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Abstract

This work presents a generic deformable model for extracting objects from volumetric
data with a coarse-to-fine approach. This model is based on a dynamic triangulated surface
which alters its geometry according to internal and external constraints to perform shape
recovery. A new framework for topology changes is proposed to extract complex objects:
within this framework, the model dynamically adapts its topology to the geometry of its
vertices according to simple distance constraints. In order to speed up the process, an
algorithm of pyramid construction with any reduction factor transforms the image into a set
of images with progressive resolutions. This organization into a hierarchy, combined with
a model which can adapt its sampling to the resolution of the workspace, enables a fast
estimation of the shapes included in the image. After that, the model searches for finer and
finer details while relying successively on the different levels of the pyramid.

Key-words: 3D surface extraction, deformable model, adaptive topology, multi-resolution,
3D pyramid.

Running title: Coarse-to-fine 3D Surface Extraction

1 Introduction

Acquisition of 3D data, particularly in biomedicine, has become more and more usual this last
decade. This kind of 3D data has the particularity to be “visually significant”, as far as it can
be perceived by a human observer.

Presentation of 2D data is trivial, but showing 3D data is a very difficult problem. In fact,
several goals can be given: visualization and rendering, access to specific information (e.g., slices,
grey levels), extraction of information (e.g., objects in 3D data, measurements of distances, areas,

volumes). All these issues have been more or less studied for the past years.
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Our own target is not to perform rendering: if rendering offers some possibilities to the
human observer to understand the 3D data (for instance using ray tracing, opacity, colors,
moving 3D data cube, etc), it does not provide any information which can be later used for a
post-processing. As the same line, showing slices or selected grey levels does not provide further
useful data.

Consequently, we are interested in extracting information necessary for automatic processing
of 3D data. This could be: defining the objects, computing their position and size, recognizing
them, etc.

Unlike 2D data, for which everyone can rather delineate objects on images, no tool can
be provided to delineate 3D objects with a computer correctly. As a consequence, we base
the extraction of objects from 3D data on the grey level information. A basic method for
that is the Marching-Cubes algorithm [27], which extracts iso-surfaces for a given grey level,
but many others exist (e.g., simplicial decomposition [13], digital surface tracking [14]). They
provide a triangulated surface fitting a given grey level. With some improved algorithms, the
computed surface is topologically consistent (i.e., closed and oriented). But iso-surfaces are too
constrained, and we would like to obtain objects that can be at varying distances from iso-
surfaces if “necessary”. “Necessary” would mean that the surface can be somewhat “soft”, more
or less regularly sampled, and that other kinds of information than iso-potentials could be used
(grey levels, similarity, gradients, etc).

To extract objects from 3D data, we propose a generic deformable model based on a tri-
angulated mesh whose main characteristics are: shape recovery is performed via internal and
external forces; no a priori is made on the topology of objects; the model automatically adapts
its topology according to the geometry of its vertices; detection and resolution of topological
breaks are optimized by regularizing edge lengths over the whole mesh; the mesh can be refined
to be consistent with the image resolution; anisotropic images can be processed indifferently.
With this lexible formulation, new constraints can easily be added (e.g. user interaction, forces
derived from precomputed edge images).

Moreover, in order to provide a coarse-to-fine approach to the shape recovery problem, an
algorithm of pyramid construction with any reduction factor is presented. The model can thus
evolve in a pyramid of volumetric images to quickly outline shapes and progressively extract
finer and finer details. The speed-up offered by the introduction of multi-resolution is exhibited
and the robustness of this approach is tested.

In section 2, we recall related work on shape recovery by deformable models. In section 3,
the physical and geometrical formulation of the model is presented; problems linked to variable
and complex topology are also tackled in this section. Section 4 presents the construction of the
pyramid of 3D data, the embedding of the model in this pyramid, and the coarse-to-fine process.
In section 5, algorithms of shape recovery with or without multi-resolution are described, and
their performance are compared; we test the robustness of the model on various databases, and
we show several applications.

2 Related work

Deformable models are particularly suited to the problem of extracting objects from volumetric
data. They are intensively used in segmentation [20], mapping [28], tracking and motion analysis
[34] and non-rigid modeling [36]. Deformable models have various formulations :

Parametric form. Models based on quadric, superquadric [2, 38] and hyperquadric [21] seg-
ment images by computing both local and global parameters. In [38], a set of forces
computed from the image and from model properties guides the surface towards the de-

sired solution. In [2], several global parameters are computed with a least-square method
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and then the result is sharpened by adjusting a control-box. In all cases, segmented objects
must be homeomorphic to a sphere for correct results. The snake representation introduced
in [20] is also a parametric model that segments images by energy minimization. Examples
of three-dimensional extensions to snakes are parametric surfaces [7] ; in this approach, a
finite element method is used to achieve minimization. The result has the same topology
as the initial surface. To overcome this limitation, the surface snake can be embedded in
the image grid [30] and the tessellation of the surface is updated after each step. In this
extension, the model is no more parametric but rather related to deformable meshes.

Implicit form. Implicit models are widely used in the context of image synthesis. Some authors
have proposed the use of implicit models in the context of MRI segmentation [40] and shape
modeling [29]. Both methods use functions from R* to R to represent variable topology in
R3. Equations are solved by embedding the model in the image grid. A multi-resolution
approach [40] or a restriction of the equation domain to a narrow band around the active
shape [29] can be used to reduce the computational cost. Geometrical features can be
extracted from a polygonal approximation of the implicit model.

Mesh form. Deformation is performed by constraining the model on its vertices [31]. Many
deformable or adaptive meshes have been proposed. Some of them can handle objects
with no a priori on their topology: simplex meshes as proposed in [8] are capable of rep-
resenting any oriented two-manifold (even with boundaries); the user interacts to perform
topological breaks. The mesh is considered as a mass-spring system whose nodes are its
vertices. Regularization constraints or user constraints are thus easily defined. Some au-
thors have proposed models whose evolution is not governed by a dynamic. Cubic spline
surfaces as proposed in [25] modify their topology by using a series of three-stage evolution
(contraction on convex areas, then contraction on hyperbolic areas, and after contraction
on concave areas). Bicubic spline surfaces presented in [17] are more focused on the com-
putation cost than the previous model: an iterative Newton minimization method is used
to extract objects from distance transform images; the surface parameters are decoupled
to speed up the computation of each iteration; the drawback is that this model cannot
recover complex shape.

In this article, we present a generic model for recovering shapes or regions and extracting
surfaces from three-dimensional data, for computing geometrical and topological informations,
and for visualization. The model is flexible enough to be used as a complementary tool for
segmentation, tracking, or matching. These properties induce the following constraints on its
formulation:

e The model is explicit because providing geometrical (area, volume, local curvature) and
topological (Euler-Poincaré characteristic) information is of great interest in clinical appli-
cations.

e The model is locally and globally deformable to perform a wider range of tasks and there-
fore has a dynamic topology. It can represent every kind of closed and oriented two-
manifold (i.e. oriented two-manifold without boundary). In this way, no a priori knowledge
on the topology of the final shape is needed.

e The evolution of the model is determined by the constraints applied on vertices. Con-
straints are either internal (elasticity, rigidity) or external (interaction with images or with
user-specified constraints).



