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Abstra
t. Topologi
al invariants are extremely useful in many appli
a-

tions related to digital imaging and geometri
 modelling, and homology

is a 
lassi
al one. We present an algorithm that 
omputes the whole ho-

mology of an obje
t of arbitrary dimension: Betti numbers, torsion 
oef-

�
ients and generators. Results on 
lassi
al shapes in algebrai
 topology

are presented and dis
ussed.

1 Introdu
tion

In digital image analysis, shape invariants are useful for 
lassi�
ation, indexa-

tion, or, more re
ently, shape des
ription [ACZ04℄. They 
an be used in obje
t

simpli�
ation and obje
t thinning. In solid modeling, shape invariants ensure

the 
onsisten
y of 
onstru
tive operations. Computing topologi
al invariants of

obje
ts has thus a signi�
ant impa
t in these domains. The fundamental group is

an invariant that 
arries most of the topologi
al information about an obje
t. It

has been studied by many authors [Kon89,Box99,Mal01,ADFQ03℄ in the image

analysis �eld. But the 
omparison of su
h groups is highly related to unde
idable

problems [Mal01℄. Many authors have proposed algorithms to 
ompute the Euler


hara
teristi
 (some of them summarized in [KR89℄), but it is a simpler and less

expressive topologi
al invariant. Other approa
hes 
ompute the Betti numbers

[DE95℄ of embedded obje
ts.

We fo
us here on homology groups, whi
h are known to be 
omputable in

�nite dimensions, and whi
h have a good topologi
al 
hara
terization power

at least in low dimensions. We not only 
ompute these groups but also their

generators, to delineate the topologi
al holes on the shapes. For instan
e, the

generators of the homology group of dimension 1 are 
onne
tivity lines of the

shape: 
utting along su
h lines does not divide the shape into two parts. The


ontributions of this work are: (i) we report re
ent works in 
omputational group

theory and bring these results to the imagery 
ommunity, (ii) we 
ombine these

works to 
lassi
al results in homology theory to 
ompute the homology groups

(Betti numbers and torsion) and their generators, (iii) we e�e
tively implement

these algorithms with numerous optimizations.
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Fig. 1. On (a) and (b), examples of semi-simpli
ial sets. On (
), positive orientation of

the simpli
es of (b).

In the �rst part of the paper we re
all 
lassi
al de�nitions in homology theory.

We 
hoose here simpli
ial homology sin
e it is widely used in geometri
 modeling

and is straightforwardly appli
able to digital obje
ts. We then present related

works. After that, we present our approa
h for 
omputing homology groups:

Smith Normal Form (SNF) of the boundary homomorphisms, modi�ed SNF to


ompute generators, integer 
omputations performed with a modulo. Lastly, we

show some experiments and list some perspe
tives to this work.

2 Simpli
ial homology

Semi-simpli
ial set. Shapes are 
lassi
ally modeled with a 
ellular subdivi-

sion. Several 
ombinatorial stru
tures may represent su
h a subdivision. We


hoose here semi-simpli
ial sets, whi
h 
an represent indi�erently manifold or

non-manifold obje
ts. This stru
ture is a sub
lass of simpli
ial sets, a stru
ture

studied in algebrai
 topology [May67,Cur71℄.

De�nition 1. [May67℄ A semi-simpli
ial set S = (K; (d

q

i

)) is a graded family

of sets K = (K

q

)

q2N

together with maps d

q

i

: K

q

! K

q�1

for i = 0; : : : ; q, whi
h

satisfy the following identity: 8� 2 K

q

; d

q�1

j

(d

q

i

(�)) = d

q�1

i�1

(d

q

j

(�)) if j < i.

The elements of K

q

are 
alled q�simpli
es. The d

q

i

are 
alled boundary oper-

ators (the subs
ripts q will generally be dropped later for 
larity). Simpli
es are

glued together 
onsistently with these operators (see Fig 1a-b for two examples).

Semi-simpli
ial sets are 
learly adapted to the 
onstru
tive operations of

solid modeling [LL95℄. They are also well suited to digital imagery [DG03℄. To

determine a semi-simpli
ial set that represents a given digital obje
t, the �rst

step is to 
onstru
t a simpli
ial analog. One method is proposed in [GDR03℄ (see



Se
tion 3). The se
ond step is to number the verti
es of the simpli
ial analog;

the boundary maps follow dire
tly [LE93℄.

