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Abstract

A theory for the multiscale analysis of digital shapes
would be very interesting for the pattern recognition
community, giving a digital equivalent of the continuous
scale-space theory. We focus here on providing analyti-
cal formulae of the multiresolution of Digital Straight
Segments (DSS), which is a fundamental tool for de-
scribing digital shape contours.

1. Introduction
Digital Straight Lines (DSL) and Digital Straight

Segments (DSS) are useful to describe the geometry
of a digital shape (coding, geometric estimators, fea-
ture detection) and this explains why they have been
so deeply studied (see the survey [7] or [6]). It is well
known that shapes should be studied at different scales,
and this has led to the development of regular and ir-
regular pyramids for shape analysis and scene under-
standing (e.g. [1]). However there exists no analyti-
cal description of the multiresolution of a digital shape,
contrary to the famous scale-space analysis in the con-
tinuous world [11, 8]. One of the contribution of this
paper is to give new analytical results on the multires-
olution of DSL and DSS. A byproduct is new results
about digital line intersection.

Figueiredo [4] first provided an analytical descrip-
tion of the multiresolution of 8-connected DSL. Re-
cently, Said et al. [9] have presented analogous results
for standard DSL (4-connected DSL). They have also
proved that its multiresolution is also a standard DSL.
For DSS, they have given a sublinear algorithm to ex-
tract its characteristics, but no analytical formula.

Analytical formulae for DSS appear to be a much
harder problem: since DSS are finite parts of DSL, they

are more sensitive to arithmetic peculiarites. We there-
fore follow an indirect path to DSS multiresolution. In
Section 2, given a DSS, we build two DSL whose in-
tersection contains it and whose main connected part
has the same arithmetic characteristics as well as the
same number of patterns. We note here that we propose
new results about the combinatorics of such digital line
intersections, that are complementary to the results of
Sivignon et al. [10]. Section 3 determines the multires-
olution of DSS by examining the multiresolution of the
intersection of these two DSL. We give a new analytical
description of this set with arithmetic inequalities.

This paper is a first step toward the multiresolution of
a DSS in constant time by analytical formulae. Proofs
are omitted due to space limitations.

2. Standard Digital Lines Intersection

We recall here some definitions and properties about
DSL, their relations with rational fractions, and a com-
binatoric definition of a DSS. We restrict our study of
DSS to the main connected part (say S) of the intersec-
tion of two well-chosen standard DSL. These two lines
are related to the downward moves in the Stern-Brocot
tree during a DSS recognition. We finally show that S
can be built so that it has the characteristics of any given
DSS. Note that intersection of digital lines can be com-
plex and may not be connected.
DSS, patterns and continued fractions. A standard
line D of characteristics (a, b, µ) in the fourth quadrant
is the set {(x, y) ∈ Z2, µ ≤ ax+by < µ+a+b}. A pat-
tern of characteristics (a, b) is the succession of Free-
man moves between any two consecutive lower leaning
points of D. We recall that a simple continued fraction
is an expression:



z = a
b = [u0, u1, u2, ..., ui, ..., un] =
u0 + 1

u1+
1

...+ 1
un−1+ 1

un

,

whose intermediate fractions zk are called partial quo-
tients and n is its complexity.

Consider E a mapping from the set of positive ratio-
nal number smaller than one onto Freeman code words
defined as follows. First terms are stated as E(z0) = 0
andE(z1) = 0u13 and others are expressed recursively:

E(z2i+1) = E(z2i)
u2i+1E(z2i−1)

E(z2i) = E(z2i−2)E(z2i−1)u2i (1)

The role of partial quotients can be visualized with a
structure called Stern-Brocot tree (see [5] for a complete
definition and [12] for a link with continued fractions).
In [3], Debled and Réveillès introduced the link be-
tween this tree and the recognition of digital line. Rec-
ognizing a piece of digital line is like going down the
Stern-Brocot tree up to the directional vector of the line.
Their online recognition algorithm DR95 [3] (reported
in [6]) updates the DSS slope when adding a point just
exterior to the current line (weak exterior points). The
slope evolution is analytically given by next property.

