Tangent estimation along 3D digital curves

Michat Postolski***, Marcin Janaszewski**, Yukiko Kenmochi*, Jacques-Olivier Lachaud***
* Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, France
** Computer Engineering Department,Technical University of £odZ, Poland
“** Laboratoire de Mathématiques LAMA, Université de Savoie, France
{postolsm, y.kenmochi} @esiee.fr; janasz @kis.p.lodz.pl
jacques-olivier.lachaud @ univ-savoie.fr

Abstract

In this paper, we present a new three-dimensional
(3D) tangent estimator by extending the well-known
two-dimensional (2D) \-maximal segment tangent (\-
MST) estimator, which has very good theoretical and
practical behaviors. We show that our proposed esti-
mator keeps the same time complexity, accuracy and
experimental asymptotic behaviors as the original 2D
one.

1. Introduction

The accurate estimation of geometric parameters
such as tangent directions along a digital curve is an
essential step in many applications. In medical images,
3D digital curves are often obtained as the results of 3D
curvilinear skeletonisation process [2], and play a major
role in numerous purposes. For instance, in quantitative
analysis of human airway trees based on CT images, a
tangent direction at each point of the skeleton of the tree
is used to define accurately its cross section [11] which
allows to make reliable measurements. Different tan-
gent estimators have been already studied in the litera-
ture. In the framework of digital geometry, there exist
few studies on 3D digital curves yet while there are nu-
merous methods performed on 2D digital curves such
that each tangent is evaluated using a finite set of curve
points around the point of interest. The size of such a fi-
nite set of neighboring points is either fixed globally by
users [10, 12] or adopted by the local shape geometry
obtained by recognizing digital straight line segments
around the point of interest [8, 4]. Note that most of
the 2D methods do not work straightforwardly with 3D
digital curves, and they often have unexpected behavior
for some special configurations of curve points.

In this paper, we present a new 3D tangent estima-
tor which is an extension of the algorithm presented by
Lachaud et al. in [9], called \-MST, and originally de-
signed for estimating tangents on 2D digital contours.
It is a simple method based on maximal straight seg-
ments recognition [8] along digital contour, and has
very good properties such as linear computation com-
plexity and accurate results. Moreover, it has multi-
grid convergence proven in [9]. The main contribution
of this paper is to present a 3D version of this method
that maintains the same time complexity, accuracy and
asymptotic behavior; the latest is shown experimentally
on several space parametric curves.

2. Basic notions

In this section, we recall some basic notions and
properties related to 3D digital curves, which are nec-
essary to understand the sequel of the paper. More ex-
tensive reviews are provided in [1, 5, 9].

Let Z be the set of integers, Z, the set of non-
negative integers, and R the set of strictly positive real
values. We denote by Z", where n € Z, the discrete
grid of dimension n. In this paper, we focus on 2D and
3D cases, thus n = 2 or 3. Any point of Z" is defined
by an n-tuple (x1, ..., x,) with x; € Z, representing the
coordinates in the discrete space. The number of points
in X C Z", i.e. the cardinality of X, is denoted by | X|.
Letx = (21,...,x,) and y = (y1, ..., yn) forz,y € 2.
Then, the function d? : Z" x Z" — 7, which is the
squared Euclidean distance between z and y, is defined
by d*(z,y) = > i, (z; — y;)*. Given a point z € Z3,
the three adjacency sets are defined:

To(z) = {y € Z° | d*(z,y) < 1}, (1)
Tig(z) ={y € Z° | d*(x,y) < 2}, (2)
Tog(x) = {y € Z° | d*(x,y) < 3}, 3)



so that a point y is a k-neighbor of z if y € Ty (z).
We may now define 3D digital curves [1].

Definition 1 Any set C C 73 such that |C| > 2 is
called a 3D digital k-curve, or simply called k-curve,
iff there are exactly two points p,q € C such that
Tk(p) N C| = [Tk(q) N C| = 2 and for any x €
C\ {p, ¢}, we have [Ty (z) N C| = 3.

Our tangent estimator on a k-curve relies on the fol-
lowing arithmetical definitions of digital lines [1, 5]. We
first give the definition of 2D digital line as any 3D dig-
ital line is constructed from two projected 2D digital
lines.