We 
an now introdu
e homology groups in an intuitive way. All obje
ts are

assumed to be �nite. Note that the homology theory is appli
able on most 
om-

binatorial stru
tures.

Chain, boundary homomorphism, 
hain 
omplex. In a �rst step, we de-

�ne group stru
tures on semi-simpli
ial sets. A p-
hain in K

p

is a linear 
om-

bination of p-simpli
es with integer 
oeÆ
ients. More formally, any p�
hain

is written uniquely as a �nite sum

P

n

p

i=1

�

p

i

�

p

i

, where n

p

is the 
ardinal of

K

p

= f�

p

1

; � � � ; �

p

n

p

g, and for all i, �

p

i

is an integer. The addition over p-
hains is

de�ned simply by adding 
oeÆ
ients simplex by simplex. The resulting groups

are denoted by C

p

. For all p, K

p

forms a basis for C

p

(see [Mun84℄ p.28).

A p-
hain is a purely formal 
onstru
tion. The 
oeÆ
ients �

i

have generally

not a geometri
 interpretation, ex
ept for the 
oeÆ
ients 1 and �1. In this 
ase 1�

� means that we 
onsider the simplex � with its orientation and �1�� means that

we 
onsider the simplex � with its opposite orientation. This is 
onsistent with

the fa
t that simpli
es 
an be equipped with two orientations, one 
onsidered

positive and the other negative. Fig. 1(
) displays the positive orientations of

the simpli
es of Fig. 1(b). A formal de�nition of simplex orientation is available

in 
lassi
al algebrai
 topology books [Mun84,Hat02℄.

In a se
ond step, we relate 
hain groups of su

essive dimension with homo-

morphisms 
alled boundary operators.

De�nition 2. For all p > 0, the boundary of a p-simplex �

p

, denoted by �

p

(�

p

),

is the (p� 1)-
hain

P

p

i=0

(�1)

i

d

i

(�). 0-simpli
es have an empty boundary. The

boundary is extended as an homomorphism from C

p

to C

p�1

, meaning for any

p-
hain 
 =

P

n

p

i=1

�

p

i

�

p

i

, its boundary �

p

(
) is equal to

P

n

p

i=1

�

p

i

�

p

(�

p

i

).

Usually, when no 
onfusion may arise, we simply write �(
) for the boundary

of a p-
hain 
. For example, on Fig. 1
, we have �(F ) = A

1

� A

2

+ A

3

and we


an verify that �(�(F )) = �(A

1

�A

2

+A

3

) = 0.

We have just 
onstru
ted a sequen
e of 
hain groups C

p

together with ho-

momorphisms �

p

, C

n

�

n

�! C

n�1

�

n�1

�! � � �

�

1

�! C

0

�

0

�! 0. One 
an 
he
k that

�

p�1

(�

p

(
)) = 0 for all p-
hains 
. This sequen
e is 
alled a free 
hain 
omplex.

Cy
le, boundary, hole. The homology groups of a 
ombinatorial obje
t are

derived from spe
i�
 subgroups of the 
hains of a free 
hain 
omplex.

The p-
hains whose boundary is empty are 
alled p-
y
les. For example, on

Fig. 1
, the 1-
hains A

1

�A

2

+A

3

and A

1

+A

4

are 1-
y
les. The set of p-
y
les

is a subgroup of C

p

, denoted by Z

p

.

Some p-
hains are the boundary of a (p + 1)-
hain. They are 
alled p-

boundaries. For example, on Fig. 1
, the 1-
hain A

1

� A

2

+A

3

is the boundary

of the 2-
hain F . The set of p-boundaries form a subgroup of C

p

, denoted by

B

p

. Sin
e 8
 2 C

p

; �

p�1

(�

p

(
)) = 0, we have B

p

� Z

p

� C

p

.



A p-dimensional hole is a p-
y
le whi
h is not a p-boundary. For example, on

Fig. 1
, the 1-
y
le z

1

= A

1

+ A

4

is not a boundary. We de�ne an equivalen
e

relation in the group of p-
y
les as follows: two p-
y
les s and t are in the same

equivalen
e 
lass i� there exist a 
hain 
 with s = t+ �

p+1


. They are then said

to be homologous. In parti
ular, when s = �

p+1


 then s is homologous to 0.