Proposition 1 [2] The slope evolution in DR95 de-
pends on the parity of the complexity of its slope,
the type of weakly exterior point added to the right
(UWE and LWE stands respectively for upper and lower
weakly exterior). This is summed up in the table be-
low, where the slope is [0, u1, ..., un], n = 2i even or
n = 2i+ 1 odd, δ pattern(s) and δ′ reversed pattern(s):

Even n Odd n
UWE [0, u1, ..., u2i, δ] [0, u1, ..., u2i+1 − 1, 1, δ]
LWE [0, u1, ..., u2i − 1, 1, δ′] [0, u1, ..., u2i+1, δ

′]

Segments by digital line intersection. In order to
study a DSS composed of δ patterns of slope zn, we
build a very similar DSS which includes it as the inter-
section of two DSL with carefully chosen slopes. Their
patterns are placed so that one starts at the first lower
leaning point and the other ends at the last lower lean-
ing point (see Fig. 1).

Proposition 2 The main connected part S
of the intersection between E(z2i+1) with
z2i+1 = [0, u1, ..., u2i, δ] and E(z′2i+2) with
z′2i+2 = [0, u1, ..., u2i − 1, 1, δ] is defined as their
common part as placed below:

E(z2i)
δ

. . . E(z2i+1) E(z2i+1)
E(z′2i+2) E(z′2i+2) . . .
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(D1) : z3 = [0, 1, 2, 2]

E(z2)E(z0)E(z1)E(z2)

(D2) : z
′
4 = [0, 1, 1, 1, 2]

Y

O

S

X

(D) : z2 = [0, 1, 2]

LD2
= LD

LD1

LD1
= LD

LD2
UD2

= UD

UD1
= UD

Figure 1. Intersection of two patterns E(z3) and
E(z′4), where S is the main connected part of their in-
tersection.

The word S is exactly w1E(z2i)
δw2, with w1 =

E(z1)u2 · · · E(z2i−2k−1)u2i−2k · · · E(z2i−3)u2i−2

E(z2i−1)u2i−1 and w2 = E(z2i−2)u2i−1 · · ·
E(z2i−2k)u2i−2k+1 · · · E(z2)u3 E(z0)u1 .

We remark that it contains the pattern E(z2i) =
E(z′2i) repeated δ times (Figure 1 exemplifies the con-
struction of this intersection).

Proposition 3 The main connected part S
of the intersection between E(z2i+2) with
z2i+2 = [0, u1, ..., u2i+1, δ] and E(z′2i+3) with
z′2i+3 = [0, u1, ..., u2i+1 − 1, 1, δ] is defined as their
common part as placed below:

E(z2i+1)δ

. . . E(z′2i+3) E(z′2i+3)

E(z2i+2) E(z2i+2) . . .
S

The word S is exactly w1E(z2i+1)δw2, with
w1 = E(z1)u2 E(z3)u4 · · · E(z2i−2k−1)u2i−2k

· · · E(z2i−3)u2i−2 E(z2i−1)u2i . and w2 =
E(z2i)

u2i+1−1E(z2i−2)u2i−1E(z2i−4)u2i−3 · · ·
E(z2i−2k)u2i−2k+1 · · · E(z2)u3E(z0)u1 .

We remark that it contains the pattern E(z2i+1) =
E(z′2i+1) repeated δ times.

Theorem 1 [2] If the DSL D of even slope
p2i
q2i

= [0, u1, ..., u2i] (or of odd slope p2i+1

q2i+1
=

[0, u1, ..., u2i+1]) is the common part of two standard
digital lines D1 and D2, then their slopes are:

D1 D2

D has an even slope δp2i+p2i−1

δq2i+q2i−1

(δ+1)p2i−p2i−1

(δ+1)q2i−q2i−1

D has an odd slope δp2i+1+p2i
δq2i+1+q2i

(δ+1)p2i+1−p2i
(δ+1)q2i+1−q2i

Lemma 1 On the arithmetic straight lines D1 and D2,
If D(a, b, µ) has an even complexity with the remainder
µ = a(x−x0)+b(y−y0) where (x, y) is the first point



of D and (x0, y0) defines the origin of the pixels in Z2,
then the points of D1 and D2 of remainders δµ+ µ− δ
and δµ respectively ( If D has an odd complexity, then
the points of D1 and D2 of remainders δµ and δµ +
µ− δ respectively ) have their coordinates given by (An
illustration of this lemma is given in Figure 1) (top row:
even complexity, bottom row: odd complexity):
D1 D2

