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Abstrat. Topologial invariants are extremely useful in many applia-

tions related to digital imaging and geometri modelling, and homology

is a lassial one. We present an algorithm that omputes the whole ho-

mology of an objet of arbitrary dimension: Betti numbers, torsion oef-

�ients and generators. Results on lassial shapes in algebrai topology

are presented and disussed.

1 Introdution

In digital image analysis, shape invariants are useful for lassi�ation, indexa-

tion, or, more reently, shape desription [ACZ04℄. They an be used in objet

simpli�ation and objet thinning. In solid modeling, shape invariants ensure

the onsisteny of onstrutive operations. Computing topologial invariants of

objets has thus a signi�ant impat in these domains. The fundamental group is

an invariant that arries most of the topologial information about an objet. It

has been studied by many authors [Kon89,Box99,Mal01,ADFQ03℄ in the image

analysis �eld. But the omparison of suh groups is highly related to undeidable

problems [Mal01℄. Many authors have proposed algorithms to ompute the Euler

harateristi (some of them summarized in [KR89℄), but it is a simpler and less

expressive topologial invariant. Other approahes ompute the Betti numbers

[DE95℄ of embedded objets.

We fous here on homology groups, whih are known to be omputable in

�nite dimensions, and whih have a good topologial haraterization power

at least in low dimensions. We not only ompute these groups but also their

generators, to delineate the topologial holes on the shapes. For instane, the

generators of the homology group of dimension 1 are onnetivity lines of the

shape: utting along suh lines does not divide the shape into two parts. The

ontributions of this work are: (i) we report reent works in omputational group

theory and bring these results to the imagery ommunity, (ii) we ombine these

works to lassial results in homology theory to ompute the homology groups

(Betti numbers and torsion) and their generators, (iii) we e�etively implement

these algorithms with numerous optimizations.
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Fig. 1. On (a) and (b), examples of semi-simpliial sets. On (), positive orientation of

the simplies of (b).

In the �rst part of the paper we reall lassial de�nitions in homology theory.

We hoose here simpliial homology sine it is widely used in geometri modeling

and is straightforwardly appliable to digital objets. We then present related

works. After that, we present our approah for omputing homology groups:

Smith Normal Form (SNF) of the boundary homomorphisms, modi�ed SNF to

ompute generators, integer omputations performed with a modulo. Lastly, we

show some experiments and list some perspetives to this work.

2 Simpliial homology

Semi-simpliial set. Shapes are lassially modeled with a ellular subdivi-

sion. Several ombinatorial strutures may represent suh a subdivision. We

hoose here semi-simpliial sets, whih an represent indi�erently manifold or

non-manifold objets. This struture is a sublass of simpliial sets, a struture

studied in algebrai topology [May67,Cur71℄.

De�nition 1. [May67℄ A semi-simpliial set S = (K; (d

q

i

)) is a graded family

of sets K = (K

q

)

q2N

together with maps d

q

i

: K

q

! K

q�1

for i = 0; : : : ; q, whih

satisfy the following identity: 8� 2 K

q

; d

q�1

j

(d

q

i

(�)) = d

q�1

i�1

(d

q

j

(�)) if j < i.

The elements of K

q

are alled q�simplies. The d

q

i

are alled boundary oper-

ators (the subsripts q will generally be dropped later for larity). Simplies are

glued together onsistently with these operators (see Fig 1a-b for two examples).

Semi-simpliial sets are learly adapted to the onstrutive operations of

solid modeling [LL95℄. They are also well suited to digital imagery [DG03℄. To

determine a semi-simpliial set that represents a given digital objet, the �rst

step is to onstrut a simpliial analog. One method is proposed in [GDR03℄ (see



Setion 3). The seond step is to number the verties of the simpliial analog;

the boundary maps follow diretly [LE93℄.

We an now introdue homology groups in an intuitive way. All objets are

assumed to be �nite. Note that the homology theory is appliable on most om-

binatorial strutures.

Chain, boundary homomorphism, hain omplex. In a �rst step, we de-

�ne group strutures on semi-simpliial sets. A p-hain in K

p

is a linear om-

bination of p-simplies with integer oeÆients. More formally, any p�hain

is written uniquely as a �nite sum

P

n

p

i=1

�

p

i

�

p

i

, where n

p

is the ardinal of

K

p

= f�

p

1

; � � � ; �

p

n

p

g, and for all i, �

p

i

is an integer. The addition over p-hains is

de�ned simply by adding oeÆients simplex by simplex. The resulting groups

are denoted by C

p

. For all p, K

p

forms a basis for C

p

(see [Mun84℄ p.28).

