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Abstract

Topological invariants are extremely useful in many applications related to digital imaging and geometric modeling,

and homology is a classical one, which has not yet been fully explored in image applications. We present an algorithm

that computes the whole homology of an object of arbitrary dimension: Betti numbers, torsion coefficients and

generators. Effective implementation of this algorithm has been realized in order to perform experimentations. Results

on classical shapes in algebraic topology and on discrete objects are presented and discussed.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In digital image analysis, shape invariants are useful

for classification, indexation, or, more recently, shape

description [1]. They can be used in object simplification

and object thinning. In solid modeling, shape invariants

ensure the consistency of constructive operations.

Computing topological invariants of objects has thus a

significant impact in these domains. The fundamental

group is an invariant that carries most of the topological

information about an object. It has been studied by

many authors [2–5] in the image analysis field. But the

comparison of such groups is highly related to undecid-

able problems [4]. Many authors have proposed algo-

rithms to compute the Euler characteristic (some of

them summarized in [6]), but it is a simpler and less

expressive topological invariant. Other approaches

compute the Betti numbers [7] of embedded objects.
e front matter r 2005 Elsevier Ltd. All rights reserve
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We focus here on homology groups, which are known

to be computable in finite dimensions, and which have a

good topological characterization power at least in low

dimensions. For instance Euler characteristic and Betti

numbers are straightforwardly deduced from homology

groups. These groups are also the abelianized of

homotopy groups [8].

Several approaches can be found into the literature;

Kaczynski et al. [9] proposed to compute homology

groups with a sequence of reductions. The idea is to

derive a new object with less cells while preserving

homology at each step of the transformation. During

the computations, to ensure invertible coefficients,

Kaczynski et al. choose them in a field. González-Dı́az

and Real [10] recently proposed an algorithm to compute

cohomology information on digital objects that are

subsets of the 3D body-centered cubic grid. They first

construct a simplicial complex with identical topology.

The cohomology is obtained by chain contraction in two

passes, a thinning and an incremental algebraic thinning.

All coefficients are in Z=2Z (also a field).

The preceding approaches are interesting when deal-

ing with embedded objects in 2 dimension or 3

dimension. Homology over a field is then enough to
d.
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characterize shapes, since objects have no torsion. On

the contrary, we choose a more generic approach, valid

for arbitrary dimensions and shapes. We address the

problem of computing the whole homology over the

coefficient domain Z (a ring, not a field). We not only

compute the homology groups but also their generators,

to delineate topological holes on shapes. For instance,

the generators of the homology group of dimension 1

are connectivity lines of the shape: cutting along such

lines does not divide the shape into two parts.

Even if elements of groups theory are usually known

by most of the readers, their use in topology, which is

the purpose of algebraic topology, is generally less

known. Besides, if homology is a main classical tool in

algebraic topology, computation of homology group

generators is not so widely discussed in the literature.

Even in recent specialized works [11,8], these computa-

tions are not explicitly considered.

So one contribution of this work is to report some

recent works and bring these results to the imagery

community. We also combine these works to classical

results in homology theory to compute the homology

groups (Betti numbers and torsion coefficients) and their

generators, and finally we effectively implement these

algorithms with numerous optimizations.

In the first part of the paper we recall classical

definitions in homology theory. We choose here

simplicial homology since it is widely used in geometric

modeling and is straightforwardly applicable to digital

objects. After that, we present our approach for

computing homology groups: modified Smith Normal

Form (mSNF) to compute generators and integer

computations performed with a modulo.

Note that this approach is not only valid for simplicial

structures but also for all combinatorial objects which

realization is a CW-complex [12], e.g. cubical complexes

or discrete objects. Lastly, we show some experiments,

both on simplicial and discrete objects, and list some

perspectives to this work.
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2. Simplicial homology

Shapes are classically modeled with a cellular sub-

division. Several combinatorial structures may represent

such a subdivision. We choose here semi-simplicial sets,

which can represent indifferently manifold or non-

manifold objects. This structure is a subclass of

simplicial sets, a structure studied in algebraic topology

[13,14].

