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Abstrat

This work presents a generi deformable model for extrating objets from volumetri

data with a oarse-to-�ne approah. This model is based on a dynami triangulated surfae

whih alters its geometry aording to internal and external onstraints to perform shape

reovery. A new framework for topology hanges is proposed to extrat omplex objets:

within this framework, the model dynamially adapts its topology to the geometry of its

verties aording to simple distane onstraints. In order to speed up the proess, an

algorithm of pyramid onstrution with any redution fator transforms the image into a set

of images with progressive resolutions. This organization into a hierarhy, ombined with

a model whih an adapt its sampling to the resolution of the workspae, enables a fast

estimation of the shapes inluded in the image. After that, the model searhes for �ner and

�ner details while relying suessively on the di�erent levels of the pyramid.

Key-words: 3D surfae extration, deformable model, adaptive topology, multi-resolution,

3D pyramid.

Running title: Coarse-to-�ne 3D Surfae Extration

1 Introdution

Aquisition of 3D data, partiularly in biomediine, has beome more and more usual this last

deade. This kind of 3D data has the partiularity to be \visually signi�ant", as far as it an

be pereived by a human observer.

Presentation of 2D data is trivial, but showing 3D data is a very diÆult problem. In fat,

several goals an be given: visualization and rendering, aess to spei� information (e.g., slies,

grey levels), extration of information (e.g., objets in 3D data, measurements of distanes, areas,

volumes). All these issues have been more or less studied for the past years.
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Our own target is not to perform rendering: if rendering o�ers some possibilities to the

human observer to understand the 3D data (for instane using ray traing, opaity, olors,

moving 3D data ube, et), it does not provide any information whih an be later used for a

post-proessing. As the same line, showing slies or seleted grey levels does not provide further

useful data.

Consequently, we are interested in extrating information neessary for automati proessing

of 3D data. This ould be: de�ning the objets, omputing their position and size, reognizing

them, et.

Unlike 2D data, for whih everyone an rather delineate objets on images, no tool an

be provided to delineate 3D objets with a omputer orretly. As a onsequene, we base

the extration of objets from 3D data on the grey level information. A basi method for

that is the Marhing-Cubes algorithm [27℄, whih extrats iso-surfaes for a given grey level,

but many others exist (e.g., simpliial deomposition [13℄, digital surfae traking [14℄). They

provide a triangulated surfae �tting a given grey level. With some improved algorithms, the

omputed surfae is topologially onsistent (i.e., losed and oriented). But iso-surfaes are too

onstrained, and we would like to obtain objets that an be at varying distanes from iso-

surfaes if \neessary". \Neessary" would mean that the surfae an be somewhat \soft", more

or less regularly sampled, and that other kinds of information than iso-potentials ould be used

(grey levels, similarity, gradients, et).

To extrat objets from 3D data, we propose a generi deformable model based on a tri-

angulated mesh whose main harateristis are: shape reovery is performed via internal and

external fores; no a priori is made on the topology of objets; the model automatially adapts

its topology aording to the geometry of its verties; detetion and resolution of topologial

breaks are optimized by regularizing edge lengths over the whole mesh; the mesh an be re�ned

to be onsistent with the image resolution; anisotropi images an be proessed indi�erently.

With this lexible formulation, new onstraints an easily be added (e.g. user interation, fores

derived from preomputed edge images).

Moreover, in order to provide a oarse-to-�ne approah to the shape reovery problem, an

algorithm of pyramid onstrution with any redution fator is presented. The model an thus

evolve in a pyramid of volumetri images to quikly outline shapes and progressively extrat

�ner and �ner details. The speed-up o�ered by the introdution of multi-resolution is exhibited

and the robustness of this approah is tested.

In setion 2, we reall related work on shape reovery by deformable models. In setion 3,

the physial and geometrial formulation of the model is presented; problems linked to variable

and omplex topology are also takled in this setion. Setion 4 presents the onstrution of the

pyramid of 3D data, the embedding of the model in this pyramid, and the oarse-to-�ne proess.

In setion 5, algorithms of shape reovery with or without multi-resolution are desribed, and

their performane are ompared; we test the robustness of the model on various databases, and

we show several appliations.

