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Abstract. Topological invariants are extremely useful in many applica-
tions related to digital imaging and geometric modelling, and homology
is a classical one. We present an algorithm that computes the whole ho-
mology of an object of arbitrary dimension: Betti numbers, torsion coef-
ficients and generators. Results on classical shapes in algebraic topology
are presented and discussed.

1 Introduction

In digital image analysis, shape invariants are useful for classification, indexa-
tion, or, more recently, shape description [ACZ04]. They can be used in object
simplification and object thinning. In solid modeling, shape invariants ensure
the consistency of constructive operations. Computing topological invariants of
objects has thus a significant impact in these domains. The fundamental group is
an invariant that carries most of the topological information about an object. It
has been studied by many authors [Kon89,Box99,Mal01,ADFQO03] in the image
analysis field. But the comparison of such groups is highly related to undecidable
problems [Mal01]. Many authors have proposed algorithms to compute the Euler
characteristic (some of them summarized in [KR89]), but it is a simpler and less
expressive topological invariant. Other approaches compute the Betti numbers
[DE95] of embedded objects.

We focus here on homology groups, which are known to be computable in
finite dimensions, and which have a good topological characterization power
at least in low dimensions. We not only compute these groups but also their
generators, to delineate the topological holes on the shapes. For instance, the
generators of the homology group of dimension 1 are connectivity lines of the
shape: cutting along such lines does not divide the shape into two parts. The
contributions of this work are: (i) we report recent works in computational group
theory and bring these results to the imagery community, (ii) we combine these
works to classical results in homology theory to compute the homology groups
(Betti numbers and torsion) and their generators, (iii) we effectively implement
these algorithms with numerous optimizations.
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Fig. 1. On (a) and (b), examples of semi-simplicial sets. On (c), positive orientation of
the simplices of (b).

In the first part of the paper we recall classical definitions in homology theory.
We choose here simplicial homology since it is widely used in geometric modeling
and is straightforwardly applicable to digital objects. We then present related
works. After that, we present our approach for computing homology groups:
Smith Normal Form (SNF) of the boundary homomorphisms, modified SNF to
compute generators, integer computations performed with a modulo. Lastly, we
show some experiments and list some perspectives to this work.

2 Simplicial homology

Semi-simplicial set. Shapes are classically modeled with a cellular subdivi-
sion. Several combinatorial structures may represent such a subdivision. We
choose here semi-simplicial sets, which can represent indifferently manifold or
non-manifold objects. This structure is a subclass of simplicial sets, a structure
studied in algebraic topology [May67,Cur71].

Definition 1. [May67] A semi-simplicial set S = (K, (d})) is a graded family
of sets K = (K9)en together with maps df : KY — K%' fori=0,...,q, which
satisfy the following identity: Vo € Kq,dg_l(dg(a)) =d} (di(o)) if j <.

The elements of K7 are called g—simplices. The d are called boundary oper-
ators (the subscripts ¢ will generally be dropped later for clarity). Simplices are
glued together consistently with these operators (see Fig la-b for two examples).

Semi-simplicial sets are clearly adapted to the constructive operations of
solid modeling [LL95]. They are also well suited to digital imagery [DGO03]. To
determine a semi-simplicial set that represents a given digital object, the first
step is to construct a simplicial analog. One method is proposed in [GDRO3] (see



Section 3). The second step is to number the vertices of the simplicial analog;
the boundary maps follow directly [LE93].

We can now introduce homology groups in an intuitive way. All objects are
assumed to be finite. Note that the homology theory is applicable on most com-
binatorial structures.

Chain, boundary homomorphism, chain complex. In a first step, we de-
fine group structures on semi-simplicial sets. A p-chain in KP is a linear com-
bination of p-simplices with integer coefficients. More formally, any p—chain
is written uniquely as a finite sum Y .*, afo?, where n, is the cardinal of
K? = {07, 0} }, and for all i, o is an integer. The addition over p-chains is
defined simply by adding coefficients simplex by simplex. The resulting groups
are denoted by Cp. For all p, K? forms a basis for Cp (see [Mun84] p.28).