The set of 
y
les is then partitioned by the homology relation, a

ording to the

hole they surround. Two 
y
les in the same equivalen
e 
lass surround the same

hole. The set of p-boundaries is the 0-equivalen
e 
lass. For example, the 
y
le

z

2

= A

2

�A

3

+A

4

is in the z

1

equivalen
e 
lass be
ause z

1

= z

2

+ �

2

(F ).

Homology groups, weak boundary. In any dimension p, the homology group

H

p

is de�ned as the group of the equivalent 
lasses for the homology relation. It

is exa
tly the quotient group of the p-
y
les by the p-boundaries, H

p

= Z

p

=B

p

.

Homology groups are known to be topologi
al invariants, meaning homeomor-

phi
 shapes have isomorphi
 homology groups.

For all p, there exists a �nite number of elements of H

p

from whi
h we 
an

dedu
e all H

p

elements, thus H

p

is 
alled �nitely generated. So, the group H

p

veri�es the fundamental theorem of �nitely generated abelian groups [Mun84℄,

and H

p

is isomorphi
 to a dire
t sum:

Z� � � � �Z

| {z }

�

p

�Z=t

p

1

Z� � � � �Z=t

p

n

Z:

We denote by �

p

the number of apparitions of Z in this dire
t sum: it is the

number of elements of H

p

with in�nite order and is 
alled the p-th Betti number.

The numbers t

p

1

; : : : ; t

p

n

are 
alled the torsion 
oeÆ
ients of H

p

. To ea
h group Z

of H

p

is asso
iated a set of p-dimensional homologous 
y
les: they surround the

same p-dimensional topologi
al hole and are not the boundary of any p+1-
hain.

It is the same for ea
h group Z=t

p

i

Z: the asso
iated homologous 
y
les are not

the boundary of any p + 1-
hain. However, when taken t

p

i

times, they be
ome

the boundary of some p+1-
hain. An example is the 1-
y
le A

2

on Fig. 2, whi
h

be
omes a boundary only when taken two times: 2A

2

= �(F

1

+ F

2

).

3 Related works

Ka
zynski et al. [KMS98℄ proposed to 
ompute a 
hain 
omplex homology with

a sequen
e of redu
tions. The idea is to derive a new obje
t with less 
ells while

preserving homology at ea
h step of the transformation. To redu
e the number

of 
ells, one 
hooses two 
ells a and b, su
h that �b = �a+ r and � is invertible.

These 
ells are then suppressed and the boundary homomorphism is updated. To

ensure invertible 
oeÆ
ients, Ka
zynski et al. 
hoose them in a �eld. In this 
ase,

it 
an be veri�ed that the redu
tion algorithm stops on a smallest 
hain 
omplex

with same homology where ea
h 
ell is a 
y
le representing the homology 
lass.

Gonz�alez-D��az and Real [GDR03℄ re
ently proposed an algorithm to 
om-

pute 
ohomology information on digital obje
ts that are subsets of the 3D body-


entered 
ubi
 grid. They �rst 
onstru
t a simpli
ial 
omplex with identi
al



PSfrag repla
ements

S

d

0

d

0

d

0

d

0

d

0

d

1

d

1

d

1

d

1

d

1

d

2

d

2

F

1

F

2

A

1

A

2

A

3

(a) (b)

Fig. 2. Klein bottle. (a) Semi-simpli
ial and (b) geometri
 representation.

topology. After that the 
ohomology is obtained by the 
onstru
tion of a 
hain


ontra
tion in two passes: (i) a thinning that redu
es the size of the data by

simpli
ial 
ollapses, (ii) an in
remental algebrai
 thinning that progressively ex-

tra
ts the equivalen
e 
lasses of the 
ohomology groups. A further 
omputation

provides the 
ohomology ring of the digital obje
t, whi
h appears to 
arry 
om-

plementary topologi
al information. All 
oeÆ
ients are in Z=2Z (also a �eld).

The pre
eding approa
hes are interesting when dealing with embedded ob-

je
ts in 2D or 3D. Homology over a �eld is then enough to 
hara
terize shapes,

sin
e obje
ts have no torsion. On the 
ontrary, we 
hoose a more generi
 ap-

proa
h, valid for arbitrary dimension and shapes. In the following se
tion, we

address the problem of 
omputing the whole homology over the 
oeÆ
ient do-

main Z (a ring, not a �eld).

