3E(z2i−2k−1)u2i−2kE(z2i−1)u2i−1

= E(z2)E(z3)u4#1
k=i−3E(z2i−2k−1)u2i−2kE(z2i−1)u2i−1

= E(z2)#1
k=i−2E(z2i−2k−1)u2i−2kE(z2i−1)u2i−1

= E(z0)E(z1)u2#1
k=i−2E(z2i−2k−1)u2i−2kE(z2i−1)u2i−1

= E(z0)#1
k=i−1E(z2i−2k−1)u2i−2kE(z2i−1)u2i−1

Then their suffix intersection is #1
k=i−1E(z2i−2k−1)u2i−2kE(z2i−1)u2i−1

12
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Figure 6: Intersection of two patterns E(z4) and E(z′5), where Sm is the main connected part
of their intersection. The leaning points of D1(S) (resp. of D2(S)) are drawn as boxes (resp.
as circles). The black line represents the word of the segment Sm. S is a DSS of one pattern
δ = 1 and characteristics ( 3

5
, µ = 0) included in Sm.

Proposition 3. Let S be a digital straight segment of odd slope z2i+1 = [0, u1, u2,
. . . , u2i+1] and let D1(S) and D2(S) be two specific digital straight lines. We
have D1(S) has an even slope z2i+2 with z2i+2 = [0, u1, · · · , u2i+1, δ] and D2(S)
has an odd slope z′2i+3 with z′2i+3 = [0, u1, · · · , u2i+1 − 1, 1, δ] , with the slope
of D1(S) is lower than the slope of D2(S). Then the intersection Sm (main
connected part) of D1(S) and D2(S) is exactly w1E(z2i+1)δw2, with w1 =
#1
k=i−1E(z2i−2k−1)u2i−2kE(z2i−1)u2i and w2 = E(z2i)

u2i+1−1#i
k=1E(z2i−2k)u2i−2k+1

The parity of the depth of Sm is also odd.

E(z2i+1)δ

. . . E(z′2i+3) E(z′2i+3)
E(z2i+2) E(z2i+2) . . .

Sm

Proof. The proof of this proposition is similar to the proof of Proposition 2
(Figure 6 exemplifies the construction of this intersection).

3.2. Combinatorial Segment by digital lines intersection

We are now in position to study the slope and the shift of the main connected
part of the intersection of two DSL, as specified in Proposition 4, even depth
(or Proposition 5, odd depth).

Proposition 4. Let S be a digital straight segment of even slope z2i =
[0, u1, u2, . . . , u2i] and let D1(S)(a1, b1, µ1) and D2(S)(a2, b2, µ2) be two specific
digital straight lines of slopes a1

b1
= [0, u1, · · · , u2i, δ] and a2

b2
= [0, u1, · · · , u2i −

1, 1, δ] with µ1 = δµ+ µp and µ2 = (δ+ 1)µ− δ− µp. Then the main connected
part of D1(S) and D2(S) is a DSS Sm of slope z2i of even depth with δ patterns
and shift µ.

13



Proof. Let us denote w1 = E(z1)u2E(z3)u4 · · ·E(z2i−2k−1)u2i−2k · · ·E(z2i−3)u2i−2

E(z2i−1)u2i−1 and w2 = E(z2i−2)u2i−1E(z2i−4)u2i−3 · · ·E(z2i−2k)u2i−2k+1 · · ·
E(z2)u3E(z0)u1 two factors (Left and Right) of the main connected part Sm of
a common intersection of D1(S) and D2(S).