A p-chain is a purely formal construction. The coefficients «; have generally
not a geometric interpretation, except for the coefficients 1 and —1. In this case 1-
o means that we consider the simplex o with its orientation and —1-0 means that
we consider the simplex o with its opposite orientation. This is consistent with
the fact that simplices can be equipped with two orientations, one considered
positive and the other negative. Fig. 1(c) displays the positive orientations of
the simplices of Fig. 1(b). A formal definition of simplex orientation is available
in classical algebraic topology books [Mun84,Hat02].

In a second step, we relate chain groups of successive dimension with homo-
morphisms called boundary operators.

Definition 2. For allp > 0, the boundary of a p-simplex o?, denoted by 0p(c?),
is the (p — 1)-chain >.0_ (—1)'d;(0). 0-simplices have an empty boundary. The
boundary is extended as an homomorphism from C), to Cp_1, meaning for any
p-chain ¢ = Y 17, alo?, its boundary O,(c) is equal to Y 1%, af0,(ar).

Usually, when no confusion may arise, we simply write d(c) for the boundary
of a p-chain ¢. For example, on Fig. 1c, we have 0(F) = A; — As + Az and we
can verify that 0(0(F)) = 0(A1 — A2 + A3) = 0.

We have just constructed a sequence of chain groups C), together with ho-

. . On—
momorphisms 8,, Cp, LN Cho1 == - O, Co Do, 0. One can check that

Op—1(0p(c)) = 0 for all p-chains c. This sequence is called a free chain complez.

Cycle, boundary, hole. The homology groups of a combinatorial object are
derived from specific subgroups of the chains of a free chain complex.

The p-chains whose boundary is empty are called p-cycles. For example, on
Fig. 1c, the 1-chains A; — Ay + A3 and A; + A4 are 1-cycles. The set of p-cycles
is a subgroup of C,, denoted by Z,.

Some p-chains are the boundary of a (p + 1)-chain. They are called p-
boundaries. For example, on Fig. 1c, the 1-chain A; — Ay + A3 is the boundary
of the 2-chain F'. The set of p-boundaries form a subgroup of C}, denoted by
B,. Since Ve € Cp, 0p—1(0p(c)) =0, we have B, C Z, C C,,.



A p-dimensional hole is a p-cycle which is not a p-boundary. For example, on
Fig. 1c, the 1-cycle z; = A; + A4 is not a boundary. We define an equivalence
relation in the group of p-cycles as follows: two p-cycles s and ¢ are in the same
equivalence class iff there exist a chain ¢ with s =t + 9,41¢. They are then said
to be homologous. In particular, when s = 8,yic then s is homologous to 0.
The set of cycles is then partitioned by the homology relation, according to the
hole they surround. Two cycles in the same equivalence class surround the same
hole. The set of p-boundaries is the 0-equivalence class. For example, the cycle
z9 = Ay — A3 + A4 is in the z; equivalence class because z; = z2 + 0> (F).

Homology groups, weak boundary. In any dimension p, the homology group
H),, is defined as the group of the equivalent classes for the homology relation. It
is exactly the quotient group of the p-cycles by the p-boundaries, H, = Z,/B,.
Homology groups are known to be topological invariants, meaning homeomor-
phic shapes have isomorphic homology groups.

For all p, there exists a finite number of elements of H, from which we can
deduce all H, elements, thus H, is called finitely generated. So, the group H),
verifies the fundamental theorem of finitely generated abelian groups [Mun84],
and H,, is isomorphic to a direct sum:

2D OLOLIBLD - - ®L[EL.
N————
By

We denote by 3, the number of apparitions of Z in this direct sum: it is the
number of elements of H, with infinite order and is called the p-th Betti number.
The numbers t7, ..., tf are called the torsion coefficients of H,. To each group Z
of H, is associated a set of p-dimensional homologous cycles: they surround the
same p-dimensional topological hole and are not the boundary of any p+ 1-chain.
It is the same for each group Z/t¥Z: the associated homologous cycles are not
the boundary of any p + 1-chain. However, when taken ¢! times, they become
the boundary of some p + 1-chain. An example is the 1-cycle A; on Fig. 2, which
becomes a boundary only when taken two times: 245 = O(F; + F>).