2 Related work

Deformable models are partiularly suited to the problem of extrating objets from volumetri

data. They are intensively used in segmentation [20℄, mapping [28℄, traking and motion analysis

[34℄ and non-rigid modeling [36℄. Deformable models have various formulations :

Parametri form. Models based on quadri, superquadri [2, 38℄ and hyperquadri [21℄ seg-

ment images by omputing both loal and global parameters. In [38℄, a set of fores

omputed from the image and from model properties guides the surfae towards the de-

sired solution. In [2℄, several global parameters are omputed with a least-square method
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and then the result is sharpened by adjusting a ontrol-box. In all ases, segmented objets

must be homeomorphi to a sphere for orret results. The snake representation introdued

in [20℄ is also a parametri model that segments images by energy minimization. Examples

of three-dimensional extensions to snakes are parametri surfaes [7℄ ; in this approah, a

�nite element method is used to ahieve minimization. The result has the same topology

as the initial surfae. To overome this limitation, the surfae snake an be embedded in

the image grid [30℄ and the tessellation of the surfae is updated after eah step. In this

extension, the model is no more parametri but rather related to deformable meshes.

Impliit form. Impliit models are widely used in the ontext of image synthesis. Some authors

have proposed the use of impliit models in the ontext of MRI segmentation [40℄ and shape

modeling [29℄. Both methods use funtions from R

4

to R to represent variable topology in

R

3

. Equations are solved by embedding the model in the image grid. A multi-resolution

approah [40℄ or a restrition of the equation domain to a narrow band around the ative

shape [29℄ an be used to redue the omputational ost. Geometrial features an be

extrated from a polygonal approximation of the impliit model.

Mesh form. Deformation is performed by onstraining the model on its verties [31℄. Many

deformable or adaptive meshes have been proposed. Some of them an handle objets

with no a priori on their topology: simplex meshes as proposed in [8℄ are apable of rep-

resenting any oriented two-manifold (even with boundaries); the user interats to perform

topologial breaks. The mesh is onsidered as a mass-spring system whose nodes are its

verties. Regularization onstraints or user onstraints are thus easily de�ned. Some au-

thors have proposed models whose evolution is not governed by a dynami. Cubi spline

surfaes as proposed in [25℄ modify their topology by using a series of three-stage evolution

(ontration on onvex areas, then ontration on hyperboli areas, and after ontration

on onave areas). Biubi spline surfaes presented in [17℄ are more foused on the om-

putation ost than the previous model: an iterative Newton minimization method is used

to extrat objets from distane transform images; the surfae parameters are deoupled

to speed up the omputation of eah iteration; the drawbak is that this model annot

reover omplex shape.

In this artile, we present a generi model for reovering shapes or regions and extrating

surfaes from three-dimensional data, for omputing geometrial and topologial informations,

and for visualization. The model is exible enough to be used as a omplementary tool for

segmentation, traking, or mathing. These properties indue the following onstraints on its

formulation:

� The model is expliit beause providing geometrial (area, volume, loal urvature) and

topologial (Euler-Poinar�e harateristi) information is of great interest in linial appli-

ations.

� The model is loally and globally deformable to perform a wider range of tasks and there-

fore has a dynami topology. It an represent every kind of losed and oriented two-

manifold (i.e. oriented two-manifold without boundary). In this way, no a priori knowledge

on the topology of the �nal shape is needed.

� The evolution of the model is determined by the onstraints applied on verties. Con-

straints are either internal (elastiity, rigidity) or external (interation with images or with

user-spei�ed onstraints).
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3 Presentation of the deformable model

3.1 Choie of representation

Our model is based on a triangulated surfae that may have several onneted omponents.

All omponents are losed and oriented. The data struture minimizes the memory spae: eah

vertex has a set of parameters (oordinates, normals, speed) and an oriented list of its neighbors.

Hene, all oriented ombinatorial two-manifolds without boundary an be represented [16℄ (refer

to [12℄ for a de�nition of ombinatorial two-manifolds). Boundaries are not allowed beause they

introdue ambiguities in topologial aidents and need speial handling of their onstraints.

Moreover, boundaries in surfaes are useless to reover the boundary of a volumetri objet (the

boundary of a three-manifold is a two-manifold without boundary).

The model does not interset itself in the Eulidean spae: during its evolution, the em-

bedding of the model always represents the boundary of a volumetri objet. A set of simple

geometrial onstraints is applied on the model to optimize both detetion and resolution of

topologial aidents. Therefore, the model an adapt its topology to the geometry of its surfae

without any interation of the user.