E(z2i) = E(z2i−2)E(z2i−1)u2i

= E(z2i−2)E(z2i−1)E(z2i−1)u2i−1

= E(z2i−2)E(z2i−2)u2i−1E(z2i−3)E(z2i−1)u2i−1

= E(z2i−2)u2i−1E(z2i−2)E(z2i−3)E(z2i−1)u2i−1

= E(z2i−2)u2i−1E(z2i−4)E(z2i−3)u2i−2E(z2i−3)E(z2i−1)u2i−1

= E(z2i−2)u2i−1E(z2i−4)E(z2i−3)E(z2i−3)u2i−2E(z2i−1)u2i−1

= E(z2i−2)u2i−1E(z2i−4)u2i−3 · · ·E(z2i−2k)u2i−2k+1 · · ·E(z4)u5E(z2)u3

E(z0)u1E(z0)E(z−1)E(z1)u2E(z3)u4E(z5)u6 · · ·E(z2i−2k−1)u2i−2k

· · ·E(z2i−5)u2i−4E(z2i−3)u2i−2E(z2i−1)u2i−1

= w2E(z0)E(z−1)w1.

According to the previous decomposition of E(z2i), we further get that w2

is a left factor of E(z2i) and w1 is a right factor of E(z2i). The slope of Sm
is defined from the slope of E(z2i). This is due to the fact that the word w2

is a strict left factor of E(z2i) and hence does not modify the slope of Sm
when concatenated to the right. Furthermore, the word w1 is a strict right
factor of E(z2i) and it does not modify the slope of S when concatenated to
the left. According to Lemma 1, the first upper leaning point of Sm is equal to
a upper leaning point of D1 (UD = UD1

) of coordinate (x − x0, y − y0), then
rS((x− x0, y − y0)) = p2i(x− x0)− q2i(y − y0) = µ. As E(z2i) in S repeated δ
times, therefore, Sm is a DSS of slope z2i with δ patterns and shift µ.

Proposition 5. Let S be a digital straight segment of odd slope z2i+1 =
[0, u1, u2, . . . , u2i+1] and let D1(S)(a1, b1, µ1) and D2(S)(a2, b2, µ2) be two spe-
cific digital straight lines of slopes a1

b1
= [0, u1, · · · , u2i+1, δ] and a2

b2
=

[0, u1, · · · , u2i+1 − 1, 1, δ] with µ1 = δµ − δ + µp and µ2 = (δ + 1)µ − µp.Then
the main connected part of D1(S) and D2(S) is a DSS Sm of slope z2i+1 of odd
depth with δ patterns and shift µ.

Proof. The proof of this proposition is similar to the proof of Proposition 4.

4. Arithmetical Segment by digital lines intersection

To find the intersection of D1(a1, b1, µ1) and D2(a2, b2, µ2) we have thus to
solve the following system of equations:

µ1 ≤ a1x− b1y < µ1 + w1

µ2 ≤ a2x− b2y < µ2 + w2
(5)
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x’ 3 4 5 6 7 8 9
y’ -4 -3 -2 -4 -3 -2 -4 -3 -5 -4 -3 -5 -4 -3 -5 -4 -6 -5 -4
x -7 -3 1 -4 0 4 -1 3 -2 2 6 1 5 9 4 8 3 7 11
y -6 -3 0 -4 -1 2 -2 1 -3 0 3 -1 2 5 1 4 0 3 6

Table 1: Points of intersection of D1(3, 4, 3) and D2(3, 5, 2) , where the green cells contain the
points of its main connected part.

Where w1 = |a1| + |b1| and w2 = |a2| + |b2| (wi, i = 1, 2 is called the thickness
of the digital straight line)

Since a1 and b1 are relatively prime, there exist u1 and v1 such that a1u1 −

b1v1 = 1. We introduce U =

(
u1 b1
v1 a1

)
and the change of coordinates

(
x′

y′

)
=

U−1
(
x
y

)
. Thus Equation (5) can be rewritten as:

(
µ1

µ2

)
≤
(

1 0
u1a2 − v1b2 a2b1 − a1b2

)(
x′

y′

)
<

(
µ1 + w1

µ2 + w2

)
(6)

Let λ1 = u1a2 − v1b2 and λ2 = a2b1 − a1b2. The solution of the previous
equation can be formulated as expressions given below.