3 Presentation of the deformable model

3.1 Choice of representation

Our model is based on a triangulated surface that may have several connected components.
All components are closed and oriented. The data structure minimizes the memory space: each
vertex has a set of parameters (coordinates, normals, speed) and an oriented list of its neighbors.
Hence, all oriented combinatorial two-manifolds without boundary can be represented [16] (refer
to [12] for a definition of combinatorial two-manifolds). Boundaries are not allowed because they
introduce ambiguities in topological accidents and need special handling of their constraints.
Moreover, boundaries in surfaces are useless to recover the boundary of a volumetric object (the
boundary of a three-manifold is a two-manifold without boundary).

The model does not intersect itself in the Euclidean space: during its evolution, the em-
bedding of the model always represents the boundary of a volumetric object. A set of simple
geometrical constraints is applied on the model to optimize both detection and resolution of
topological accidents. Therefore, the model can adapt its topology to the geometry of its surface
without any interaction of the user.

The mesh is considered as a set of particles linked with spring forces [1, 11]. External
constraints are applied on vertices. As a consequence, image resolution and mesh precision must
be similar.

3.2 Geometry and topology

A model based on triangulated meshes offers some immediate advantages: simplicity, speed and
fast rendering. To these points we can add the opportunity to extract features of the object, such
as the area and the volume defined by the object, moments or topological information. Local
curvature can be approximated [5], geodesic distances on such surface can also be computed
[41]. Thus, triangulated meshes provide an efficient tool to shape analysis.

A major problem that arises in shape recovery or segmentation is the possible complex
topology of objects in 3D data. As a matter of fact, parametric models are bound to their
intrinsic topology. Implicit models are naturally able to dynamically modify their “topology”
in R? but this “topology” is never explicit. Currently, one classical approach is to initialize the
deformable model with an estimation of the topology of the final shape [1, 10]; the model is
then deformed to fit the object more precisely. These methods perform well in the recovery of
unstructured 3D data but they are not suited to volumetric data. Some deformable models offer
dynamic topological modifications with user interaction or validation [8], or by performing series
of contraction [25].

As far as we know, only the dynamic model presented in [30] automatically modifies its
topology with regards to its variable geometry. It uses a simplicial decomposition of the image
to segment: a set of tetrahedra is thus partitioning the image. At each step, movements of every
vertex are computed. The moved vertices belong to a new set of tetrahedra. By analogy with
a flame propagation algorithm, the model keeps track of the “burnt” vertices of the simplicial
grid, which the surface has already crossed. By combining this information to the new set of
tetrahedra, the model extracts the “surface” at the next time step. The nodes of the “surface”
are recomputed at each iteration with a method similar to a Marching-Tetrahedra [13]. This
reparameterization performs topological transformations in an implicit way. However, the model
is bound either to inflate everywhere or to deflate everywhere. Therefore, it is delicate to modify
the parameters of the model during the evolution or to provide a flexible interaction to the user.
Tracking of surfaces in spatiotemporal data is also difficult. Besides, the accuracy of the model
is linked to the resolution of the simplicial grid: increasing the resolution by two thus requires
eight times as many tetrahedra.



In this article, we propose a model that adapts its topology to the geometry of its vertices at
each step, without any user-interaction or any grid embedded in the image; topological modifi-
cations are locally done. The method is based on global geometrical constraints applied to the
vertices of the model (see [22] or [23] for a precise description).

We denote 7T the triangulated mesh, Sy the set of vertices of T, s the cardinality of S7 (i.e.,
the number of vertices). If U € S, then V(U) is the set of the neighbors of U, d(U) the number
of neighbors, (U;),, d(U) the oriented list of the neighbors of U, u the coordinates of U. We
also denote #F the cardinality of a finite set F.

We introduce an invariant ¢ (6 > 0) which is associated with the mesh. Three geometrical
constraints are derived from this invariant. They determine the sampling of the mesh:

VU, V)e S xSr/V eV{U), 6 < |u-v]| (1)

VU, V) € Sy x Sy V € V(U), u—v| <256 @)
2.5

V(U,V) e ST xS/ V ¢V(U), —=d<[u-v| (3)

V3

Constraints (1) and (2) express the upper and lower bounds of one edge length. They force
the triangulated surface to remain rather regularly sampled. The fact that constraint (3) is not
satisfied for a couple of non-neighboring vertices expresses a collision between two distinct parts
of the surface. This constraint is used to detect self-intersection.

The numerical constant of (2) ensures that constraint (1) is followed after the creation of a
vertex on the problematic edge. The numerical constant of (3) is the longest distance between
a vertex of the surface and the three vertices of a facet which the vertex is going through. We
assume that movements of vertices are small and that the inversion operation is used when-
ever triangles are too elongated (see Figure 1a). Under these two hypotheses, correct collision
detection is achieved by this constraint !.

Computing distances between vertices is very fast for (1) and (2) and checking these con-
straints can be done in O(s). Constraint (3) over the whole mesh is checked in O(slog(s)) with
a point octree. This point octree must be computed at each iteration. Note that the test of
constraint (3) can be performed even faster — theoretically in O(s) — with a discrete “image”
gathering vertices at discrete positions; in this article, only the point octree algorithm has been
implemented. We do not use algorithms for collision detection based on OBB-trees [15] because
they are optimized for rigid meshes with motion. Besides, collision detections based on hierar-
chical mesh representation [39] need fixed topology and are not suited to models with dynamic
topology.

3.3 Topological changes

The model changes its topology according to the classical Eulerian topological transformations
of creation, deletion or inversion (see Figure 1 in case of violation of (1) or (2)). These transfor-
mations are performed in O(1).

Non-Eulerian topological transformations of closed and oriented surfaces that evolve in the
Euclidean space are described on Figure 2. During their evolution, these surfaces can mainly
meet two different transformations (refer to [23] for further details): azial transformations, where

'Tf these two hypotheses are omitted, then the numerical constant of (3) should be set to v/19/2 (provided
the numerical constant of (2) is 2.5). With these constants, it can be shown that the combinatorial triangulated
surface is “embedded” in R® as a 2-manifold without boundary.
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Figure 1: (a) A creation or an inversion is done if the couple (U, V') does not verify constraint
(2) ; (b) A deletion is done or an annular problem is detected when constraint (1) is not satisfied
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Figure 2: Description of the four main topological accidents for a closed oriented surface in R?
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two parts of the surface which are not locally connected are colliding, and annular transforma-
tions, which occurs when a connected part of the surface homotopic to a circle is shrinking to a
point.

Therefore, we have first to detect when a non-Eulerian transformation must take place, and
secondly to exhibit the corresponding mesh operations.

Axial transformations. If equation (3) is not satisfied by a couple of non-neighboring vertices
(U,V), then two different parts of the surface are colliding. Now, these two vertices
may have common neighbors as it can be seen on Figure 3. Consequently, the fact that
constraint (3) is not verified may hide an annular transformation. So intermediary vertices
are created between U and its neighbors and between V' and its neighbors (Figure 4a),
and, only after, a triangulation is done between the neighbors of U and V' (Figure 4b)
(because of the intermediary vertices, U and its neighbors, and V' and its neighbors, form
two parts of the surface that are not locally connected).