2.1. Semi-simplicial set
S 2(c)

Fig. 1. In (a) and (b), examples of semi-simplicial sets. In (c),

positive orientation of the simplices of (b).
Definition (May [13]). A semi-simplicial set S ¼

ðK ; ðdq

i ÞÞ is a graded family of sets K ¼ ðKq
Þq2N together
with maps d
q

i : Kq
! Kq�1 for i ¼ 0; . . . ; q, which satisfy

the following identity: 8s 2 Kq; dq�1

j ðd
q

i ðsÞÞ ¼ d
q�1

i�1 ðd
q

j ðsÞÞ
if joi.

The elements of Kq are called q-simplices. The d
q

i are

called boundary operators (the subscripts q will generally

be omitted later for clarity). Simplices are glued together

consistently with these operators (see Figs. 1(a) and (b)

for two examples).

Semi-simplicial sets are clearly adapted to the

constructive operations of solid modeling [15]. They

are also well suited to digital imagery [16]. To determine

a semi-simplicial set that represents a given digital

object, the first step is to construct a simplicial analog.

One method is proposed in [10]. The second step is to

number the vertexes of the simplicial analog; the

boundary maps follow directly [17].

We can now introduce homology groups in an

intuitive way. All objects are assumed to be finite. Note

that the homology theory is applicable on most

combinatorial structures. Some of our experiments have

actually been conducted on cubical structures.

2.2. Chain, boundary homomorphism, chain complex

In a first step, we define group structures on semi-

simplicial sets. A p-chain in Kp is a linear combination of

p-simplices with integer coefficients. More formally, any

p-chain is written uniquely as a finite sum
Pnp

i¼1a
p
i s

p
i ,

where np is the cardinal of Kp
¼ fsp

1; . . . ;s
p
np
g, and for all
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i, ap
i is an integer. The addition over p-chains is defined

simply by adding coefficients simplex by simplex. The

resulting groups are denoted by Cp. For all p, the set of

p-simplicies Kp forms a basis for Cp (see [12, p. 28]).

A p-chain is a purely formal construction. The

coefficients ai have generally not a geometric interpreta-

tion, except for the coefficients 1 and �1. In this case

1 � s means that we consider the simplex s with its

orientation and �1 � s means that we consider the

simplex s with its opposite orientation. This is consistent

with the fact that simplices can be equipped with two

orientations, one considered positive and the other

negative. Fig. 1(c) displays the positive orientations of

the simplices of Fig. 1(b). A formal definition of simplex

orientation is available in classical algebraic topology

books [12,8].

In a second step, we relate chain groups of successive

dimensions with homomorphisms called boundary

operators.

Definition. For all p40, the boundary of a p-simplex

sp, denoted by qpðspÞ, is the ðp� 1Þ-chainPp

i¼0ð�1Þ
i
d iðsÞ, a 0-simplex have an empty boundary.

The boundary is extended as an homomorphism from

Cp to Cp�1, meaning for any p-chain c ¼
Pnp

i¼1a
p
i s

p
i , its

boundary qpðcÞ is equal to
Pnp

i¼1a
p
i qpðs

p
i Þ.

Usually, when no confusion may arise, we simply

write qðcÞ for the boundary of a p-chain c. For example,

in Fig. 1c, we have qðF 1Þ ¼ A1 � A2 þ A3 and we can

verify that qðqðF 1ÞÞ ¼ qðA1 � A2 þ A3Þ ¼ 0.

We have just constructed a sequence of chain groups

Cp together with homomorphisms qp, such that

Cn�!
qn

Cn�1�!
qn�1
� � � �!

q1
C0�!

q0
0. One can check that

qp�1ðqpðcÞÞ ¼ 0 for all p-chains. This sequence is called a

free chain complex.

2.3. Cycle, boundary, hole

Homology groups of a combinatorial object are

derived from specific subgroups of chains groups.