The mesh is onsidered as a set of partiles linked with spring fores [1, 11℄. External

onstraints are applied on verties. As a onsequene, image resolution and mesh preision must

be similar.

3.2 Geometry and topology

A model based on triangulated meshes o�ers some immediate advantages: simpliity, speed and

fast rendering. To these points we an add the opportunity to extrat features of the objet, suh

as the area and the volume de�ned by the objet, moments or topologial information. Loal

urvature an be approximated [5℄, geodesi distanes on suh surfae an also be omputed

[41℄. Thus, triangulated meshes provide an eÆient tool to shape analysis.

A major problem that arises in shape reovery or segmentation is the possible omplex

topology of objets in 3D data. As a matter of fat, parametri models are bound to their

intrinsi topology. Impliit models are naturally able to dynamially modify their \topology"

in R

3

but this \topology" is never expliit. Currently, one lassial approah is to initialize the

deformable model with an estimation of the topology of the �nal shape [1, 10℄; the model is

then deformed to �t the objet more preisely. These methods perform well in the reovery of

unstrutured 3D data but they are not suited to volumetri data. Some deformable models o�er

dynami topologial modi�ations with user interation or validation [8℄, or by performing series

of ontration [25℄.

As far as we know, only the dynami model presented in [30℄ automatially modi�es its

topology with regards to its variable geometry. It uses a simpliial deomposition of the image

to segment: a set of tetrahedra is thus partitioning the image. At eah step, movements of every

vertex are omputed. The moved verties belong to a new set of tetrahedra. By analogy with

a ame propagation algorithm, the model keeps trak of the \burnt" verties of the simpliial

grid, whih the surfae has already rossed. By ombining this information to the new set of

tetrahedra, the model extrats the \surfae" at the next time step. The nodes of the \surfae"

are reomputed at eah iteration with a method similar to a Marhing-Tetrahedra [13℄. This

reparameterization performs topologial transformations in an impliit way. However, the model

is bound either to inate everywhere or to deate everywhere. Therefore, it is deliate to modify

the parameters of the model during the evolution or to provide a exible interation to the user.

Traking of surfaes in spatiotemporal data is also diÆult. Besides, the auray of the model

is linked to the resolution of the simpliial grid: inreasing the resolution by two thus requires

eight times as many tetrahedra.
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In this artile, we propose a model that adapts its topology to the geometry of its verties at

eah step, without any user-interation or any grid embedded in the image; topologial modi�-

ations are loally done. The method is based on global geometrial onstraints applied to the

verties of the model (see [22℄ or [23℄ for a preise desription).

We denote T the triangulated mesh, S

T

the set of verties of T , s the ardinality of S

T

(i.e.,

the number of verties). If U 2 S

T

, then V(U) is the set of the neighbors of U , d(U) the number

of neighbors, (U

i

)

0�i<d(U)

the oriented list of the neighbors of U , u the oordinates of U . We

also denote #F the ardinality of a �nite set F .

We introdue an invariant Æ (Æ > 0) whih is assoiated with the mesh. Three geometrial

onstraints are derived from this invariant. They determine the sampling of the mesh:

8(U; V ) 2 S

T

� S

T

= V 2 V(U); Æ < ku� vk (1)

8(U; V ) 2 S

T

� S

T

= V 2 V(U); ku� vk < 2:5 Æ (2)

8(U; V ) 2 S

T

� S

T

= V 62 V(U);

2:5

p

3

Æ � ku� vk (3)

Constraints (1) and (2) express the upper and lower bounds of one edge length. They fore

the triangulated surfae to remain rather regularly sampled. The fat that onstraint (3) is not

satis�ed for a ouple of non-neighboring verties expresses a ollision between two distint parts

of the surfae. This onstraint is used to detet self-intersetion.

The numerial onstant of (2) ensures that onstraint (1) is followed after the reation of a

vertex on the problemati edge. The numerial onstant of (3) is the longest distane between

a vertex of the surfae and the three verties of a faet whih the vertex is going through. We

assume that movements of verties are small and that the inversion operation is used when-

ever triangles are too elongated (see Figure 1a). Under these two hypotheses, orret ollision

detetion is ahieved by this onstraint

1

.