4 Computation of homology groups and generators

In this se
tion, we show how to 
ompute the homology groups H

p

from the

boundary homomorphisms. First, the Betti number and torsion 
oeÆ
ients are

dedu
ed from the 
lassi
al Smith Normal Form (SNF) of �

p

and �

p+1

. Then,

we brie
y explain why their SNF must be slightly modi�ed to 
ompute a set of

generators of H

p

. We �nally dis
uss about implementation problems linked to

that 
lass of methods. We thus propose a new algorithm whi
h bene�ts from im-

provements proposed by Dumas et al. [DSV01℄ and 
omputes the Betti numbers,

the torsion 
oeÆ
ients and a set of "moduli generators".

4.1 Homology groups via Smith Normal Form

Information on homology groups may be dedu
ed from matrix representations

of boundary homomorphisms. A natural basis of the group of p-
hains of a 
hain




omplex is the one made of all its p-simpli
es, i.e.K

p

. In the following, the matrix

E

p+1

, 
alled p-th in
iden
e matrix, represents the homomorphism �

p+1

relatively

to the 
anoni
al bases K

p

(rows) and K

p+1

(
olumns). Ea
h 
olumn in E

p+1

is

the boundary of one p+ 1-simplex, de
omposed on the base of p-simpli
es.

There exists bases in whi
h any homomorphism has a very spe
i�
 matrix

form, the so-
alled Smith Normal Form (SNF). It is a matrix full of 0

0

s ex
ept

for an upper left square submatrix whi
h is diagonal with in
reasing 
oeÆ
ients:

diag(�

1

; : : : ; �

l

) su
h that ea
h �

i

is greater than 1 and divides ea
h �

j

for j > i.

The (�

i

) are 
alled invariant fa
tors of the homomorphism. LetD

p+1

be the SNF

of �

p+1

with asso
iated bases (e

p+1

k

) and (f

p

k

):

D

p+1

=

e

p+1

1

� � � e

p+1




p

e

p+1




p

+1

� � � e

p+1

n

p+1

2

6

6

6

6

6

6

6

6

6

6

4

�

p

1

0

.

.

.

0 �

p




p

0

0

0

3

7

7

7

7

7

7

7

7

7

7

5

f

p

1

.

.

.

f

p




p

f

p




p

+1

.

.

.

f

p

n

p

With these notations, it may be proved that:

1. (e

p+1




p

+1

; � � � ; e

p+1

n

p+1

) is a basis of Z

p+1

,

2. (�

p

1

f

p

1

; : : : ; �

p




p

f

p




p

) is a basis of B

p

,

3. (f

p

1

; : : : ; f

p




p

) is a basis of a groupW

p

, known as the group of weak boundaries

(W

p

= f


p

2 C

p

=9� 2 Z

�

; �


p

2 B

p

g).

Moreover, the group H

p

is isomorphi
 to the dire
t sum Z

p

=W

p

�W

p

=B

p

where Z

p

=W

p

is a free group and W

p

=B

p

is a torsion group. The torsion 
oeÆ-


ients ofH

p

are exa
tly the invariant fa
tors of �

p+1

stri
tly greater than 1 (given

by D

p+1

). Furthermore, the Betti number of H

p

is equal to rank(Z

p

)�rank(W

p

).

They are read respe
tively on D

p

and D

p+1

with rank(Z

p

) = n

p

� 


p�1

and

rank(W

p

) = 


p

.

However all the generators of the homology groups 
annot be dedu
ed from

the bases of the SNF. More pre
isely, we 
annot determine the set of 
y
les

whi
h are not weak boundaries. To do it e�e
tively, two su

essive boundary

homomorphisms �

p�1

and �

p

must respe
tively share the same upper and lower

bases (i.e. (f

p

1

; � � � ; f

p

n

p

) = (e

p

1

; � � � ; e

p

n

p

)). This is obviously not the 
ase sin
e

D

p�1

D

p

6= 0 (re
all that �

p�1

�

p

= 0 in a free 
hain 
omplex).