Theorem 2. [6] The digital intersection of two digital straight lines D1 and D2

of Z2 is defined by:

µ1 ≤ x′ < µ1 + w1 (7)

The expression of the boundaries of y′ depends on the sign of λ2:

λ2 > 0,−
[
−µ2 + λ1x

′

λ2

]
≤ y′ < −

[
−µ2 − w2 + λ1x

′

λ2

]
(8)

λ2 < 0,

[
µ2 + w2 − λ1x′

λ2

]
+ 1 ≤ y′ <

[
µ2 − λ1x′

λ2

]
+ 1 (9)

Example 1. Let D(2, 3, 2) be a standard digital line of even slope 2
3 = [0, 1, 2].

For instance, suppose δ = 1, Proposition 4 gives D1(3, 4, 3) and D2(3, 5, 2). We
apply Theorem 2 to determine the set of points of their intersection.
Hence 3 ≤ x′ < 10, since λ2 = −3 < 0, then the value of y′ is given by the
equation below: [

10 + x′

−3

]
+ 1 ≤ y′ <

[
2 + x′

−3

]
+ 1 (10)

Finally, we have applied the unimodular matrix U =

(
3 4
2 3

)
on (x′, y′) to get

the final result given in the table 1 and illustrated on Fig. 1.
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(a) source, 750 points (b) 19 DSS, h=v=1, 750 points

(c) h=v=2, 373 points (d) h=v=3, 249 points

Figure 7: Extract the digital curve from the digital shape. Results obtained from the covering
of a polygon (digital curve,(b)) for (h, v) ∈ {(1, 1), (2, 2), (3, 3)}. For each shape, the endpoints
of each covering segment are drawn by blue boxes. Before subsampling, the endpoints of
each segment are upper/lower leaning points. But after subsampling, the endpoints are not
necessarily upper/lower leaning points.

(D) : 11
6 = [1; 1, 5] (D) : 6

11 = [0; 1, 1, 5] (D1) : 7
13 = [0; 1, 1, 6] (D2) : 11

20 = [0; 1, 1, 4, 2]

pattern

U

L

L
pattern

U

U

L

pattern

U

L

U

pattern

U

L

U

(a) (b) (c) (d)

Figure 8: Slope evolution of a LUL DSS (b) of slope 6
11

with one odd pattern (we choose the

DSS (a) of slope 11
6

that is inside the blue box in the Figure 7,b). The DSS (c) (resp. (d))
was obtained after adding some pixels (blue lines) to the left (resp. right).
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(a) D1 ∩ D2 (b) (h, v) = (2, 2)
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(c) (h, v) = (3, 3)

Figure 9: Illustration to the intersection of two digital straight line by using the tiling (h, v)
in the first quadrant. D1(7, 13,−33) drawn as red boxes, D2(11, 20,−49) drawn as brown
boxes, and their intersection is drawn by green boxes. The hitched boxes in (b,c) represent
the (h, v)-covering of the initial segment S.
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Figure 10: Multiscale computation of a digital curve according to several tiling (h, v). The
blue boxes represent the endpoints of the segments. The blue text represents the coordinate
of the first point of the contour.
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5. Applications to multiscale representation of digital curves

It is well known that shapes should be studied at different scales. However
there exists no analytical description of the multiscale analysis of a digital shape,
contrary to the famous scale-space analysis in the continuous world (see Witkin
[20] and Koenderink [12]). One of the contribution of this paper is to give new
analytical results on the multiscale analysis of DSL and DSS. Figueiredo [6]
first provided an analytical description of the multiscale analysis of DSL (8-
connected). Recently, Said et al. [16] have presented analogous results for DSL
(4-connected). They have also proved that its multiscale is also a DSL. For
DSS, they have given a sublinear algorithm to extract its characteristics, but no
analytical formulae (see [16] for more details).

Analytical formulae to the multiresolution of a digital straight segment DSS
seems out of reach at the moment. So, in this section, we focus on the multiscale
analysis of a DSS defined by the intersection of two digital straight lines DSLs.