All p-chains whose boundary is empty are called p-

cycles. For example, in Fig. 1(c), the 1-chains A1 � A2 þ

A3 and A1 þ A4 are 1-cycles. The set of p-cycles is a

subgroup of Cp, denoted by Zp.

Some p-chains are the boundary of a ðpþ 1Þ-chain.

They are called p-boundaries. For example, in Fig. 1(c),

the 1-chain A1 � A2 þ A3 is the boundary of the 2-chain

F . The set of p-boundaries form a subgroup of Cp,

denoted by Bp. Since 8c 2 Cp; qp�1ðqpðcÞÞ ¼ 0, we have

Bp � Zp � Cp.

A p-dimensional hole is a p-cycle which is not a

p-boundary. For example, in Fig. 1(c), the 1-cycle

z1 ¼ A1 þ A4 is not a boundary. We define an equiva-

lence relation in the group of p-cycles as follows: two

p-cycles s and t are in the same equivalence class iff there
exists a chain c with s ¼ tþ qpþ1ðcÞ. They are then said

to be homologous. In particular, when s ¼ qpþ1ðcÞ

then s is homologous to 0. The set of cycles is then

partitioned by the homology relation, according to the

hole they surround. Two cycles in the same equivalence

class surround the same hole. The set of p-boundaries is

the 0-equivalence class. For example, the cycle z2 ¼

A2 � A3 þ A4 is in the z1 equivalence class because

z1 ¼ z2 þ q2ðF 1Þ.

2.4. Homology groups

In any dimension p, the homology group Hp is de-

fined as the group of the equivalent classes for the

homology relation. It is exactly the quotient group of the

p-cycles by the p-boundaries, Hp ¼ Zp=Bp. Homology

groups are known to be topological invariants, mean-

ing homeomorphic shapes have isomorphic homology

groups.

For all p, there exists a finite number of elements of

Hp from which we can deduce all Hp elements, thus Hp

is called finitely generated. So, the group Hp verifies the

fundamental theorem of finitely generated abelian

groups [12], and Hp is isomorphic to a direct sum:

Z� � � � � Z|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
bp

�Z=tp
1Z� � � � � Z=tp

nZ.

We denote by bp the number of occurrences of Z in

this direct sum: it is the number of elements of Hp with

infinite order and is called the pth Betti number.

The numbers t
p
1; . . . ; t

p
n are called the torsion coeffi-

cients of Hp. To each group Z of Hp is associated a set of

p-dimensional homologous cycles: they surround the

same p-dimensional topological hole and are not the

boundary of any pþ 1-chain. It is the same for each

group Z=tp
i Z: the associated homologous cycles are

not the boundary of any pþ 1-chain. However, when

taken t
p
i times, they become the boundary of some pþ 1-

chain. An example is the 1-cycle A2 in Fig. 2, which

becomes a boundary only when taken two times:

2A2 ¼ qðF 1 þ F 2Þ.
3. Computation of homology groups and generators

In this section, we first recall Agoston’s algorithm

principles, which allow to compute homology generators

by reduction of incidence matrices to their mSNF. We

then discuss about implementation problems linked to

SNF computation. We thus propose some optimizations

of mSNF which benefit both from a theoretical result

obtained by Storjohann and from some improvements

proposed by Dumas. The algorithm computes Betti

numbers, torsion coefficients, and a set of ‘‘moduli

generators’’.
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3.1. Modified Smith normal of boundary homomorphism

Information on homology groups may be deduced

from matrix representations of boundary homomorph-

isms. A natural basis of the p-chains group of a chain

complex is the one made of all its p-simplices, i.e. Kp. In

the following, the matrix Epþ1, called ðpþ 1Þth incidence

matrix, represents the homomorphism qpþ1 relatively to

the canonical bases Kp (rows) and Kpþ1 (columns). Each

column in Epþ1 expresses the boundary of one pþ 1-

simplex, decomposed on the base of p-simplices.