A p-hain is a purely formal onstrution. The oeÆients �

i

have generally

not a geometri interpretation, exept for the oeÆients 1 and �1. In this ase 1�

� means that we onsider the simplex � with its orientation and �1�� means that

we onsider the simplex � with its opposite orientation. This is onsistent with

the fat that simplies an be equipped with two orientations, one onsidered

positive and the other negative. Fig. 1() displays the positive orientations of

the simplies of Fig. 1(b). A formal de�nition of simplex orientation is available

in lassial algebrai topology books [Mun84,Hat02℄.

In a seond step, we relate hain groups of suessive dimension with homo-

morphisms alled boundary operators.

De�nition 2. For all p > 0, the boundary of a p-simplex �

p

, denoted by �

p

(�

p

),

is the (p� 1)-hain

P

p

i=0

(�1)

i

d

i

(�). 0-simplies have an empty boundary. The

boundary is extended as an homomorphism from C

p

to C

p�1

, meaning for any

p-hain  =

P

n

p

i=1

�

p

i

�

p

i

, its boundary �

p

() is equal to

P

n

p

i=1

�

p

i

�

p

(�

p

i

).

Usually, when no onfusion may arise, we simply write �() for the boundary

of a p-hain . For example, on Fig. 1, we have �(F ) = A

1

� A

2

+ A

3

and we

an verify that �(�(F )) = �(A

1

�A

2

+A

3

) = 0.

We have just onstruted a sequene of hain groups C

p

together with ho-

momorphisms �

p

, C

n

�

n

�! C

n�1

�

n�1

�! � � �

�

1

�! C

0

�

0

�! 0. One an hek that

�

p�1

(�

p

()) = 0 for all p-hains . This sequene is alled a free hain omplex.

Cyle, boundary, hole. The homology groups of a ombinatorial objet are

derived from spei� subgroups of the hains of a free hain omplex.

The p-hains whose boundary is empty are alled p-yles. For example, on

Fig. 1, the 1-hains A

1

�A

2

+A

3

and A

1

+A

4

are 1-yles. The set of p-yles

is a subgroup of C

p

, denoted by Z

p

.

Some p-hains are the boundary of a (p + 1)-hain. They are alled p-

boundaries. For example, on Fig. 1, the 1-hain A

1

� A

2

+A

3

is the boundary

of the 2-hain F . The set of p-boundaries form a subgroup of C

p

, denoted by

B

p

. Sine 8 2 C

p

; �

p�1

(�

p

()) = 0, we have B

p

� Z

p

� C

p

.



A p-dimensional hole is a p-yle whih is not a p-boundary. For example, on

Fig. 1, the 1-yle z

1

= A

1

+ A

4

is not a boundary. We de�ne an equivalene

relation in the group of p-yles as follows: two p-yles s and t are in the same

equivalene lass i� there exist a hain  with s = t+ �

p+1

. They are then said

to be homologous. In partiular, when s = �

p+1

 then s is homologous to 0.

The set of yles is then partitioned by the homology relation, aording to the

hole they surround. Two yles in the same equivalene lass surround the same

hole. The set of p-boundaries is the 0-equivalene lass. For example, the yle

z

2

= A

2

�A

3

+A

4

is in the z

1

equivalene lass beause z

1

= z

2

+ �

2

(F ).

Homology groups, weak boundary. In any dimension p, the homology group

H

p

is de�ned as the group of the equivalent lasses for the homology relation. It

is exatly the quotient group of the p-yles by the p-boundaries, H

p

= Z

p

=B

p

.

Homology groups are known to be topologial invariants, meaning homeomor-

phi shapes have isomorphi homology groups.

For all p, there exists a �nite number of elements of H

p

from whih we an

dedue all H

p

elements, thus H

p

is alled �nitely generated. So, the group H

p

veri�es the fundamental theorem of �nitely generated abelian groups [Mun84℄,

and H

p

is isomorphi to a diret sum:

Z� � � � �Z

| {z }

�

p

�Z=t

p

1

Z� � � � �Z=t

p

n

Z:

We denote by �

p

the number of apparitions of Z in this diret sum: it is the

number of elements of H

p

with in�nite order and is alled the p-th Betti number.

The numbers t

p

1

; : : : ; t

p

n

are alled the torsion oeÆients of H

p

. To eah group Z

of H

p

is assoiated a set of p-dimensional homologous yles: they surround the

same p-dimensional topologial hole and are not the boundary of any p+1-hain.