(µ(b − q2i−1) −
δq2i, µ(p2i−1−a) + δp2i) +
k(−δq2i − q2i−1, δp2i +
p2i−1)

(µ(b − q2i−1), µ(p2i−1 −
a)) + k(−(δ + 1)q2i +
q2i−1, (δ + 1)p2i − p2i−1)

(µq2i,−µp2i) +
k(−δq2i+1 − q2i, δp2i+1 +
p2i)

(µq2i − δq2i+1,−µp2i +
δp2i+1)+k(−(δ+1)q2i+1+
q2i, (δ + 1)p2i+1 − p2i)

Proposition 4 Let D1(a1, b1, µ1) and D2(a2, b2, µ2)
be two standard DSL of slopes a1

b1
= [0, u1, ..., u2i, δ]

and a2
b2

= [0, u1, ..., u2i− 1, 1, δ] with µ1 = δµ+µ− δ
and µ2 = δµ. Then their main connected part is a DSS
of slope z2i with δ patterns and shift µ.

Proposition 5 Let D1(a1, b1, µ1) and D2(a2, b2, µ2)
be two standard DSL of slopes a1b1 = [0, u1, ..., u2i+1, δ]
and a2

b2
= [0, u1, ..., u2i+1 − 1, 1, δ] with µ1 = δµ and

µ2 = δµ + µ − δ. Then their main connected part is a
DSS of slope z2i+1 with δ patterns and shift µ.

3. Multiscale of digital lines intersection

We are now in position to study the multiresolution
of a DSS defined by the intersection of two DSL, as
specified in Proposition 4. We again denote these two
DSL by D1(a1, b1, µ1) and D2(a2, b2, µ2) with µ1 =
δµ+ µ− δ and µ2 = δµ.

The tiling generated by S(h, v) on Z2 induces a new
coordinate system where coordinates (X,Y ) are related
to the canonical coordinates of Z2 by the obvious rela-
tions X =

[
x
h

]
and Y =

[
y
v

]
, where

[
x
h

]
is the quo-

tient of the euclidean division of x by h. Furthermore
we denote by

{
x
h

}
the remainder of this division. An

(h, v)-covering of a set of points of Z2 is the set of tiles
of S(h, v) which intersect it. Let ∆1(a′1, b

′
1, µ
′
1) and

∆2(a′2, b
′
2, µ
′
2) be the two digital straight lines that are

the (h, v)-covering of D1 and D2 respectively. Theo-
rem 1 of [9] states that these two lines are standard and
gives their arithmetic inequalities:

−p1 +Q1
2 −Q1

1 + SI1 ≤ a′1X + b′1Y < Q1
3 −Q1

2 + SS1 (∆1)

−p2 +Q2
2 −Q2

1 + SI2 ≤ a′2X + b′2Y < Q2
3 −Q2

2 + SS2 (∆2)

where, for i ∈ {1, 2}, pi = a′i + b′i, g
i = gcd(aih, biv),

a′i =
aih

gi
, b′i =

biv

gi
, µi = δµ+ (2− i)(µ− δ),

for k = 1, 2, 3, Qik =
[
(k−1)µi+k(ai+bi)−1

gi

]
, Rik ={

(k−1)µi+k(ai+bi)−1
gi

}
and

SIi =

{
0 if Ri2 ≤ Ri1
1 otherwise SSi =

{
0 if Ri3 ≤ Ri2
1 otherwise

To simplify equations, we setAi = −pi+Qi2−Qi1+
SIi andBi = Qi3−Qi2+SSi for i = 1, 2. To find their
intersection we have thus to solve the following system
of equations:

A1 ≤ a′1X + b′1Y < B1

A2 ≤ a′2X + b′2Y < B2 (2)

Since a′1 and b′1 are relatively prime, there exist u1
and v1 such that a′1u1 + b′1v1 = 1. We introduce U

=
(
u1 −b′1
v1 a′1

)
and the change of coordinates

(
X ′

Y ′

)
=

U−1
(
X
Y

)
. Thus Equation (2) can be rewritten as:(

A1

A2

)
≤

(
1 0

u1a′2 + v1b′2 a′1b
′
2 − a′2b

′
1

)(
X′

Y ′

)
<

(
B1

B2

)
(3)

Let λ1 = u1a
′
2+v1b

′
2 and λ2 = a′1b

′
2−a′2b′1. The so-

lution of the intersection can be computed with a double
loop in X ′ and Y ′ and formulated as expressions given
below.

Theorem 2 The digital intersection of two digital
straight lines ∆1 and ∆2 of S(h, v) covering respec-
tively the two digital straight lines D1 and D2 of Z2 is
defined by:

A1 ≤ X ′ < B1 (4)

The expression of the boundaries of Y ′ depends on the
sign of λ2:

λ2 > 0,−
[
−A2 + λ1X

′

λ2

]
≤ Y ′ < −

[
−B2 + λ1X

′

λ2

]
(5)

λ2 < 0,

[
B2 − λ1X ′

λ2

]
+ 1 ≤ Y ′ <

[
A2 − λ1X ′

λ2

]
+ 1 (6)

Exemple. Let D(2, 3, 2) be a standard digital line of
slope 2

3 = [0, 1, 2]. For instance, suppose δ = 1
and (h, v) = (2, 2), Proposition 4 gives D1(3, 4, 3)
and D2(3, 5, 2). Their (2, 2)-covering is the two lines
∆1(3, 4,−2) and ∆2(3, 5,−3). We apply Theorem 2
to determine the set of points of their intersection.
Hence −2 ≤ X ′ < 5, since λ2 = 3 > 0, then the value
of Y ′ is given by the equation below:

−
[
3−X′

3

]
≤ Y ′ < −

[
−5−X′

3

]
(7)

Finally, we have applied the unimodular matrix U =(
3 −4
−2 3

)
on (X ′, Y ′) to get the final result given in

the table below and illustrated on Fig. 3.
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Figure 2. Intersection of D1(3, 4, 3) and
D2(3, 5, 2), their intersection is drawn by �.

Points of ∆1(3, 4,−2) ∩∆2(3, 5,−3)
X’ -2 -1 0 1
Y’ -1 0 -1 0 1 -1 0 1 0 1
X -2 -6 1 -3 -7 4 0 -4 3 -1
Y 1 4 -1 2 5 -3 0 3 -2 1
X’ 2 3 4
Y’ 0 1 2 0 1 2 1 2
X 6 2 -2 9 5 1 8 4
Y -4 -1 2 -6 -3 0 -5 -2

According to Lemma 1, the coordinates of the first
and the last points of the pattern P (i.e. a subset of
the main connected part S of the intersection of D1 and
D2) of D are (xf , yf ) = (1, 0) and (xl, yl) = (4,−2)
(see Figure 2). Let P ′ be a covering of P by the tiling
(h, v) = (2, 2), i.e. a subset of the main connected part
S′ of the intersection of ∆1 and ∆2 (S′ is a covering of
S by the same tiling). Therefore, the first and last points
of P ′ are (Xf , Yf ) = (0, 0) and (Xl, Yl) = (2,−1),
and every point of P ′ is shadowed in the table.

Let ∆ be a covering of D by the same tiling. We
have calculated the characteristics (a, b, µ) of ∆ that is
equal to (3,4,-5) by using Theorem 1 of [9]. Finally, us-
ing Algorithm SmartDSS of [9] to compute the char-
acteristics of P ′ that is some subset of a DSL ∆, given
a starting point (Xf , Yf ) and an ending point (Xl, Yl)
((Xf , Yf ), (Xl, Yl) ∈ ∆), and are equal to (1, 1, 0).
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