There exists bases in which any homomorphism has a

very specific matrix form, the so-called Smith Normal Form

(SNF). Cairns [18] proved that it is possible to simulta-

neously choose bases for each group of p-chains such that

the matrix Np representing each boundary operator

relatively to these bases is in a normal form quite similar
Table 1

Modified SNF of boundary homomorphism qpþ1

ðpþ 1Þ-Cycles Weak boundaries a

apþ1
1

� � � apþ1
gpþ1

b
pþ1

1
� � � b

pþ1

bpþ1
cpþ1
1

� � � cpþ1
rp

ap
1 lp

gp
0

..

. 0 0 . .
.

ap
rp

0 lp

gp�r

ap
rpþ1

..

. 0 0 0

ap
gp

b
p

1

..

. 0 0 0

b
p

bp

cp
1

..

. 0 0 0

cp
gp�1
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Fig. 2. Klein bottle. (a) Semi-simplicial and (b) geometric

representation.
to SNF, we call it the mSNF. A SNF (resp. mSNF) is a

matrix full of 00s except for an upper left (resp. right) square

submatrix which is diagonal with increasing coefficients:

diagðl1; . . . ; llÞ such that each li is greater than 1 and

divides each lj, for j4i. Moreover, Cairns explains how to

deduce a set of generators of the homology group Hp

directly from the matrix Npþ1. Npþ1 is shown in Table 1.

The set fbp

1; . . . ; b
p

bp
g generates the free part of Hp: they

are p-cycles when read as a column in Np and they have

no boundary antecedent when read as a row in Npþ1.

The set fap
1; . . . ; a

p
gp
g generates the torsion part of Hp:

they are p-cycles when read as a column in Np and they

must be multiplied by the lp

i to have a boundary

antecedent when read as a row in Npþ1.

Agoston [19] proposed an algorithm to compute all

matrices Np and keep tracks of changes of bases. The

idea is to compute successively all matrices Np from 0 to

the maximal index of the desired homology groups.

Each homomorphism is successively expressed in four

pairs of bases as in Table 2.

At the end of the whole computation, each matrix Np

represents the homomorphisms qp relatively to bases Gp

and Gpþ1 such that G0
¼ V�10 K0, G1

¼ U 1V
�1
1 K1; . . . ;

Gn�1
¼ Un�1V

�1
n�1K

n�1, Gn
¼ UnKn where the matrices Ui

and V i are transfer matrices.

3.2. Implementation issues

Algorithms for computing the SNF or the presented

modified version are well known (e.g. see [19,12]). But
ntecedents

cpþ1
rpþ1

� � � cpþ1
gp

Weak boundaries

0

pþ1

1 0

. .
.

0 1

Cycles but not weak boundaries

0

0
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Table 2

Expression of the homomorphisms

Step Bases ½ �n½ � and matrix of qp Bases ½ �n½ � and matrix of qpþ1

0. Input from iteration p ½ðVp�1U
�1
p�1Þ

�1
Kp�1
�n½UpKp

�

(mSNF) Np ¼ Vp�1U
�1
p�1EpUp

1. Incidence matrix ½Kp
�n½Kpþ1

�

of qpþ1 (incidence) Epþ1

2. Left-multiply Epþ1 ½ðU�1p Þ
�1

Kp
�n½Kpþ1

�

by U�1
p

E0
pþ1 ¼ U�1

p
Epþ1

3. Compute the mSNF ½ðV pU�1p Þ
�1

Kp
�n½Upþ1K

pþ1
�

Npþ1 of qpþ1 from E 0pþ1 (mSNF) Npþ1 ¼ VpU�1p Epþ1Upþ1

4. Right-multiply Np ½ðV p�1U
�1
p�1Þ

�1
Kp�1
�n½UpV�1p Kp

�

by V�1p NpV�1p (same as Np)
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major difficulties arise when trying to program them

effectively. These problems are mainly linked to the high

computational cost of the algorithms and to the possible

appearance of very big integers during the process. The

algorithm is namely valid as long as integer computations

have an arbitrary precision. With standard 32 or 64 bit

integers, the algorithm is no more accurate. In theory, this

problem arises even in small chain complexes. Hafner et al.