Annular transformations. These transformations are detected with constraint (1). A tubular
part of the surface is collapsing onto itself. If a couple of neighboring vertices does not
satisfy constraint (1), then we have to check whether the neighborhood of these two vertices
is a tubular part of the surface. To do so, the value # (V(U) N V(V)) is checked. If this
value is equal to 2, then the two Verticeﬁs U and V are simply merged into one vertex



(2) (b)

Figure 3: These figures show several configurations where the geometric constraint (3) is not
satisfied : (a) no common neighbor; (b) one group of common neighbors; (c¢) two groups of
common neighbors.
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Figure 4: Implementation of axial transformations: (a) creation of intermediary vertices; (b)
triangulation between the two surfaces and deletion of the two old vertices.

at their mid-point. Otherwise, the neighborhood of U and V is so bent that it forms a
narrow tube (or possibly several narrow tubes joining up at this location). In this case,
the surface is cut in two along the edges UV, VO, OU — O is a common neighbor of U
and V', but OUV is not a face of the triangulated surface — (see Figure 5). After that,
the two created holes are filled in by two triangles, and the split vertices (U;V; and UaVs)
can be merged separately.

It is easy to show that the so-built transformations follow the expected variations of the Euler-
Poincaré characteristic. The proposed topological transformations obey both the evolution of
the geometry of the vertices and the “embedding” — a more correct word would be imbedding
— of the combinatorial surface as a two-manifold in R?® without boundary. Of course, there
may be three or more parts of the surface which are not locally connected that are colliding.
As well, a part of the surface which consists of several narrow tubes joining up at one place
may collapse onto itself precisely at this location. In these cases — which are very uncommon
but may theoretically occur —, the previous transformations are applied successively (annular
transformations are performed before axial transformations).

All non-Eulerian transformations are performed in O(1). Deletion of a tetrahedron can also
be done with the same performance. The creation of a tetrahedron is governed by the user.
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Figure 5: Implementation of annular transformations: splitting of the problematic set UV O in
two parts, then separate merging.
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Figure 6: Example of a global refinement over a polyhedron with sixty facets: (a) before refine-
ment; (b) after first pass; (c) after second pass.

3.4 Global refinement

We propose an Eulerian transformation denoted A L that globally refines any triangulated mesh
3
1

(see Figure 6). This transformation reduces the average edge length to 7 of the old one, thus

increasing the sampling by v/3. This transformation allows multi-resolution modeling. It can be
decomposed into two stages:

1. In a first pass, a new vertex is created at the mid-point of each facet of the model; the
vertex is connected to the three vertices that bound its facet.

2. In a second pass, the edges which connect the old vertices (those which were not created
during the first pass) are inverted in order to regularize edge lengths.

This algorithm reduces the average edge length to 1/4/3 of the old one. The global associated
invariant ¢ must also be divided by /3. The transformed surface possesses about three times as
many vertices as before transformation. This refinement algorithm has been preferred to another
one based on the creation of one vertex on each edge, because the former is adapted to the data
structure of the mesh: this structure where every vertex has an ordered list of its neighboring
vertices is consistent only when all face elements are triangular. This would be false during the
refinement process if the algorithm created four triangles on each triangle.



3.5 Dynamic

The mesh is assimilated to a dynamic system of particles, which are the vertices of the mesh,
following both constraints of other particles and of environment. Thus, interactions between
particles occur only between direct neighbors and the computation time of internal constraints
is in O(s) for the whole mesh. We have chosen a dynamic evolution for the vertices of the model
(vertices undergo inertia: mass m is greater than zero). This choice is motivated by our personal
experience. We have indeed observed that the model has better convergence properties when
mesh vertices undergo an inertia (in particular when internal forces are strong). Besides, the
evolution of the mesh is then less sensitive to the parameters (especially to the damping factor).

Let X be a vertex of S7. We denote x its coordinates (x its velocity and X its acceleration).
The Newtonian law of motion is applied on each vertex:

mx + X = fint + feuts (4)

where m is the mass of the vertex and v the damping factor, f;,; the internal forces on
X, f.;: the external forces applied on X. ~ must not be too low to escape oscillations and
not too high to avoid slow displacements [1]. After numerous experiments, we have chosen to
integrate equation (4) by Runge-Kutta’s method. This method is slower than a simple Euler’s
method, but presents a better behavior when internal constraint are strong. The robustness of
this method is nevertheless limited by the topological transformations which are unpredictable.

Unlike snake-like models, we do not perform any energy minimization. In fact, our approach
shares several similarities with an energy minimization, because minimization is often performed
with the associated Euler-Lagrange equation. It is easy to see that the two internal forces which
we defined in Section 3.7 correspond to the regularization terms of first and second order of
snakes. The “energy” of the mesh is thus minimal when it reaches a stable position. Several
models use an approach similar to ours [9, 30].

3.6 Evolution

Depending on the application, the triangulated surface can be initialized with any number of
non-intersecting icosahedra scattered in the volumetric image, or for instance, one icosahedron
including the whole volumetric image. The surface may then optionally be refined (see sec-
tion 3.4) until the density of the mesh corresponds to the application. After that, the surface is
free to evolve according to its dynamic and geometrical rules.

The algorithm carrying out the evolution of the surface can be summarized as an iteration
of the pseudo-code procedure of Figure 9. Note that vertex movements have to be bounded to
check the geometric constraints correctly. Two methods can be implemented to limit them at
each iteration: one can impose an upper bound to the speed of each vertex or the time scale
(used to integrate the evolution equation) can be adjusted according to the speed of the fastest
vertex. For the purpose of shape recovery, the first method can be preferred. For a correct
physical behavior, it is better to choose the second one.

A simple heuristic is used to process motionless or slow vertices less frequently than mobile
ones. It is indeed useless to check the geometric constraints of these vertices at every iteration.
The processing periodicity of each vertex is thus made dependent on its speed. A maximal
periodicity of 50 is imposed. The periodicity is one when the vertex movement is greater than
0.10. Between these upper and lower bounds, the periodicity is linear for the speed. This
heuristic is particularly efficient in a multi-resolution approach, where lots of vertices are quickly
near their final position. Note that the dynamic of every vertex is computed at each iteration,
regardless of its speed.



3.7 Internal forces

We define two internal forces that depend on the neighborhood of each vertex: a force f. of
curvature regularization which smoothes the shape, and a spring force f, which spreads localized
deformations along the whole surface (it is the classical spring force when the rest length is null).
If X (resp. Y) is a vertex, then x (resp. y) expresses its coordinates, X (resp. y) designates the
mid-point of all the neighbors of X (resp. Y). We define at each vertex the following force:

VX €57, f(X) =a. | R—x——== > (F-¥) |, (5)

where «, is the “rigidity” coefficient. Let d7 be the edge rest length for the whole mesh.
This parameter can be set to null to minimize the area of the mesh; it can be set to a value
given by the user to force the model to adapt the length of all edges; it can be set to the average
of all edge lengths to regularize them along the entire mesh. The following force is defined at
each vertex:

yiix, (6)

VX €S LX) =ae ) (lly —xll —dr)

YeEV(X)

where o, is the “stiffness” coefficient.