It is the same for eah group Z=t

p

i

Z: the assoiated homologous yles are not

the boundary of any p + 1-hain. However, when taken t

p

i

times, they beome

the boundary of some p+1-hain. An example is the 1-yle A

2

on Fig. 2, whih

beomes a boundary only when taken two times: 2A

2

= �(F

1

+ F

2

).

3 Related works

Kazynski et al. [KMS98℄ proposed to ompute a hain omplex homology with

a sequene of redutions. The idea is to derive a new objet with less ells while

preserving homology at eah step of the transformation. To redue the number

of ells, one hooses two ells a and b, suh that �b = �a+ r and � is invertible.

These ells are then suppressed and the boundary homomorphism is updated. To

ensure invertible oeÆients, Kazynski et al. hoose them in a �eld. In this ase,

it an be veri�ed that the redution algorithm stops on a smallest hain omplex

with same homology where eah ell is a yle representing the homology lass.

Gonz�alez-D��az and Real [GDR03℄ reently proposed an algorithm to om-

pute ohomology information on digital objets that are subsets of the 3D body-

entered ubi grid. They �rst onstrut a simpliial omplex with idential
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Fig. 2. Klein bottle. (a) Semi-simpliial and (b) geometri representation.

topology. After that the ohomology is obtained by the onstrution of a hain

ontration in two passes: (i) a thinning that redues the size of the data by

simpliial ollapses, (ii) an inremental algebrai thinning that progressively ex-

trats the equivalene lasses of the ohomology groups. A further omputation

provides the ohomology ring of the digital objet, whih appears to arry om-

plementary topologial information. All oeÆients are in Z=2Z (also a �eld).

The preeding approahes are interesting when dealing with embedded ob-

jets in 2D or 3D. Homology over a �eld is then enough to haraterize shapes,

sine objets have no torsion. On the ontrary, we hoose a more generi ap-

proah, valid for arbitrary dimension and shapes. In the following setion, we

address the problem of omputing the whole homology over the oeÆient do-

main Z (a ring, not a �eld).

4 Computation of homology groups and generators

In this setion, we show how to ompute the homology groups H

p

from the

boundary homomorphisms. First, the Betti number and torsion oeÆients are

dedued from the lassial Smith Normal Form (SNF) of �

p

and �

p+1

. Then,

we briey explain why their SNF must be slightly modi�ed to ompute a set of

generators of H

p

. We �nally disuss about implementation problems linked to

that lass of methods. We thus propose a new algorithm whih bene�ts from im-

provements proposed by Dumas et al. [DSV01℄ and omputes the Betti numbers,

the torsion oeÆients and a set of "moduli generators".

4.1 Homology groups via Smith Normal Form

Information on homology groups may be dedued from matrix representations

of boundary homomorphisms. A natural basis of the group of p-hains of a hain



omplex is the one made of all its p-simplies, i.e.K

p

. In the following, the matrix

E

p+1

, alled p-th inidene matrix, represents the homomorphism �

p+1

relatively

to the anonial bases K

p

(rows) and K

p+1

(olumns). Eah olumn in E

p+1

is

the boundary of one p+ 1-simplex, deomposed on the base of p-simplies.

There exists bases in whih any homomorphism has a very spei� matrix

form, the so-alled Smith Normal Form (SNF). It is a matrix full of 0

0

s exept

for an upper left square submatrix whih is diagonal with inreasing oeÆients:

diag(�

1

; : : : ; �

l

) suh that eah �

i

is greater than 1 and divides eah �

j

for j > i.

The (�

i

) are alled invariant fators of the homomorphism. LetD

p+1

be the SNF

of �

p+1

with assoiated bases (e

p+1

k

) and (f

p

k

):

D

p+1

=

e

p+1

1

� � � e

p+1



p

e

p+1



p

+1

� � � e

p+1

n

p+1

2

6

6

6

6

6

6

6

6

6

6

4

�

p

1

0

.

.

.

0 �

p



p

0

0

0

3

7

7

7

7

7

7

7

7

7

7

5

f

p

1

.

.

.

f

p



p

f

p



p

+1

.

.

.

f

p

n

p

With these notations, it may be proved that:

1. (e

p+1



p

+1

; � � � ; e

p+1

n

p+1

) is a basis of Z

p+1

,

2. (�

p

1

f

p

1

; : : : ; �

p



p

f

p



p

) is a basis of B

p

,

3. (f

p

1

; : : : ; f

p



p

) is a basis of a groupW

p

, known as the group of weak boundaries

(W

p

= f

p

2 C

p

=9� 2 Z

�

; �

p

2 B

p

g).