Computing distanes between verties is very fast for (1) and (2) and heking these on-

straints an be done in O(s). Constraint (3) over the whole mesh is heked in O(s log(s)) with

a point otree. This point otree must be omputed at eah iteration. Note that the test of

onstraint (3) an be performed even faster | theoretially in O(s) | with a disrete \image"

gathering verties at disrete positions; in this artile, only the point otree algorithm has been

implemented. We do not use algorithms for ollision detetion based on OBB-trees [15℄ beause

they are optimized for rigid meshes with motion. Besides, ollision detetions based on hierar-

hial mesh representation [39℄ need �xed topology and are not suited to models with dynami

topology.

3.3 Topologial hanges

The model hanges its topology aording to the lassial Eulerian topologial transformations

of reation, deletion or inversion (see Figure 1 in ase of violation of (1) or (2)). These transfor-

mations are performed in O(1).

Non-Eulerian topologial transformations of losed and oriented surfaes that evolve in the

Eulidean spae are desribed on Figure 2. During their evolution, these surfaes an mainly

meet two di�erent transformations (refer to [23℄ for further details): axial transformations, where

1

If these two hypotheses are omitted, then the numerial onstant of (3) should be set to

p

19=2 (provided

the numerial onstant of (2) is 2:5). With these onstants, it an be shown that the ombinatorial triangulated

surfae is \embedded" in R

3

as a 2-manifold without boundary.

5



U V

Creation

Inversion

S
U

S
V U V

Illicit melting (topological problem)

U

V

S

S

Melting

(a) (b)

Figure 1: (a) A reation or an inversion is done if the ouple (U; V ) does not verify onstraint

(2) ; (b) A deletion is done or an annular problem is deteted when onstraint (1) is not satis�ed

by (U; V ) .

Axial melting

Inverse

Annular
constriction

Axial
constriction

Annular
melting

Inverse

Dual

Dual

Figure 2: Desription of the four main topologial aidents for a losed oriented surfae in R

3

two parts of the surfae whih are not loally onneted are olliding, and annular transforma-

tions, whih ours when a onneted part of the surfae homotopi to a irle is shrinking to a

point.

Therefore, we have �rst to detet when a non-Eulerian transformation must take plae, and

seondly to exhibit the orresponding mesh operations.

Axial transformations. If equation (3) is not satis�ed by a ouple of non-neighboring verties

(U; V ), then two di�erent parts of the surfae are olliding. Now, these two verties

may have ommon neighbors as it an be seen on Figure 3. Consequently, the fat that

onstraint (3) is not veri�ed may hide an annular transformation. So intermediary verties

are reated between U and its neighbors and between V and its neighbors (Figure 4a),

and, only after, a triangulation is done between the neighbors of U and V (Figure 4b)

(beause of the intermediary verties, U and its neighbors, and V and its neighbors, form

two parts of the surfae that are not loally onneted).

Annular transformations. These transformations are deteted with onstraint (1). A tubular

part of the surfae is ollapsing onto itself. If a ouple of neighboring verties does not

satisfy onstraint (1), then we have to hek whether the neighborhood of these two verties

is a tubular part of the surfae. To do so, the value # (V(U) \ V(V )) is heked. If this

value is equal to 2, then the two verties U and V are simply merged into one vertex
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(a) (b) ()

Figure 3: These �gures show several on�gurations where the geometri onstraint (3) is not

satis�ed : (a) no ommon neighbor; (b) one group of ommon neighbors; () two groups of

ommon neighbors.

intermediary points
Creation of

Triangulation

(a) (b)

Figure 4: Implementation of axial transformations: (a) reation of intermediary verties; (b)

triangulation between the two surfaes and deletion of the two old verties.

at their mid-point. Otherwise, the neighborhood of U and V is so bent that it forms a

narrow tube (or possibly several narrow tubes joining up at this loation). In this ase,

the surfae is ut in two along the edges UV , V O, OU | O is a ommon neighbor of U

and V , but OUV is not a fae of the triangulated surfae | (see Figure 5). After that,

the two reated holes are �lled in by two triangles, and the split verties (U

1

V

1

and U

2

V

2

)

an be merged separately.

It is easy to show that the so-built transformations follow the expeted variations of the Euler-

Poinar�e harateristi. The proposed topologial transformations obey both the evolution of

the geometry of the verties and the \embedding" | a more orret word would be imbedding

| of the ombinatorial surfae as a two-manifold in R

3

without boundary. Of ourse, there

may be three or more parts of the surfae whih are not loally onneted that are olliding.