These two forces follow the action/reaction principle. The first one brings back vertices to
their local tangent plane and minimizes surface curvature (it simulates thin plate behavior).
The second one regularizes the edge lengths along the whole surface and expresses the binding
energy. If the rest length is set to null, then the model tends to minimize its area (the model
acts as a membrane). Note that a non-null rest length with strong elastic force can make the
system rather unstable (it is also true in the 2D case, as was stressed for snakes by [26]).

3.8 External constraints

Shape recovery is one of our main purposes. To perform this task we introduce two external
forces on vertices. They represent the influence of the image on the embedded surface. The force
f; will guide the surface towards an iso-potential value of the image. The force fy; will direct
the surface to regions of maximal or minimal intensity value. For the applications we present
here, external forces are not computed by a contour tracking or reconstruction algorithm such
as in [32]. Moreover, the image is not pre-processed, and forces are not computed using a local
scanning of the voxels surrounding the vertices [33]. External forces are just computed from the
raw data. Both forces are normalized by the geometrical invariant ¢ (see section 3.2), so that
the image influence is proportional to the mesh density.

The discrete volumetric image I is transformed into a continuous scalar field Iy, called
image potential field, by a tri-linear interpolation. This potential field is normalized to [0, 1].
The attraction towards an intensity value in this field is simply expressed by:

VX, f[(X) :5041 (W[—H[(X)) ny, (7)

where aj is the coefficient of attraction toward a given iso-potential surface of value w7, and
nyx is an approximation of the normal vector at vertex X. The force f; is meant to search for
the iso-potential surface of value 7;. Its principle is to inflate or deflate locally the model as
long as it does not lie on the desired iso-potential surface. A positive value is expected for the
coefficient oy when the potential field tends tolvg)ard one ad infinitum (objects are composed of



voxels whose intensity value is lower than «y), a negative one when it tends toward zero (objects
are composed of voxels whose intensity value is higher than a;).

The discrete vector image VI is the discrete gradient of I computed by a Sobel operator. It
is bounded by a maximal value given by the user, then transformed into a continuous vector field
IIy; by tri-linear interpolation. The following force moves the surface along the local gradient
of the image:

VX, fyr(X) = ((avr — Bvr) vr(x) - nx)nx + Byllvr(x)), (8)

where avyy (resp. Byr) is the coefficient of gradient attraction along ny (resp. nx=). The force
fyr is a classical gradient ascent when ayy and vy are equal and positive. The coefficient ayy
modulates this force along the local surface normal, and SByr along the local tangent plane.

This force can simulate the external energy of a snake model. Let J be the image of interest.
Let I be the norm of the gradient image of J (possibly convolved with a Gaussian kernel). It
is easy to see that our model is attracted to strong contours of image J when it is guided by
force fy; on image I (with positive coefficients). This approach to edge finding could certainly
be improved by using an edge image (computed by a Canny-Deriche operator for instance).

3.9 Example on a potential function

Figures 7a-e exhibit the behavior of the model during the shape extraction from a potential
function: the expected shape is a chain with two intertwined rings. This potential function
is similar to a distance transform image, which represents the distance to the torus skeletons.
The model is initialized with a refined icosahedron including the whole shape. In these figures,
the shape was extracted with external force f; (parameters ay = —1.0 and 7y = 0.5) together
with smoothing internal constraint f. (e, = 0.1) and regularization constraint f, (ae = 0.1).
Ninety iterations are necessary for the surface to lie precisely on the shape. We also initialized
the model with a set of 11 x 11 x 11 small bubbles and we have run the process on the same
potential function, but with no internal constraint. Figures 8a-f show that the model is robust
compared with its initialization.

4 Image workspace and pyramids

4.1 Multi-scale approach with 3-D pyramids

A straight approach to image segmentation is not fully satisfactory. The influence of a potential
function derived from an image is indeed localized around vertices (according to the definitions
of the external forces f; and fy;) and does not make sense if the mesh has a resolution lower
than the resolution of the three-dimensional image. The following two approaches can be taken:

e The first one consists in using a triangulated mesh with a density comparable to the
resolution of the image. The surface is then consistent with the frequency domain in
which it evolves. One drawback is the need of using a very fine surface: the computational
cost is increased accordingly.

e The second one does not make any assumption about the resolution of the mesh. Forces
are computed from the image by a local scanning over a sufficiently large neighborhood of
voxels. A pre-processing on the image can improve this approach [33].

In order to take advantage of both solutions, we propose to compute only once the influence
of the image areas at different scales. This hybrid solution can be done by computing a three-
dimensional image pyramid, where each resolilfion (i.e. each image) corresponds to distinct
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Figure 7: Mesh evolution during the recovery of a chain shape composed of two intertwined tori:
(a) at initialization; (b) at iteration 20; (c) at iteration 40; (d) at iteration 60; (e) at iteration
90.

(b) (c) (d) (e) (f)

Figure 8: Mesh evolution during the recovery of a chain shape composed of two intertwined tori:
(a) at initialization; (b) at iteration 10; (c) at iteration 30; (d) at iteration 40; (e) at iteration
70; (f) at iteration 160.

refinement of the triangulated mesh. The model will rely on the results obtained at a coarser
resolution in order to start the computation at a finer resolution with more efficiency.

Pyramidal image representations as proposed in [37] have been the first ones to define and
exploit image reduction. However several purposes may be sought, among which are the fast
computation of parameters, compression, signal decomposition, segmentation, etc [19].

Pyramids of frequency decomposition presented in [3, 4] are more interesting for our purpose:
they provide a set of images at decreasing resolutions which are closed to the visual perception
of an observer at an increasing distance. The application of a Gaussian kernel filters high
frequencies. After this filtering, a sampling of lower resolution provides an image of higher level.
Practically, one operator combines the operations of filtering and re-sampling. This process
builds the Gaussian pyramid, taking advantage of the fact that a Gaussian kernel does not
create any wrong contours. When its size is 5 X 5 in a two-dimensional space, the waveband is
reduced from one octave, hence the sampling frequency is reduced from the same factor.

To get the best out of pyramidal representations we need to extend pyramids of frequency
decomposition to volumetric images composed of non-cubic voxels, and to link them together
with our model of surface representation. Because the preceding pyramids are not always suited
to 3D applications that are based on the embedding of a triangulated mesh into data, we have
developed an algorithm for creating volumetric pyramids of any reduction factor. Therefore, the
adequacy between the density of the embedded mesh and the resolution of the pyramidal image
is preserved.

4.2 3D image pyramids of any reduction factor

The algorithm of pyramid construction we propose here does not assign a specific value to the

reduction factor. Thus, any refinement can be used for the triangulated mesh. For instance, the

refinement presented in section 3.4 requires a non-rational reduction factor of v/3. We can notice

that the authors of [35] have adapted the construction mechanism of discrete pyramids to allow

rational reduction factors. However, the so-defined transformation is not a convolution process.