Moreover, the group H

p

is isomorphi to the diret sum Z

p

=W

p

�W

p

=B

p

where Z

p

=W

p

is a free group and W

p

=B

p

is a torsion group. The torsion oeÆ-

ients ofH

p

are exatly the invariant fators of �

p+1

stritly greater than 1 (given

by D

p+1

). Furthermore, the Betti number of H

p

is equal to rank(Z

p

)�rank(W

p

).

They are read respetively on D

p

and D

p+1

with rank(Z

p

) = n

p

� 

p�1

and

rank(W

p

) = 

p

.

However all the generators of the homology groups annot be dedued from

the bases of the SNF. More preisely, we annot determine the set of yles

whih are not weak boundaries. To do it e�etively, two suessive boundary

homomorphisms �

p�1

and �

p

must respetively share the same upper and lower

bases (i.e. (f

p

1

; � � � ; f

p

n

p

) = (e

p

1

; � � � ; e

p

n

p

)). This is obviously not the ase sine

D

p�1

D

p

6= 0 (reall that �

p�1

�

p

= 0 in a free hain omplex).

4.2 Generators with modi�ed SNF

Cairn [Cai61℄ proved that it is possible to simultaneously hoose bases for eah

group of p-hains suh that the matrix N

p

representing eah boundary operator

relatively to these bases is in a normal form quite similar to SNF. Moreover he



(p+ 1)� Cyles Weak Boundaries Anteedents

a

p+1

1

� � � a

p+1



p+1

b

p+1

1

� � � b

p+1

�

p+1



p+1

1

� � � 

p+1

�

p



p+1

�

p

+1

� � � 

p+1



p

a

p

1

�

p



p

0

Weak Boundaries

.

.

. 0 0

.

.

.

0

a

p

�

p

0 �

p



p

��

p

+1

a

p

�

p

+1

1 0

.

.

. 0 0 0

.

.

.

a

p



p

0 1

b

p

1

Cyles but not

Weak Boundaries

.

.

. 0 0 0 0

b

p

�

p



p

1

.

.

. 0 0 0 0



p



p�1

Table 1. Modi�ed SNF of boundary homomorphism �

p+1

.

explains how to dedue a set of generators of the homology group H

p

diretly

from the matrix N

p+1

. N

p+1

is shown on Tab. 1. The number of invariant fators

of �

p+1

is 

p

and �

p

of them are stritly greater than 1.

The set fb

p

1

; � � � ; b

p

�

p

g generates the free part of H

p

: they are p-yles when

read as a olumn in N

p

and they have no boundary anteedent when read as a

row in N

p+1

. The set fa

p

1

; � � � ; a

p



p

g generates the torsion part of H

p

: they are

p-yles when read as a olumn in N

p

and they must be multiplied by the �

p

i

to

have a boundary anteedent when read as a row in N

p+1

.

Agoston [Ago76℄ proposed an algorithm to ompute all matries N

p

and keep

traks of hanges of bases. The idea is to ompute suessively all matries N

p

from 0 to the maximal index of the desired homology groups. Eah homomor-

phism is suessively expressed in four pairs of bases as in Tab. 2.

At the end of the whole omputation, all the matries N

p

represent the ho-

momorphisms �

p

relatively to bases �

p

suh that �

0

= V

�1

0

K

0

, �

1

= U

1

V

�1

1

K

1

,

: : :, �

n�1

= U

n�1

V

�1

n�1

K

n�1

, �

n

= U

n

K

n

.

4.3 Optimizations for e�etive omputation

Algorithms for omputing the SNF or the presented modi�ed version are well

known (e.g. see [Ago76,Mun84℄). But major diÆulties arise when trying to

program them e�etively. These problems are mainly linked to the high ompu-

tational ost of the algorithms and to the appearane of very big integers during

the proess. The algorithm is namely valid as long as integer omputations have

an arbitrary preision. With standard 32 or 64 bits integers, the algorithm is no

more aurate. This problem arises even in small hain omplexes. Hafner et al.