3 Related works

Kaczynski et al. [KMS98] proposed to compute a chain complex homology with
a sequence of reductions. The idea is to derive a new object with less cells while
preserving homology at each step of the transformation. To reduce the number
of cells, one chooses two cells a and b, such that b = Aa +r and A is invertible.
These cells are then suppressed and the boundary homomorphism is updated. To
ensure invertible coefficients, Kaczynski et al. choose them in a field. In this case,
it can be verified that the reduction algorithm stops on a smallest chain complex
with same homology where each cell is a cycle representing the homology class.

Gonzilez-Diaz and Real [GDRO3] recently proposed an algorithm to com-
pute cohomology information on digital objects that are subsets of the 3D body-
centered cubic grid. They first construct a simplicial complex with identical



Fig. 2. Klein bottle. (a) Semi-simplicial and (b) geometric representation.

topology. After that the cohomology is obtained by the construction of a chain
contraction in two passes: (i) a thinning that reduces the size of the data by
simplicial collapses, (ii) an incremental algebraic thinning that progressively ex-
tracts the equivalence classes of the cohomology groups. A further computation
provides the cohomology ring of the digital object, which appears to carry com-
plementary topological information. All coefficients are in Z /27 (also a field).

The preceding approaches are interesting when dealing with embedded ob-
jects in 2D or 3D. Homology over a field is then enough to characterize shapes,
since objects have no torsion. On the contrary, we choose a more generic ap-
proach, valid for arbitrary dimension and shapes. In the following section, we
address the problem of computing the whole homology over the coefficient do-
main Z (a ring, not a field).

4 Computation of homology groups and generators

In this section, we show how to compute the homology groups H, from the
boundary homomorphisms. First, the Betti number and torsion coefficients are
deduced from the classical Smith Normal Form (SNF) of 9, and Op41. Then,
we briefly explain why their SNF must be slightly modified to compute a set of
generators of H,. We finally discuss about implementation problems linked to
that class of methods. We thus propose a new algorithm which benefits from im-
provements proposed by Dumas et al. [DSV01] and computes the Betti numbers,
the torsion coefficients and a set of ”moduli generators”.

4.1 Homology groups via Smith Normal Form

Information on homology groups may be deduced from matrix representations
of boundary homomorphisms. A natural basis of the group of p-chains of a chain



complex is the one made of all its p-simplices, i.e. KP. In the following, the matrix
Ep+1, called p-th incidence matriz, represents the homomorphism 0,4, relatively
to the canonical bases K? (rows) and K?™* (columns). Each column in E,; is
the boundary of one p + 1-simplex, decomposed on the base of p-simplices.
There exists bases in which any homomorphism has a very specific matrix
form, the so-called Smith Normal Form (SNF). It is a matrix full of 0's except
for an upper left square submatrix which is diagonal with increasing coefficients:
diag(M1, ..., ;) such that each ); is greater than 1 and divides each A; for j > i.
The (A;) are called invariant factors of the homomorphism. Let Dy be the SNF

of 9,41 with associated bases (e¥") and (f7):

Pl . eptl prL L eptl
B €1 egp e’Yerl e%p-}—l fp
AY 0 !
. 0 )
Dyy1 = 0 AL 4
£
0 0 :
P
L J np
With these notations, it may be proved that:
L. (e’v’:il, -, ebtl ) s a basis of Z,41,
2. (M f1s... AL f2) is a basis of By,
3. (fF, ..., f};p) is a basis of a group W,,, known as the group of weak boundaries
(Wp ={cp € Cp/IN € Z*, Xcp, € Bp}).