Consequently, the filters are not low-pass ones and the resulting signals are not well defined. In
12



Procedure Evolution ( Mesh & T, const Image & 1)

for each Vertex U € T,

‘ compute U.£;,;(T") and U.fe.(1)

for each Vertex U € T,
application of the Newtonian law of motion on U with the previously computed At,
U.-fins and U.f.;;; make effective movement of U.

ListOfVertex L <— all vertices of T'

Boolean © <— false

repeat

while L.isNotEmpty() do

Vertex U <— L.pop Vertez ()

for each Vertex V' € U.neighborhood ()
for (U,V) check constraints (1) and (2); perform transformation (creation,
deletion, inversion, annular transformation) accordingly; for each Vertex W
involved in transformation, L.putAtEnd (W)

end for

done

Update T'.pointOctree and extract pairs ( Vertez U, Vertex V' ) which do not satisfy

constraint (3)

if A(U,V) then = +— true

else
for each (U,V), perform axial transformation; for each Vertex W involved
in the transformation, L.putAtEnd(W)

endif

until z

end

Figure 9: This procedure describes the main steps of one iteration of deformation.

order that the consistency of the filtering/re-sampling operation be verified, the reduction factor
per dimension. denoted p, must be less than 2.

We will first recall the construction of a classical Gaussian pyramid. The successive levels
of that kind of pyramid are computed with the convolution of a Gaussian kernel of side 5 pixels
(or voxels). It guarantees a low cost filtering without a phase translation linked to a reduction
factor of two for each image dimension [6].

Let Iy be the initial image of 3D voxels and the base of the pyramid. The computation of
I+ (image of level h + 1 in the pyramid) from I;, (image of level h in the pyramid) is given by
the discrete convolution formula:

It (@5 k) Z Z Z w(m,n,p) - Iy(2i' +m,25" +n, 2k +p), (9)
m=—2n=—2p=—2

where w is a Gaussian convolution kernel of size 5 voxels: (Z[1 4 6 4 1])3.

Within our context, two major constraints have to be taken into account: voxels are not
bound to be cubic (sampling frequencies are highly dependent on the acquisition devices and
are not identical in the general case), the reduction factor of the re-sampling must be coherent
with both the surface representation and its re&pement.



Therefore the previous formulation (9) is not usable as is.

Making our voxel space isotropic in order to apply convolution operators coherently would
be very memory intensive (the resolution would become the lowest common multiple of the
sampling frequencies). Instead, by defining a real continuous workspace corresponding to the
discrete structure containing the initial data, we will realize the convolution operations efficiently.
In the following, a discrete image refers to the discrete volumetric data structure whose nodes
(i.e. vozels) store intensity values. A real image designates the continuous scalar field obtained
by the “embedding” of the discrete image into a subset of the Euclidean space: this “embedding”
defines a real size for the image, which is generally not proportional to its discrete size. Intensity
values in this field are computed by tri-linear interpolation. Images intensities are supposed to
be normalized to [0, 1].

Our goal is to determine a list of volumetric discrete images Iy, I1, ... , I, representing the
three-dimensional pyramid. Iy is the initial image (i.e., the image I given for processing) of dis-
crete size (M, N, P) and of real size (i, v, 7). This image has the greatest amount of information.
I, will be the image that includes only the lowest frequencies. Let M}, Ny, and P}, be the sizes
of the discrete image I, for h between 0 and m. Their values are still unknown. Let Ej be the
Cartesian space My, X Np, x Pp,. With these definitions, a discrete image I}, is a function from Ej,
towards [0,1] C R. Let Vj, ..., V;, be the pyramid of real images corresponding to the pyramid
of discrete images. Any real image V}, is given by the embedding then by the interpolation of the
discrete data of I, (i.e., V}, =II;,). Every so-defined embedding preserves the real size (y, v, )
of the initial image Iy, because these images are meant to represent the same image at different
scales.

We denote E the space defined by the real image of size [0, ] x [0,v] x [0,7], which is a
subset of R3. Because each I, represents at different scale the same real image, they all have a
real size of p,v,m. The embedding of a voxel (i, 7, k) of a discrete image I, into the real image
space E is given by the transformation 7; (depending on the level of the pyramid) as below:

77L : E — E
k) = (G DG+ D kD) (10)

We call unit of the real space and we denote Uy, the value min(MLh, NLh, Plh) It is the smallest
distance between the embedding of two voxels in the real image. In the case of an anisotropic
image, the convolution mask applied during the construction must indeed be isotropic with
respect to the real space where the image is embedded. If this is not properly done, pyramids
will tend to preserve the contours following a direction where image resolution is fine, and to
smooth too much those following a direction where image resolution is proportionally coarse.
The unit Uy, provides the isotropic distance separating the points of the convolution mask.

The discrete sizes My, N, P, and the measure unit U correspond to a discrete image Ij,
and its associated real image V. Their values are defined recursively as below:

My=M No=N Py=P Up = min(u/M,v/N,n/P)

Mpi1 = L%J Npy1 = L%J Phi1 = {%J Uh+1 = pUp (11)

Let R = (7,7, k") be a voxel of the discrete data of I, 1. Our goal is to find its value for any
(i',5',k") € Epqq. Its embedding Rg in the real image Vj,41 has coordinates of Tp41(7, 5, k")
(see Figure 10a).

In order to establish the value of R, the convolution operation is defined over points of Vj,.
The central point has the same position in V}, and in V},;1. The localization of the other points
involved in the convolution (5% — 1 in 3D for a kernel of size 5) is determined with the unit Up,:
V}, is thus discretized around the point Ry (see Figure 10b). Supposing I}, is known, then V}, is
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[0,u]x[0,V]: real image
[0,M—1]x[0,N,—1]: discrete image I},
[0.M},; —11x[ONy,,; —1]: discrete image Iy,

@ : Points of I, localized in the real image

: Points of I, localized in the real image
@ : Points of V;, calculated for the convolution
and providing I},
@ : Points of I}, involved in the calculation of
the points of V, which form the convolution
mask

Figure 10: View of a convolution computation in 2D: (a) the two superposed levels I}, and Ij 1;
(b) computation of level I; 1 together with the localization of the convolution mask applied to
one point; (c) application of the convolution mask over level I, discrete points of Ij, involved in
the computation are also displayed with black circles.

defined by II7,. We obtain the convolution formula:

Inga (7,5 K) Z Z Z (m,n,p)Vi (Thaa (@', 5, &) + (mUn, nUp, pUp)) (12)

m=—2n=—2p=-2

To compute points at the boundary of I 1, the boundary voxels of image I, are replicated.

Because of the unknown reduction factor, the 53 points involved in the convolution do not
coincide with given points of I, in the general case (see Figure 10c). Each one of these points is
computed with a tri-linear interpolation from the 8 data points of I}, which surround it.