[20] have exhibited a 10� 10 incidence matrix, with no

value greater than 10, that induces huge intermediate

integer numbers in SNF computation.

Deterministic and stochastic algorithms have been

proposed to tackle these difficulties. A deterministic

method proposed by Dumas et al. [21] consists mainly in

ordering rows of incidence matrices by increasing pivot.

His method also uses a result proved by Storjohann [22].

This result states that it is possible to choose an integer p

such that the SNF is obtained when reducing incidence

matrix with moduli p operations. More precisely, p is

twice the matrix determinant value. As a particular case,

when no torsion arises, the determinant value equals 1,

which means that all operations can be done moduli 2.

Stochastic algorithms have, for example, been proposed

by Giesbrecht et al. [23]. They are generally more

efficient than deterministic ones on sparse matrices, but

are quite equivalent on dense matrices. They are,

however, restricted to the SNF computation and do

not extract generators.

3.3. Effective implementation contributions

It should be noted that the previously mentioned

methods compute Betti numbers and torsion coefficients

by transforming incidence matrices in a way that the

homology groups remain isomorphic. But nothing

ensures that generators are still valid. With our

implementation we propose to explore this last issue.

As far as we know, only Agoston [19] proposed an
algorithm to compute all homology information (in-

cluding generators), but its algorithm does not address

the difficulties mentioned above.

The main steps of our implemented algorithm are

described below. All operations made on the incidence

matrix implies changes of bases that are stored in suitable

matrices. Hence matrices multiplications are avoided in

Agoston’s method by applying each column operations of

the incidence matrix Ep to corresponding rows of Epþ1,

changes of bases are hence applied step by step.
(1)
 (Prepare matrix for Dumas’s algorithm.) The rows of

the incidence matrix are ordered by increasing pivot.
(2)
 (Same as Dumas.) The matrix is put in echelon form

with as many pivots at 1 as possible by

� first pass: only elementary row operations are

applied,

� second pass: all rows are reduced according to

their gcd.

� the matrix is now in triangular form: deduce

submatrix determinant (which is also the product

of the invariant factors).

� All further integer operations are made modulo

twice this determinant. It has indeed been proved

(for example by Storjohann) that such a compu-

tation using an appropriate modulo preserves the

homology information.
(3)
 (Different from Dumas.) Elementary rows and

columns operations are performed to compute the

modified SNF on the submatrix with non-zero rows.

Changes of bases are traced. Agoston’s algorithm is

used to compute the generators, which are ‘‘moduli

generators’’ in the sense they have been partly

computed with a modulo.
Different versions are derived from this general

algorithm. One version uses Agoston’s algorithm
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Fig. 4. Detecting cavities with homology generators of dimen-
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(step 3) with a chosen modulo. Another version

implement Dumas’ method without using moduli. So

we compute all homology information of semi-simplicial

sets: Betti number and torsion coefficients of all

homology groups, sets of generators and sets of ‘‘moduli

generators’’.

Also, going one step further, based on theoretical

result from cellular homology [8] we try our implemen-

tation on cubical sets, as shown in Fig. 4.

sion 2 (see text).
4. Experimentations

We carry further our preliminary work presented in

[24] with several new experimental validations of our

work: (i) we not only test our homology computation

technique on simplicial objects, but also on digital

objects; (ii) we compare ‘‘modulo’’ generators with

classical non-modulo generators; (iii) we are able to

delineate holes on surfaces but also cavities within

volumes; (iv) we study the sparseness of incidence matrix

during reduction and derive a sparse implementation of

our technique that decreases the time complexity by an

order of magnitude.

Our approach is validated with object classically

encountered when testing topological invariants (see

Fig. 3) and also with discrete objects (see Fig. 4). For

each shape, Betti numbers and torsion coefficients are

extracted from the modified SNF. The generators are

read in the matrices Gi. With this information, we are

able to delineate each hole of the complex.