Let us recall that the tiling generated by S(h, v) on Z2 induces a new coordi-
nate system where coordinates (X,Y ) are related to the canonical coordinates of
Z2 by the obvious relations X =

[
x
h

]
and Y =

[
y
v

]
, where

[
x
h

]
is the quotient of

the Euclidean division of x by h. Furthermore we denote by
{
x
h

}
the remainder

of this division. An (h, v)-covering of a set of points of Z2 is the set of tiles of
S(h, v) which intersect it.

We have implemented the presented methods on a digital curve (Fig. 7,b)
that is extracted from a digital shape (Fig. 7,a). We simply choose one digital
straight segment S of slope 11

6 from the figure 7,b, that is inside the blue box.
According to the previous propositions and a ≤ b, we then exchange the values
of a and b to obtain a DSS of slope 6

11 = [0, 1, 1, 5] of one odd pattern (see
Fig. 8,a,b). As the new segment has an odd depth repeated once (δ = 1),
then we obtain by using Proposition 5 the slope of two lines D1 and D2 in
which their intersection contains S. Consider the case where the shift µ of S
is equal to -27 and µp is equal to -5 (see Lemma 1). From Prop. 5 we get:
D1(7, 13,−33) and D2(11, 20,−49) (see Fig. 8,c,d). Let ∆1 and ∆2 be the two
digital straight lines that are the (h, v)-covering of D1 and D2 respectively. For
example if (h, v) = (2, 2), then we get by using Theorem 1 of [16] these two lines
∆1(7, 13,−20) and ∆2(11, 20,−30) (these two lines are also standard digital
lines, see Figure 9).

To find their intersection we have thus to solve the following system of equa-
tions:

−20 ≤ 7X − 13Y < 0 (∆1)

−30 ≤ 11X − 20Y < 1 (∆2)

We can apply Theorem 2 to determine the set of points of ∆1∩∆2 (see Example
1). As no analytical formulae to calculate the characteristics of these points,
we can use SmartDSS Algorithm to find the characteristics (slope, µ) of these
points at different scales (see Figure 10).
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6. Conclusion

A new concept of studying digital straight segments lying on the intersec-
tion of two standard digital lines was presented. The proposed method can
be considered as combinatorial method and can be applied on discrete contour.
Moreover, we have calculated the coordinates of the upper leaning points, all the
characteristics (a, b, µ) of these lines and their intersection. From these results
we have computed all the characteristics of the (h, v)-covering of these lines by
using Theorem 1 of Said et al. [16]. The results are very interesting and open
the door to calculate theoretically the covering of a segment by the tiling (h, v).
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PhD thesis, Université Louis Pasteur, Strasbourg, 1995.

[6] O. Figueiredo. Advances in discrete geometry applied to the extraction of
planes and surfaces from 3D volumes. PhD thesis, EPFL, Lausanne, 1994.

[7] H. Freeman. On the encoding of arbitrary geometric configurations. The-
oretical Computer Science, 10(2):260–268, June 1961.

[8] H. Freeman. Computer processing of line-drawing images. ACM Comput.
Surv., 6(1):57–97, 1974.

[9] D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. Comput., 13(2):338–355, 1984.

[10] N. Kiryati, M. Lindenbaum, and A. M. Bruckstein. Digital or analog hough
transform? Pattern Recognition Letters, 12(5):291–297, 1991.

[11] R. Klette and A. Rosenfeld. Digital Geometry - Geometric Methods for
Digital Picture Analysis. Morgan Kaufmann, San Francisco, 2004.

[12] J. J. Koenderink. The structure of images. Biol. Cyb., 50:363–370, 1984.

19



[13] V. Kovalevsky. Applications of digital straight segments to economical
image encoding. In Proc. DGCI, LNCS, pages 51–62, London, UK, 1997.

[14] M. D. McIlroy. A note on discrete representation of lines. AT&T Tech. J.,
64:481–490, February 1985.
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