The Gaussian convolution kernel (of size 5%) is applied successively along the three dimensions
because of its separable property. We can estimate the savings offered by this optimization (the
following notations are used: let ¢’ be the access time to a point value, t; the running time of a
classical algorithm, ¢5 the running time of the optimized algorithm):

11 to
7= = 5" M1 Npt1 Prsa = SMp 1 NpPp + 5Mp 1 Np1 Pr + 5Mp 1 Npy1 Phya
to 1
H — = 1 13
ence, 25(# +p+1). (13)
The optimized algorithm is thus faster when the reduction factor p is between 0 and —1%\/@

(about 4.4). An overview of the 3D pyramid C(igstruction algorithm is given in appendix A.
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Figure 11: Resolution of a pyramidal image and density of a triangulated mesh: (d) evolves in (a), (e)
in (b), (f) in (c).

4.3 Image-model relation

In section 4.1 we have chosen to express surface-image interaction with forces locally computed
around each vertex. Using a pyramid requires a model sufficiently flexible to adapt its density to
image resolution. The edges of our model should neither be too long, otherwise high frequency
contours could be missed, nor too small, because they would then represent the decomposition
of a small contour of two voxels. In order to obtain a correct adequacy between the surface
and the images of the pyramid, we first examine the relations linking the model density to the
resolution of an image, then we show how to maintain the surface-image adequacy during the
whole coarse-to-fine process.

According to constraints (1) and (2), the mesh density is defined by the invariant . The
coarse-to-fine approach implies a refinement of the model every time it goes down a level of the
pyramid (see Figure 11). The invariant ¢ is thus dependent on the image of the pyramid in
which the model is currently evolving (i.e, 0 is a function of the level h). Let d;, be the invariant
d of the mesh at level h of the pyramid. Let dj, (resp. Dj) be the minimal (resp. maximal) edge
length of the mesh at level h. Constraints (1) and (2) give dj, = 0p, and Dy, = 2.5 dp,.

The image resolution is closely linked to the unit Uj. In this section, we suppose that images
are isotropic (see Section 4.4 for anisotropic images). Edges of the mesh represent discrete
contours of the voxel image. Both 6-connected contours and 26-connected contours are likely
to have corresponding edges. Consequently, an edge of the mesh may be smaller than two 6-
connected voxels, which implies d, < U, and may be longer than two 26-connected voxels,
giving Dy, > /3 Uj,. Hence,

20y (14)
V37
Equation (14) constraints mesh density as a function of image resolution.
A surface of given invariant 6 may be built only at initialization. After that, modifications
of the invariant can be limited by the current mesh geometry. The refinement transformation
A . (see Section 3.4) reduces the average edge length to 1/4/3 of the old one. Therefore we

apply to the invariant a reduction factor whose value is /3. In order that the inequality (14)
be respected at the initialization and during all successive levels, an identical reduction factor is
chosen for the pyramid construction; thus d;, and Uy, are recursively defined by:

_ _ 3 Om = Oinit, On = Ony1/p
p=vV3andVh=0...m —1, { Up = U, Upsy = pUp (15)

At the initialization moment, a bubble or a set of bubbles, whose invariant d;,;; is consistent
with (14) at level m, is created. During the eV(iIGution and the coarse-to-fine process, definitions



of (15) ensure a correct surface-image adequacy whichever are the iteration or the current level
in the pyramid (i.e., 05 and U follow (14)). The time when the mesh is refined and the
resolution increased is determined by a criterion based on a motion estimate of the mesh (refer
to Section 5.1).

4.4 Mesh evolution in an anisotropic image

During the segmentation process, edges of the mesh have to keep their meaning with regards to
the voxel space. On one hand, if we decide to work in the real image with size (u,v, ), edges
lose their consistency with respect to the resolution of data. On the other hand, mesh evolution
in a real image where voxels are cubic modifies the constraints that must be applied: forces lose
their physical interpretation. Three different ways can be outlined to tackle this problem:

e The surface evolves in a real space of size (u,v,7) and follows the physically-based con-
straints. Surface-image consistency is achieved only on the axes of fine resolution.

e The surface evolves in a real space defined from the space (u,v,7) by affine transforma-
tion. This space has the same proportions than the discrete image it interpolates (its
sizes is (TMp, 7Ny, 7P;)). The behavior of internal forces is slightly different from the
corresponding forces in the real physical space.

e The surface evolves in a real space of sizes (u, v, 7). An anisotropic metric is coupled with
this space. This metric is defined from the current discrete image (M}, Np,, P): adequacy
between the surface and the image is achieved along all axes and internal forces keep a
physical meaning.

The first method gives good results with a weak anisotropy; the second one provides better
results when the anisotropy is more significant; the last one is theoretically the best solution
whichever is the context but has the slowest implementation. For most applications dedicated
to volumetric data analysis, exact physical behavior is not critical and the second method is
preferred to the latter.

5 Implementation and results

5.1 Algorithms of surface extraction

Figure 12 presents the algorithm of shape recovery on an image and Figure 13 presents the
coarse-to-fine algorithm on a pyramid of images. The convergence criterion, which decided
when the mesh is refined and goes down one level in the pyramid, is the average kinetic energy
along the normal to the surface (the other part represents the sliding of vertices over the surface).
This energy is normalized by the invariant J§, and also by the time step. This criterion may
optionally be sharpened with a maximal speed check or a validation by user interaction. Other
criteria may be added easily.

The model is tested on a synthetic fractal image (the classical Sierpinski’s cube) to point out
both topological transformations and multi-resolution approach. The image size is 81 x 81 x 81.
The topology of the shape to recover is highly complex and unpredictable. The model has
the expected behavior which is to extract first areas of higher density (see Figure 14). The
physical parameters were set to the following values: «, = 0.05 and a, = 0.001 for internal
forces, ar = —1.0, nry = 0.4, ayyr = 0.0 and Byy = 0.0 for external forces. Note that n is
slightly decreased for the uppermost levels of the pyramid: the fractal object has indeed an
empty volume ad infinitum and therefore a null density.
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Procedure RecoverShape ( Mesh & T, const Image & I, const double € )

/* Adequacy surface-image */

while 7.0 > I.U do

‘ T.globalRefinementA 1 ()
73

done

/* Deformation until a stable position is achieved */

repeat

Evolution (T, I)

double E «— T.computeKineticEnergyAlongNormals()

until £ < e

end

Figure 12: Algorithm of shape recovery over a given image. The mesh T given as initialization
is refined as long as its density is not consistent with the resolution of image I.

Procedure PyramidalRecoverShape ( Mesh & T, const PyramidOfImage & P,
const double €, const int m )
mt i —m
while : >=0 do
RecoverShape( T, P.image(i), € )
i+—i—1

done

end

Figure 13: Shape recovery with a pyramidal approach: m is a given level in the pyramid P of
images. The mesh evolves in each image P.image(i) of the pyramid with ¢ from m to 0. The
mesh T is given as an initialization on the coarser level of the pyramid. After convergence on
level 4, the result (i.e., T') is given as initialization for level 7 — 1. Refinement is done in procedure

RecoverShape().