Fig. 3 shows the classical shapes and the correspond-

ing generators. For the torus, we obtain two cycles, one

for each 1-dimensional hole (H1ðTÞ ffi Z� Z). Accord-

ing to the topological nature of the Moebius strip

(homotopic to a circle), we found one cycle

(H1ðMÞ ffi Z). For the Klein bottle, two cycles are

found, one for the free part of the homology and one for

the torsion part (H1ðKÞ ffi Z� Z=2Z).
We have computed these generators using the

previously described method with moduli operations.

In Fig. 3 each object has approximately 2000 triangles.

We observe that the ‘‘moduli’’ generators are homo-

logous to those computed with arbitrary precision

integers. We guess that this property can be justified in
Fig. 3. Examples of homology generators on some classical

surfaces.
a strict mathematical way but as far as we know there is

no indication to invalid or to confirm this property.

Usual mathematical approaches are not really interested

by the effective representation of the generators, which

explains the lack of theoretical results on ‘‘moduli’’

generators.

We have also detected cavities on simple discrete

objects. Fig. 4 shows some results using different

approaches. Fig. 4(a) is the initial object on which we

have computed homology generators. This object is a 3-

dimensional topological ball, from which a small 3-ball

has been removed. This object has one element for H2,

which corresponds to its cavity. We know that this

object has no torsion part, so its generators could be

computed using moduli 2 operations. Fig. 4(b) illustrates

the moduli 2 generator computed by Agoston’s method.

Fig. 4(c) shows the generator obtained using Dumas’

rows ordering of incidence matrix without moduli. One

can see that the generator obtained with this pre-

computation modification, is closer to the real cavity.

We have observed this phenomena in many examples,

and we think that it is mainly due to the rows ordering.

The generator of Fig. 4(d) has been computed using

moduli 2 operations and Dumas’ row ordering. This

seems to confirm that a preliminary ordering of rows

contributes to obtain generators closer to the intuitive

ones.

We have also studied the sparseness of the matrix

during its reduction over many examples. In all these

examples, we observed that the filling rate of the matrix

does not change during its reduction to mSNF. More-

over, incidence matrices obtained from geometric

objects are very sparse. This fact is surely due to the

main structure of geometric objects we use, which are

quite ‘‘regular’’ objects. As an example, for a cube made

of 64 voxels and 240 surfels, the size of incidence matrix

E2 is 240� 64, on which each column has only six non-

zero elements (each voxel has exactly six surfels in its

boundary); in other words only 2.5% of the incidence

matrix are non-zero elements. As matrices operations

have huge computation time on huge matrices, comput-

ing homology groups using sparse matrices contributes

to optimize running time algorithm. Fig. 5 shows

computation time of homology generators using
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Fig. 5. Time complexity for computing homology generators

with classical and sparse matrices implementation: (a) plot of

the computation time in ms wrt the number of cells with a linear

scale; (b) same plot in log-scale with a comparison with the

curves x2 and x5=3 to estimate complexity.
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classical matrices, and sparse matrices. For the objects

we tested, the algorithm main complexity seems to be

interestingly improved, dropping from Oðx2Þ to Oðx5=3Þ if

x is the number of cells.
5. Conclusion

To conclude, we have presented and implemented a

technique to compute the whole homology of arbitrary

finite shapes. We have addressed the problem of

extracting generators of the homology groups with a

modulo. We have also proposed some computing

optimizations, using both Dumas and Agoston algo-

rithms, together with moduli operations. Experiments

have been presented, concerning sparseness, huge

integer occurring, moduli generators and running time

using sparse matrices. Future works will focus on

exhibiting the theoretical link between moduli genera-

tors and Z-generators. We also intend to study singular

homology for hierarchical objects. Indeed hierarchical

representations of discrete objects are thus more

compact than simplicial or cubical ones. This would

allow to compute more effectively homology generators

on geometric objects, and at least on very huge objects.
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