4.2 Generators with modi�ed SNF

Cairn [Cai61℄ proved that it is possible to simultaneously 
hoose bases for ea
h

group of p-
hains su
h that the matrix N

p

representing ea
h boundary operator

relatively to these bases is in a normal form quite similar to SNF. Moreover he



(p+ 1)� Cy
les Weak Boundaries Ante
edents

a

p+1

1

� � � a

p+1




p+1

b

p+1

1

� � � b

p+1

�

p+1




p+1

1

� � � 


p+1

�

p




p+1

�

p

+1

� � � 


p+1




p

a

p

1

�

p




p

0

Weak Boundaries

.

.

. 0 0

.

.

.

0

a

p

�

p

0 �

p




p

��

p

+1

a

p

�

p

+1

1 0

.

.

. 0 0 0

.

.

.

a

p




p

0 1

b

p

1

Cy
les but not

Weak Boundaries

.

.

. 0 0 0 0

b

p

�

p




p

1

.

.

. 0 0 0 0




p




p�1

Table 1. Modi�ed SNF of boundary homomorphism �

p+1

.

explains how to dedu
e a set of generators of the homology group H

p

dire
tly

from the matrix N

p+1

. N

p+1

is shown on Tab. 1. The number of invariant fa
tors

of �

p+1

is 


p

and �

p

of them are stri
tly greater than 1.

The set fb

p

1

; � � � ; b

p

�

p

g generates the free part of H

p

: they are p-
y
les when

read as a 
olumn in N

p

and they have no boundary ante
edent when read as a

row in N

p+1

. The set fa

p

1

; � � � ; a

p




p

g generates the torsion part of H

p

: they are

p-
y
les when read as a 
olumn in N

p

and they must be multiplied by the �

p

i

to

have a boundary ante
edent when read as a row in N

p+1

.

Agoston [Ago76℄ proposed an algorithm to 
ompute all matri
es N

p

and keep

tra
ks of 
hanges of bases. The idea is to 
ompute su

essively all matri
es N

p

from 0 to the maximal index of the desired homology groups. Ea
h homomor-

phism is su

essively expressed in four pairs of bases as in Tab. 2.

At the end of the whole 
omputation, all the matri
es N

p

represent the ho-

momorphisms �

p

relatively to bases �

p

su
h that �

0

= V

�1

0

K

0

, �

1

= U

1

V

�1

1

K

1

,

: : :, �

n�1

= U

n�1

V

�1

n�1

K

n�1

, �

n

= U

n

K

n

.

4.3 Optimizations for e�e
tive 
omputation

Algorithms for 
omputing the SNF or the presented modi�ed version are well

known (e.g. see [Ago76,Mun84℄). But major diÆ
ulties arise when trying to

program them e�e
tively. These problems are mainly linked to the high 
ompu-

tational 
ost of the algorithms and to the appearan
e of very big integers during

the pro
ess. The algorithm is namely valid as long as integer 
omputations have

an arbitrary pre
ision. With standard 32 or 64 bits integers, the algorithm is no

more a

urate. This problem arises even in small 
hain 
omplexes. Hafner et al.



Step Bases [℄n[℄ and Matrix of �

p

Bases [℄n[℄ and Matrix of �

p+1

0. input from iteration p [(V

p�1

U

�1

p�1

)

�1

K

p�1

℄n[U

p

K

p

℄

(mSNF) N

p

= V

p�1

U

�1

p�1

E

p

U

p

1. In
iden
e matrix [K

p

℄n[K

p+1

℄

of �

p+1

(in
iden
e) E

p+1

2. Left-multiply E

p+1

[(U

�1

p

)

�1

K

p

℄n[K

p+1

℄

by U

�1

p

E

0

p+1

= U

�1

p

E

p+1

3. Compute the mSNF [(V

p

U

�1

p

)

�1

K

p

℄n[U

p+1

K

p+1

℄

N

p+1

of �

p+1

from E

0

p+1

(mSNF) N

p+1

= V

p

U

�1

p

E

p+1

U

p+1

4. Right-multiply N

p

[(V

p�1

U

�1

p�1

)

�1

K

p�1

℄n[U

p

V

�1

p

K

p

℄

by V

�1

p

N

p

V

�1

p

(same as N

p

)

Table 2. Expression of the homomorphisms.

have exhibited a 10� 10 in
iden
e matrix, with no value greater than 10, that

indu
es huge intermediate integer numbers in SNF 
omputation.