Step Bases [℄n[℄ and Matrix of �

p

Bases [℄n[℄ and Matrix of �

p+1

0. input from iteration p [(V

p�1

U

�1

p�1

)

�1

K

p�1

℄n[U

p

K

p

℄

(mSNF) N

p

= V

p�1

U

�1

p�1

E

p

U

p

1. Inidene matrix [K

p

℄n[K

p+1

℄

of �

p+1

(inidene) E

p+1

2. Left-multiply E

p+1

[(U

�1

p

)

�1

K

p

℄n[K

p+1

℄

by U

�1

p

E

0

p+1

= U

�1

p

E

p+1

3. Compute the mSNF [(V

p

U

�1

p

)

�1

K

p

℄n[U

p+1

K

p+1

℄

N

p+1

of �

p+1

from E

0

p+1

(mSNF) N

p+1

= V

p

U

�1

p

E

p+1

U

p+1

4. Right-multiply N

p

[(V

p�1

U

�1

p�1

)

�1

K

p�1

℄n[U

p

V

�1

p

K

p

℄

by V

�1

p

N

p

V

�1

p

(same as N

p

)

Table 2. Expression of the homomorphisms.

have exhibited a 10� 10 inidene matrix, with no value greater than 10, that

indues huge intermediate integer numbers in SNF omputation.

Deterministi and stohasti algorithms have been proposed to takle these

diÆulties. The best known deterministi algorithm has been proposed by Stor-

johann [Sto96℄. Stohasti algorithms have for example been proposed by Gies-

breht et al. [Gie95℄. They are generally more eÆient than deterministi ones on

sparse matries, but are quite equivalent on dense matries. They are however

restrited to the SNF omputation and do not extrat generators.

As far as we know, only Agoston [Ago76℄ proposed an algorithm to ompute

all homology information (inluding generators), but its implementation does

not address the diÆulties mentioned above. We propose here an adaptation of

a Gaussian elimination algorithm developed by Dumas et al. [DSV01℄, whih was

originally only dediated to the omputation of the SNF of unrestrited simpliial

omplex. We ombine this work to the work of Agoston to ompute all homology

information of semi-simpliial sets: Betti number and torsion oeÆients of all

homology groups, sets of \moduli generators". The main steps of the algorithm

are desribed below. All operations made on the inidene matrix implies hanges

of bases that are stored in suitable matries.

1. (Prepare matrix for Dumas's algorithm.) The rows of the inidene matrix

are ordered by inreasing pivot,

2. (Same as Dumas.) The matrix is put in ehelon form with as many pivots

at 1 as possible by

{ �rst pass: only elementary row operations are applied,

{ seond pass: all rows are redued aording to their gd.

{ the matrix is now in triangular form: dedue submatrix determinant

(whih is also the produt of the invariant fators).

{ All further integer operations are made modulo twie this determinant. It

has indeed been proved (for example by Storjohann) that suh a ompu-

tation using an appropriate modulo preserves the homology information.

3. (Di�erent from Dumas.) Elementary rows and olumns operations are per-

formed to ompute the modi�ed SNF on the submatrix with non-zero rows.



Changes of bases are traed. Agoston's algorithm is used to ompute the gen-

erators, whih are \moduli generators" in the sense they have been partly

omputed with a modulo.

5 Experimentations

We validate our approah on shapes lassially enountered when testing topo-

logial invariants. For eah shape, Betti numbers and torsion oeÆients are

extrated from the mSNF. The generators are read in the matries �

i

. With

this information, we are able to delineate eah hole of the omplex. It should

be noted that we only present the generators for surfaes beause the nature of

2-yles on volumes is not well aptured by 2D pitures.

Fig. 3 shows the shapes and the orresponding generators. Only the gener-

ators of the homology group H

1

are displayed sine the others are trivial. For

the torus, we have two yles, one for eah 1-dimensional hole (H

1

(K)

�

=

Z�Z).

Aording to the topologial nature of the Moebius strip (homotopi to a ir-

le), we found only one yle (H

1

(K)

�

=

Z). For the Klein bottle, two y-

les are found, one for the free part of the homology and one for the torsion

part (H

1

(K)

�

=

Z�Z=2Z).

We have omputed these generators using the previously desribed method

with moduli. We observe that the \moduli" generators are homologous to those

that would have been omputed with arbitrary preision integer. On Fig. 3 eah

objets has approximately 2000 triangles.

We guess that this property an be justi�ed in a strit mathematial way but

as far we know there is no indiation to invalid or to on�rm this property. Usual

mathematial approahes are not really interested by the e�etive representation

of the generators, whih explains the lak of theoretial results on \moduli"

generators.

To onlude, we have presented and implemented a tehnique to ompute the

whole homology of arbitrary �nite shapes. We have addressed the problem of

extrating generators of the homology groups with a modulo. For future works,

we would like to exhibit the theoretial link between generator modulo and Z-

generators. We want also to study the simploidal homology for disrete objets.

Cubes are indeed simploids and simploidal representations of disrete objets

are thus more ompat than simpliial ones.
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