Definition 2 A 2D digital line with direction vector
(b,a) € Z2, shift u and thickness e, where a,j € 7
and b, e € Z, such that gcd(a,b) = 1, is defined as the
set of points (z,1) € 72 which satisfy the diophantine
inequality:

pw<ar—by < pu+e,

and denoted by Ds(a, b, u, e).

Definition 3 A 3D digital line with main vector
(a,b,c) € Z3 such that |a| > |b| > ¢, shifts u, pt/, and
thicknesses e, €', where a,b, i, ' € Z, c,e,e' € Z,, is
defined as the set of points (z,y, z) € Z> which satisfy
the diophantine inequalities:

o < cr—az<pu-+e, @
po< br—ay<p+¢€, 5)

and denoted by Ds(a, b, c, u, 1, e, e’).

The definition for coefficients ordered in different way
from |a| > |b|] > ¢ may be obtained by permuting
x,y, z as well as their coefficients.

It should be mentioned that the thicknesses e and ¢’
control the adjacency relation of a 3D digital line [1].
Hereafter we use one of the following three settings; a
3D digital line D3 (a, b, ¢, u, i’ e, €’) is:

e a6-curveif we sete = |a| + cand €’ = |a| + |b),

e a 18-curve if we set either e = |a|+ cand e’ = |a],
ore=|a|and ¢’ = |a| + |b

e a26-curve if we sete = e’ = |al.

From Definition 1, we easily see that any k-curve
C has a totally ordered point set (x1,z2,...,z|c|) for
all z; € C, so that we can define a set of consecutive
points of C' from the i-th point to the j-th point, de-
noted by C; ;. With this definition of a part of a k-curve,
we can define the following two notions, digital straight
segment and maximal segment, which are originally de-
fined for 2D [5, 8, 9] and can be extended to 3D.

Definition 4 Given a k-curve C, a set of its consecutive
points C; j where 1 < i < j < |C|is said to be a digital
straight segment (or S(i, j)) iff there exists a digital line
D3 containing all the points of C; ;.

The next property [1] is led by Definitions 3 and 4.

Property 1 S(i, j) is verified iff two of the three projec-
tions of C; ; on the basic planes Oxy, Oxz and Oy z
are 2D straight line segments.

Definition 5 Any subset C; j of C' is called a maximal
segment iff S(i,7) and =S (3, j + 1) and -S(i — 1, j).

The following property is derived by using the notion of
the maximality of saturated set presented in [7].

Property 2 For any k-curve C, there is a unique set M
of its maximal segments, called the tangential cover.

3. 3D tangential cover construction

The main part of the \-MST estimator consists in
obtaining the tangential cover M of a given k-curve
C, similarly to the original 2D estimator [9]. Thanks
to Property 1, we give Algorithm 1, which finds the
set of maximal segments by recognizing two 2D digi-
tal straight segments of the projections of C'. Figure 1
illustrates an example of C' and its tangential cover M.

Algorithm 1 Tangential Cover (Input C; Output M)

0. M«

02. N « empty queue

03. &£ «— NULL

04. foreach point p; € C do

06. Push_element(M;, N)

07.  foreach element M, in N do

08. s<—20

09. If isDSS_XY(M; U {p;}) then s — s+ 1 end
10. If isDSS_XZ(M; U {p;}) then s < s+ 1 end
11. If isDSS_YZ(M; U {p;}) then s — s + 1 end
12. If s > 2 then M; — M; U {p;} end

13. else If s < 2 then

14, If £(i) is NULL then

15. E(i)— 3]

16. M — MU M;

17. end

18. Remove_first_element(\)

19. end

20. end

21. return M




Remark: In Algorithm 1 we denote by E(i) the ta-
ble which stores the first point of each maximal segment
ending at the i-th point.

Algorithm 1 performs two loops. The first one starts
from line 04 and makes |C'| iterations. The next loop,
nested in the first one, starts from line 07 and in worst
case performs || iterations, where N is a set of all
maximal segments covering an actual point. The size of
N is bounded by a finite integer value; in fact |N| < 22
on average in 2D [3]. Thus, the presented algorithm is
linear in number of points of the curve C' if the incre-
mental procedure “isDSS” in steps from 9 to 11 has a
constant time complexity. Indeed, for this procedure,
we can use one of the efficient methods for 2D digi-
tal straight line recognition in constant complexity, for
example used in [6], after projecting the current set of
points on the planes Oxy, Oxz, Oy z.