Deterministi
 and sto
hasti
 algorithms have been proposed to ta
kle these

diÆ
ulties. The best known deterministi
 algorithm has been proposed by Stor-

johann [Sto96℄. Sto
hasti
 algorithms have for example been proposed by Gies-

bre
ht et al. [Gie95℄. They are generally more eÆ
ient than deterministi
 ones on

sparse matri
es, but are quite equivalent on dense matri
es. They are however

restri
ted to the SNF 
omputation and do not extra
t generators.

As far as we know, only Agoston [Ago76℄ proposed an algorithm to 
ompute

all homology information (in
luding generators), but its implementation does

not address the diÆ
ulties mentioned above. We propose here an adaptation of

a Gaussian elimination algorithm developed by Dumas et al. [DSV01℄, whi
h was

originally only dedi
ated to the 
omputation of the SNF of unrestri
ted simpli
ial


omplex. We 
ombine this work to the work of Agoston to 
ompute all homology

information of semi-simpli
ial sets: Betti number and torsion 
oeÆ
ients of all

homology groups, sets of \moduli generators". The main steps of the algorithm

are des
ribed below. All operations made on the in
iden
e matrix implies 
hanges

of bases that are stored in suitable matri
es.

1. (Prepare matrix for Dumas's algorithm.) The rows of the in
iden
e matrix

are ordered by in
reasing pivot,

2. (Same as Dumas.) The matrix is put in e
helon form with as many pivots

at 1 as possible by

{ �rst pass: only elementary row operations are applied,

{ se
ond pass: all rows are redu
ed a

ording to their g
d.

{ the matrix is now in triangular form: dedu
e submatrix determinant

(whi
h is also the produ
t of the invariant fa
tors).

{ All further integer operations are made modulo twi
e this determinant. It

has indeed been proved (for example by Storjohann) that su
h a 
ompu-

tation using an appropriate modulo preserves the homology information.

3. (Di�erent from Dumas.) Elementary rows and 
olumns operations are per-

formed to 
ompute the modi�ed SNF on the submatrix with non-zero rows.



Changes of bases are tra
ed. Agoston's algorithm is used to 
ompute the gen-

erators, whi
h are \moduli generators" in the sense they have been partly


omputed with a modulo.

5 Experimentations

We validate our approa
h on shapes 
lassi
ally en
ountered when testing topo-

logi
al invariants. For ea
h shape, Betti numbers and torsion 
oeÆ
ients are

extra
ted from the mSNF. The generators are read in the matri
es �

i

. With

this information, we are able to delineate ea
h hole of the 
omplex. It should

be noted that we only present the generators for surfa
es be
ause the nature of

2-
y
les on volumes is not well 
aptured by 2D pi
tures.

Fig. 3 shows the shapes and the 
orresponding generators. Only the gener-

ators of the homology group H

1

are displayed sin
e the others are trivial. For

the torus, we have two 
y
les, one for ea
h 1-dimensional hole (H

1

(K)

�

=

Z�Z).

A

ording to the topologi
al nature of the Moebius strip (homotopi
 to a 
ir-


le), we found only one 
y
le (H

1

(K)

�

=

Z). For the Klein bottle, two 
y-


les are found, one for the free part of the homology and one for the torsion

part (H

1

(K)

�

=

Z�Z=2Z).

We have 
omputed these generators using the previously des
ribed method

with moduli. We observe that the \moduli" generators are homologous to those

that would have been 
omputed with arbitrary pre
ision integer. On Fig. 3 ea
h

obje
ts has approximately 2000 triangles.

We guess that this property 
an be justi�ed in a stri
t mathemati
al way but

as far we know there is no indi
ation to invalid or to 
on�rm this property. Usual

mathemati
al approa
hes are not really interested by the e�e
tive representation

of the generators, whi
h explains the la
k of theoreti
al results on \moduli"

generators.

To 
on
lude, we have presented and implemented a te
hnique to 
ompute the

whole homology of arbitrary �nite shapes. We have addressed the problem of

extra
ting generators of the homology groups with a modulo. For future works,

we would like to exhibit the theoreti
al link between generator modulo and Z-

generators. We want also to study the simploidal homology for dis
rete obje
ts.

Cubes are indeed simploids and simploidal representations of dis
rete obje
ts

are thus more 
ompa
t than simpli
ial ones.
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