Figure 14: Multi-resolution evolution of the mesh on a synthetic image (fractal volume of Sierpin-
ski): (a) after convergence on image I3; (b) after convergence on image Io; (c) after convergence
on image I1; (d) final result on Ij.
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5.2 Comparison of the two approaches on medical data

We compare the two approaches on a computed tomography of a head. Figure 19a displays a
volumetric rendering of this data (each intensity value has an associated opacity). The discrete
size of the image is 256 x 256 x 68 and its real size is 1.0 x 1.0 x 1.0625. The image is significantly
anisotropic, thus the second method described in section 4.4 is used to process it. Physical
parameters are set to the following values: «, = 0.4 for a gentle smoothing of the surface,
e = 0.0 because regularizing edges is not a critical point in our application, ay = —1.0 and
wr = 0.1 to track bone intensity value, ayy = 0.0 and Syr = 0.0 because gradient maxima do
not correspond to the shape to recover.

A pyramid P composed of images Iy,... , I, (m = 3) is built up from this data set with a
reduction factor of v/3. The process is run twice for comparison purposes on a Pentium 300Mhz
with 128Mb of memory:

e The process is run first on the volumetric image Iy without multi-resolution by calling the
procedure RecoverShape() with a bubble including the whole image. Figure 15 shows the
surface evolution: at first, the surface is automatically refined (at this time, the mesh has
more than 65000 vertices), then the surface slowly sticks on the outer part of the skull,
and afterwards goes inside to recover its inner part (orbits of the eyes, brain cavity, etc).
More than 700 iterations are necessary for the surface to rest perfectly on the inner part
of the skull.

e The process is now run on the pyramid P at level m: procedure PyramidalRecoverShape()
is called with the same mesh at initialization. The process waits for the convergence at
one pyramid level before going down one level. Figure 16 displays surface evolution with
a multi-resolution method. The surface, at first coarse, quickly outlines the skull shape.
Then, it relies on the shape extracted at one level to start the evolution on next level as
near as possible of the expected result.

The Figure 17 compares the behavior of both methods. The behavior of the first one (direct
approach) is clear. The kinetic energy curve shows the slow convergence of the model (see
Figure 17a) and the small variations of its number of vertices (see Figure 17b). At the beginning,
the mesh has more than 65000 vertices and, at the end of the process, about 120000 vertices. The
behavior of the second method (multi-resolution approach) is also displayed on theses figures,
and points out the evolution in four levels of the pyramid: the mesh has goes down a level at
iterations 400, 600, and 800. At the beginning, the mesh has only 6000 vertices, and more than
120000 vertices at the end. For this image, the surfaces obtained by these two methods have
an area that differs by less than 1.0% and a volume that differs by 0.3%. These (very) small
differences can be explained by the fact that the two surfaces may have stabilized in different local
minima. Both triangulated surfaces have one connected component and twenty-three topological
holes.

The Figure 18 shows the computation time of both methods and clarified the amounts of time
spent by the computation of topological operations (detection and resolution), the computation
of surface normals, and the computation of the model dynamics. Note that the computation time
of topological operations and of normals slightly decreased along with the model convergence
because of the heuristic presented in Section 3.6. The Table 1 displays the total computation
time (in seconds) for the two methods.

The skull is outlined with 3800 vertices in less than one minute. Two minutes later, the skull
shape is refined and has now 12000 vertices. Six minutes thirty seconds later, we have a skull
model composed of more than 38000 vertices. Thirty more minutes are necessary to achieve
convergence on the finest level (the model has more than 120000 vertices). The direct approach
is nearly three times as long as the multi—resollfgion approach.



Figure 15: Surface evolution without a pyramidal approach (no Gouraud shading is done): (a)
iteration 0 on image Iy; (b) iteration 200 on image Ip; (c) iteration 400 on image Ip; (d) iteration
1100 on image Ij.
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Figure 16: Surface evolution on a pyramid of images (no Gouraud shading is done): (a) iteration
399 on image I3; (b) iteration 599 on image I; (c) iteration 799 on image I;; (d) iteration 999
on image Ij.
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Figure 17: Two methods of shape extraction from volumetric data are compared on these graphs
(with and without multi-resolution): (a) evolution of the average kinetic energy accumulated
along the surface normals; (b) evolution of the number of vertices.

5.3 Other results

We have tested the robustness of our model and of the multi-resolution approach over different

kinds of volumetric data. The second data set is a phase contrast MR angiographic image of

the brain vessels and is more problematic for a pyramidal approach. The Figure 19b displays

a volumetric rendering of this data. Its discrete size is 256 x 256 x 124. Angiographic images
20



Table 1: Comparison between the direct approach and the multi-resolution approach: compu-
tation time on a computed tomography.

Image Approach T(s) on I3 T(s)on Iy T(s)onlI; T(s)on I Total
CT  multr- T 17,0 30,0 108,7 5438 Llmin 39s
resolution N 1,4 5,5 22,3 97,6 2min 27s

F 38,8 77,8 258,3 1242,6  26min 58s

Omin 57s 1min 53s 6min 30s 3lmin 24s  40min 45s

2701,7  45min Ols
553,8 9min 13s
3476,4  57min 56s
112min 128 112min 125

CcT direct

o Z 4

Symbols T';, N, F respectively designate the computation time of topological operations, of normals, and of dynamics.

Computation time of the direct approach (without multi-resolution) Computation time of the multi-resolution approach
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% Tf (dynamics) —— Tf (dynamics) ——
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Figure 18: Evolution of the computation time as a function of the iteration number: (a) compu-
tation time for a direct approach (in ms); (b) computation time for a multi-resolution approach
(in ms). As it can be seen on both graphs, computing the movement of vertices takes the longest
time and varies as a linear function of the number of vertices.

Figure 19: Volumetric rendering of two medical data set: (a) a computed tomography of a skull;
(b) a phase contrast MR angiography of the vessels of the brain.
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Table 2: Comparison between the direct approach and the multi-resolution approach: compu-
tation time on a MR angiography.

Image Approach T(s)on I3 T(s)only T(s)onI; T(s)on I Total
aRM multi- T 6,8 0,0 3,8 196,9  3min 27s
resolution N 1,4 0,0 0,0 26,4  Omin 28s

F 4,3 0,1 27,8 729.2  12min 415

Omin 13s Omin Os Omin 32s  15min 52s 16min 37s

1521,0  25min 21s
344,6  S5min 45s
986,4 16min 26s

47min 32s  4Tmin 32s

aRM direct

mZ 4

Symbols T', N, F respectively designate the computation time of topological operations, of normals, and of dynamics.

are highly contrasted. They are not suited to a pyramidal representation because vessels are
thin objects: therefore they are composed of high frequency information and little information
remains on the coarsest level of the pyramid. Consequently, the mesh extracts few data from
coarse levels. As shown in Figure 20, the model succeeds in following the vessels: connected
vessels are recovered on fine levels. Physical parameters were set to the following values: «, =
0.07 and a, = 0.0 for internal forces, ay = —1.0, 7; = 0.05, ay; = 0.0 and Sy = 0.0 for external
forces. The Table 2 displays the computation time on this database for the two approaches.