Figure 1. A 3D digital curve and its tan-
gential cover calculated by Algorithm 1.

4. 3D \-MST estimator

Similarly to the original 2D estimator [9], the 3D
estimator at a point = of a k-curve C' should depend
on the set of all maximal segments going through p.
Let us number all the maximal segments of the tan-
gential cover M of C' by increasing indices such that
M; € M fori = 1,2,.... Then, such a set is defined
by P(z) = {M; € M,z € M,}, called the pencil of
maximal segments around x. As any point x of a k-
curve C' is covered by at least one maximal segment,
we have the next property similarly to the 2D one [7].

Property 3 The pencil of maximal segments P(x) of
any point x of a k-curve C'is never empty.

In addition, as noted in [8] for 2D cases, several suc-
cessive points may have the same pencil, and this is also

observed for 3D cases. Therefore, the tangent estimator
should take also into account the position of the point
p within the pencil. More specifically, each point p has
the eccentricity with respect to each maximal segment.
Let us denote by L; = ||n; — m;||; the length of each
M; = Cp,n; C C. Then, the eccentricity e;(x) of a
point x with respect to a maximal segment M is its rel-
ative position between the extremities of M; such that

=mi o if M; € P(x),

otherwise.
The tangent direction is thus estimated by a combina-
tion of the directions of maximal segments weighted by
a function of the corresponding eccentricity. The func-
tion A maps from [0, 1] to Ry with A(0) = A(1) =0
and A\ > 0 elsewhere. In this paper, for example, a C2
function 64(—x% + 32° — 32 + 2?) is used.

(6)

Definition 6 The 3D \-MST direction t(z) at point x
of a k-curve C' is defined as a weighted combination
of the vectors t; of the covering maximal segments M;
such that

b{a) = ZMEPD Nei(a)
ZMieP(m) Alei(z))

From Property 3 and the nature of the eccentricity, this
value is always defined and computed with a linear time
complexity.

(7

5. Experimental validation

To evaluate the multigrid convergence behavior of
the 3D A-MST estimator, we experiment it on two
families of 3D shapes (see Figure 2(a,b)). We measure
the error between the expected theoretical tangent and
the estimated one with increasing resolutions. On
Figure 2(c,d), we can see how the root mean square
error (RMSE) evolves. On Figure 2(e), expected and
estimated tangents to the helix in a fixed resolution
along its principal x axis are shown. Different kinds
of error such as maximal error and standard deviation
were also evaluated. Results for the helix curve are
presented in the table below.

Helix

Resolution 10 30 70 100

StdDev([X — Y]) | 0.04 | 0.02 | 0.007 | 0.006
Max(|X —Y|) | 02 | 0.13 | 0.079 | 0.047

6. Conclusions

We have proposed a new tangent estimator for 3D
digital curves which is an extension of the 2D A-MST



RMSE

RMSE

tangent

sa8838E2ER

(b)

(a)
Multigrid Convergence

0.025 T T

0.015

0.01

0.005

Lambda-MSTD ——

10 20 30 40 50 60 70 80 90
Resolution

(c)

Multigrid Convergence

100

0.035 T T

0.025

0.015

0.005

Lambda-MSTD ——

10 20 30 40 50 60 70 80 90
Resolution

(d)

Tangent direction, x axis, resolution 70

100

T
b ical tangent

mated tangent
0.8

06
04

02|

+

100 120 140 160
point index

(e)

Figure 2. (a,b): two 3D parametric curves
(Helix and Star). (c,d): RMSE evolution of
(a,b). (e): theoretical and estimated tan-
gents of (a)
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estimator. The obtained results show that in our 3D A-
MST algorithm, we keep the same time complexity and
accuracy as the original algorithm. Its asymptotic be-
havior evaluated experimentally on several space para-
metric curves is promising, while it needs a theoretical
proof for 3D case that we work on currently.

The presented algorithm is planed to be used in a
practical application such as a module of the system for
quantitative human airway tree analysis [11].
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