Moreover, the group H), is isomorphic to the direct sum Z,/W, & W, /B,
where Z,,/W, is a free group and W, /B, is a torsion group. The torsion coeffi-
cients of H,, are exactly the invariant factors of 041 strictly greater than 1 (given
by Dp+1). Furthermore, the Betti number of H), is equal to rank(Z,) —rank(W),).
They are read respectively on D, and Dy, with rank(Z,) = np, — v,—1 and
rank(Wp) = 7,.

However all the generators of the homology groups cannot be deduced from
the bases of the SNF. More precisely, we cannot determine the set of cycles
which are not weak boundaries. To do it effectively, two successive boundary
homomorphisms 0,1 and J, must respectively share the same upper and lower
bases (i.e. (f{,---,fh ) = (€], -~ e )). This is obviously not the case since
D,_1D, # 0 (recall that 9,_10, = 0 in a free chain complex).

4.2 Generators with modified SNF

Cairn [Cai61] proved that it is possible to simultaneously choose bases for each
group of p-chains such that the matrix IV, representing each boundary operator
relatively to these bases is in a normal form quite similar to SNF. Moreover he



(p+1) — Cycles Weak Boundaries Antecedents
a11’+1 2:i1|b117+l "'blﬁ;:il C;17+1 05;1 :‘i:h ...cgjl
7 X, 0
0 0 : 0
gﬁg | R 0o :\Z—pp_ﬂ: _______ _ Weak Boundaries
a§p+1 1 0
z 0 0 0 :
ab, Lo 1
b ' Cycles but not
0 0 0 : 0 Weak Boundaries
bh |
4 :
' 0 0 0 0
Tp—1 !

Table 1. Modified SNF of boundary homomorphism 0p4.

explains how to deduce a set of generators of the homology group H, directly
from the matrix Np41. Np4q is shown on Tab. 1. The number of invariant factors
of Bp11 is 7, and p, of them are strictly greater than 1.

The set {b7,--- ,bgp} generates the free part of HP: they are p-cycles when
read as a column in N, and they have no boundary antecedent when read as a
row in Npii. The set {af],--- ,aﬁp} generates the torsion part of HP: they are
p-cycles when read as a column in N, and they must be multiplied by the A? to
have a boundary antecedent when read as a row in Np41.

Agoston [Ago76] proposed an algorithm to compute all matrices N, and keep
tracks of changes of bases. The idea is to compute successively all matrices N,
from 0 to the maximal index of the desired homology groups. Each homomor-
phism is successively expressed in four pairs of bases as in Tab. 2.

At the end of the whole computation, all the matrices NP represent the ho-
momorphisms d, relatively to bases I'” such that I'° = V; ' K° ' = UV, 'K*,
e I =U, VLK T = UK.

4.3 Optimizations for effective computation

Algorithms for computing the SNF or the presented modified version are well
known (e.g. see [Ago76,Mun84]). But major difficulties arise when trying to
program them effectively. These problems are mainly linked to the high compu-
tational cost of the algorithms and to the appearance of very big integers during
the process. The algorithm is namely valid as long as integer computations have
an arbitrary precision. With standard 32 or 64 bits integers, the algorithm is no
more accurate. This problem arises even in small chain complexes. Hafner et al.



| Step | Bases [[\[] and Matrix of 8, | Bases []\[] and Matrix of 9,11 |

0. input from iteration p[| [(Vo—1U, ")) K?~'\[Up K?]
(mSNF) N, = V,1U, ! EpUp
1. Incidence matrix [KP\[KPT]
of Opy1 (incidence) Ept1
2. Left-multiply Ept1 (U, ) TKP\[KPTT]
by U;l ;,_;,_1 = U;lEp+1
3. Compute the mSNF (VU ) TTKP\[Up KPT1]
Npt1 of Opqr from Ej, 4, (mSNF) Npy1 = VU, 'Epi1Uptr
4. Right-multiply N, [[[(Vp—1U, 1) T KP'\[U,V, ' K]
by V, ! N,V, ! (same as N,)

Table 2. Expression of the homomorphisms.

have exhibited a 10 x 10 incidence matrix, with no value greater than 10, that
induces huge intermediate integer numbers in SNF computation.