However, the surfaces obtained by these two approaches do not possess the same number
of connected components. In fact, the multi-resolution approach has kept only one component
(the only one with low frequency information) and has avoided several small components. The
volume contained in these surfaces differs by 3.7%.

=] Snake Quput Window

s ol W i 1 (= Snake Ouput Window N

(b)

Figure 20: Surface evolution during the recovery of brain vessels from an angiographic image
with a pyramidal approach: (a) after convergence on image I3; (b) after convergence on image
I5; (c) after convergence on image I; (d) final result on image Ij.

The model can also extract several structures from the same image. Figure 21a is a volumetric
rendering of a computed tomography of a child head. Figure 21b is a surface rendering of the
data with the iso-value 0.29. Figure 21c is the shape extracted by our model with force f; and the
same iso-value. Figure 21d displays the surface obtained with force f; and parameters ay = —1
and w; = 0.1. Figure 21e displays the surface obtained with force fy; and parameters ay;y = 0.1

and Byr = 0.05: the model has searched for maxima of intensity value and has thus rested on
22



the skull “surface” while filling the gaps in it (orbits, space between jaws, etc). Figure 21f is a
mixed view of these shapes.

(&

Figure 21: Comparison between the two forces f; and fy; on the same database (initialization is
the same in all cases): (a) volumetric rendering; (b) surface rendering with iso-value of 0.29; (c)
extraction of skull shape with f; (77 = 0.29); (d) extraction of skin contour using fr (7; = 0.1);
(e) extraction of skull “hull” using fy;; (f) mixed view of three shapes from the database: the
contour skin, the skull “hull” and vertebrae.

In cellular imaging, it is sometimes necessary to mark only the boundary of the structures of
interest. The recovery of components of that kind of images cannot be done with iso-surfaces.
On the other hand, the force fy; can be used to extract shapes from such images because
it seeks intensity maxima. We have tested our model on an image obtained by confocal mi-
croscopy, representing a nucleus of a polynuclear cell, and whose boundary has been marked
with fluorescence.

For this image, force fy; is used with coefficients ay; = 0.1 and fBy; = 0.0. A bubble is
initialized around the image. In order that the bubble retract on the shape, the model undergoes
a slight elastic force f, (e = 0.2) with a null rest length. The image is rather noisy, so we impose
a regularization force f. with coefficient o, = 1.5. The Figure 22a shows the surface obtained
after convergence, and the Figure 22b shows the adequacy of the model to the data on three
orthogonal slices.

The model can deform any closed and oriented triangulated surface. The result of a Marching-
Cubes algorithm [27] can therefore be used as an initialization for our process. Figure 23a
shows an extracted iso-surface from a computed tomography using an extended version of the
Marching-Cubes [24], which ensures the closure and the orientability of the generated iso-surface.
Figure 23b displays this surface after several iterations of our model parameterized with a “rigid-
ity” constraint a, = 0.3. The iso-surface computed by the Marching-Cubes has 354 connected
components and 958 topological holes (and about 295, 000 vertices) whereas the deformed surface
has only 45 connected components and 181 holes (and about 191,000 vertices). The introduction
of inner forces has removed the most physically unstable parts of the surface. We stress that
this is not a mesh simplification: the smoothing is physical, neither geometrical nor topological.
Classical simplification algorithms can be used efficiently as a post-processing for our model but
they are not suited to remove small artifacts; most simplification algorithms indeed tend to keep
these artifacts and simplify quasi-planar regions [18] [42].

Iso-surface tracking can also be achieved efficiently: Figure 24a displays an image of a lym-
phocyte obtained by confocal microscopy. Figures 24b-d show the extracted shapes with an
increasing parameter ;.

6 Conclusion

We have designed and developed an efficient model for shape recovery on volumetric images.

This deformable model can automatically adapt its topology to the variation of its geometry

for an acceptable computational burden: it takes about 5 seconds to detect and solve topo-
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Figure 22: Shape extracted from a confocal microscopy image with force fyr: (a) view of the
triangulated surface obtained after convergence (the mesh has about 41000 vertices, 1 connected
component and 2 holes); (b) embedding of the surface into the image on three orthogonal slices
(surface points are in white).

Figure 23: Chaining of a Marching-Cubes with our model: (a) result of the Marching-Cubes
algorithm; (b) after deformation under smoothness forces.

Figure 24: Iso-surface extraction on a lymphocyte image with variation of parameter mj: (a)
volume rendering; (b) parameter 7; is set to 0.3; (c) parameter 7; is set to 0.45, (d) parameter
7y is set to 0.75.
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logical transformations over a mesh with 65000 vertices (and without the use of the heuristic),
and less than 2 seconds with 125000 vertices when the heuristic optimizes 85% of the vertices
(which is often the case with the multi-resolution approach). This model can be coupled with a
three-dimensional image pyramid to quickly outline objects within the image. We have tested
the model and the multi-resolution approach on various databases. Shape recovery results are
encouraging and the coarse-to-fine process is extremely efficient on images that have relevant low
frequency information. After the process is complete, any classical mesh reduction algorithm
can be run to obtain a compact surface representation of objects.
Several points may nevertheless be explored:

e The convergence may be guided by some new constraints, for instance by introducing
attractive forces generated either by attachment points of the object or by particular edges
detected during a pre-processing. At the moment, we are working on wavelet pyramids in
order to detect high contrasts and singularities of images. This pre-processing would speed
up the convergence of the algorithm and provide a better detection of unstable parts of
the surface.

e In order to widen the application scope of our model, the physical formulation can be com-
plemented by adding global dynamic parameters, such as global speed or instant rotation
vector [38].

e The sampling of the mesh is more or less uniform and is not optimized for quasi-planar
regions. The simplex mesh model of [9] allows a non-uniform sampling according to the
local curvature but topological breaks are neither detected nor performed any more. The
challenge is to allow a non-uniform sampling to process fewer vertices without losing the
speed of topological break detection given by a uniform sampling. Non-Euclidean metric
system (i.e., distance computation may vary according to the location) is currently studied
to combine both advantages.
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A Construction of a three-dimensional pyramid

Let I be an image of discrete sizes M x N x P and of real sizes u X v X 7. p is the reduction factor
and Py, the maximal reduction. The following procedure BuildPyramid() builds a pyramid P
from the image I with a reduction p.

Procedure BuildPyramid ( const Image & I, PyramidOfImage & P, double p )
int h +— 0

int Mupper, Nupper, Pupper

int Mlower «— I.M

int Nlower «— I.N

int Plower <— I.P

P.image(h) «— I

while ph < Pmaz dO

int Mupper «— | Mlower/p]

int Nupper <— | Nlower/p]

int Pupper <— | Plower/p]

Image G(Mupper, Nlower, Plower)

G <— ConvolutionAlongX ( P.image(h), [1 4 6 4 1]/16, p)
Image H(Mupper, Nupper, Plower)

H «— ConvolutionAlongY ( G, [1 4 6 4 1]/16, p)

Image P.image(h + 1) (Mupper, Nlower, Pupper)

P.image(h + 1) «— ConvolutionAlongZ( H, [1 4 6 4 1]/16, p )

delete G, H
h<«—h-1
done

end
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