Deterministic and stochastic algorithms have been proposed to tackle these
difficulties. The best known deterministic algorithm has been proposed by Stor-
johann [St096]. Stochastic algorithms have for example been proposed by Gies-
brecht et al. [Gie95]. They are generally more efficient than deterministic ones on
sparse matrices, but are quite equivalent on dense matrices. They are however
restricted to the SNF computation and do not extract generators.

As far as we know, only Agoston [Ago76] proposed an algorithm to compute
all homology information (including generators), but its implementation does
not address the difficulties mentioned above. We propose here an adaptation of
a Gaussian elimination algorithm developed by Dumas et al. [DSVO01], which was
originally only dedicated to the computation of the SNF of unrestricted simplicial
complex. We combine this work to the work of Agoston to compute all homology
information of semi-simplicial sets: Betti number and torsion coefficients of all
homology groups, sets of “moduli generators”. The main steps of the algorithm
are described below. All operations made on the incidence matrix implies changes
of bases that are stored in suitable matrices.

1. (Prepare matriz for Dumas’s algorithm.) The rows of the incidence matrix
are ordered by increasing pivot,

2. (Same as Dumas.) The matrix is put in echelon form with as many pivots
at 1 as possible by

— first pass: only elementary row operations are applied,

— second pass: all rows are reduced according to their ged.

— the matrix is now in triangular form: deduce submatrix determinant
(which is also the product of the invariant factors).

— All further integer operations are made modulo twice this determinant. It
has indeed been proved (for example by Storjohann) that such a compu-
tation using an appropriate modulo preserves the homology information.

3. (Different from Dumas.) Elementary rows and columns operations are per-
formed to compute the modified SNF on the submatrix with non-zero rows.



Changes of bases are traced. Agoston’s algorithm is used to compute the gen-
erators, which are “moduli generators” in the sense they have been partly
computed with a modulo.

5 Experimentations

We validate our approach on shapes classically encountered when testing topo-
logical invariants. For each shape, Betti numbers and torsion coefficients are
extracted from the mSNF. The generators are read in the matrices I'!. With
this information, we are able to delineate each hole of the complex. It should
be noted that we only present the generators for surfaces because the nature of
2-cycles on volumes is not well captured by 2D pictures.

Fig. 3 shows the shapes and the corresponding generators. Only the gener-
ators of the homology group H; are displayed since the others are trivial. For
the torus, we have two cycles, one for each 1-dimensional hole (H; (K) 2 Z ® Z).
According to the topological nature of the Moebius strip (homotopic to a cir-
cle), we found only one cycle (H;(K) = Z). For the Klein bottle, two cy-
cles are found, one for the free part of the homology and one for the torsion
part (H1(K) 2 Z & Z/27).

We have computed these generators using the previously described method
with moduli. We observe that the “moduli” generators are homologous to those
that would have been computed with arbitrary precision integer. On Fig. 3 each
objects has approximately 2000 triangles.

We guess that this property can be justified in a strict mathematical way but
as far we know there is no indication to invalid or to confirm this property. Usual
mathematical approaches are not really interested by the effective representation
of the generators, which explains the lack of theoretical results on “moduli”
generators.

To conclude, we have presented and implemented a technique to compute the
whole homology of arbitrary finite shapes. We have addressed the problem of
extracting generators of the homology groups with a modulo. For future works,
we would like to exhibit the theoretical link between generator modulo and Z-
generators. We want also to study the simploidal homology for discrete objects.
Cubes are indeed simploids and simploidal representations of discrete objects
are thus more compact than simplicial ones.
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