As well, a part of the surfae whih onsists of several narrow tubes joining up at one plae

may ollapse onto itself preisely at this loation. In these ases | whih are very unommon

but may theoretially our |, the previous transformations are applied suessively (annular

transformations are performed before axial transformations).

All non-Eulerian transformations are performed in O(1). Deletion of a tetrahedron an also

be done with the same performane. The reation of a tetrahedron is governed by the user.
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U

O2

2

V2

O1

U1

V1
O

U

V

Figure 5: Implementation of annular transformations: splitting of the problemati set UV O in

two parts, then separate merging.

(a) (b) ()

Figure 6: Example of a global re�nement over a polyhedron with sixty faets: (a) before re�ne-

ment; (b) after �rst pass; () after seond pass.

3.4 Global re�nement

We propose an Eulerian transformation denoted �
1

p

3

that globally re�nes any triangulated mesh

(see Figure 6). This transformation redues the average edge length to

1

p

3

of the old one, thus

inreasing the sampling by

p

3. This transformation allows multi-resolution modeling. It an be

deomposed into two stages:

1. In a �rst pass, a new vertex is reated at the mid-point of eah faet of the model; the

vertex is onneted to the three verties that bound its faet.

2. In a seond pass, the edges whih onnet the old verties (those whih were not reated

during the �rst pass) are inverted in order to regularize edge lengths.

This algorithm redues the average edge length to 1=

p

3 of the old one. The global assoiated

invariant Æ must also be divided by

p

3. The transformed surfae possesses about three times as

many verties as before transformation. This re�nement algorithm has been preferred to another

one based on the reation of one vertex on eah edge, beause the former is adapted to the data

struture of the mesh: this struture where every vertex has an ordered list of its neighboring

verties is onsistent only when all fae elements are triangular. This would be false during the

re�nement proess if the algorithm reated four triangles on eah triangle.
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3.5 Dynami

The mesh is assimilated to a dynami system of partiles, whih are the verties of the mesh,

following both onstraints of other partiles and of environment. Thus, interations between

partiles our only between diret neighbors and the omputation time of internal onstraints

is in O(s) for the whole mesh. We have hosen a dynami evolution for the verties of the model

(verties undergo inertia: mass m is greater than zero). This hoie is motivated by our personal

experiene. We have indeed observed that the model has better onvergene properties when

mesh verties undergo an inertia (in partiular when internal fores are strong). Besides, the

evolution of the mesh is then less sensitive to the parameters (espeially to the damping fator).

Let X be a vertex of S

T

. We denote x its oordinates (
_
x its veloity and

�
x its aeleration).

The Newtonian law of motion is applied on eah vertex:

m
�
x+ 

_
x = f

int

+ f

ext

; (4)

where m is the mass of the vertex and  the damping fator, f

int

the internal fores on

X, f

ext

the external fores applied on X.  must not be too low to esape osillations and

not too high to avoid slow displaements [1℄. After numerous experiments, we have hosen to

integrate equation (4) by Runge-Kutta's method. This method is slower than a simple Euler's

method, but presents a better behavior when internal onstraint are strong. The robustness of

this method is nevertheless limited by the topologial transformations whih are unpreditable.

Unlike snake-like models, we do not perform any energy minimization. In fat, our approah

shares several similarities with an energy minimization, beause minimization is often performed

with the assoiated Euler-Lagrange equation. It is easy to see that the two internal fores whih

we de�ned in Setion 3.7 orrespond to the regularization terms of �rst and seond order of

snakes. The \energy" of the mesh is thus minimal when it reahes a stable position. Several

models use an approah similar to ours [9, 30℄.

3.6 Evolution

Depending on the appliation, the triangulated surfae an be initialized with any number of

non-interseting iosahedra sattered in the volumetri image, or for instane, one iosahedron

inluding the whole volumetri image. The surfae may then optionally be re�ned (see se-

tion 3.4) until the density of the mesh orresponds to the appliation. After that, the surfae is

free to evolve aording to its dynami and geometrial rules.

The algorithm arrying out the evolution of the surfae an be summarized as an iteration

of the pseudo-ode proedure of Figure 9. Note that vertex movements have to be bounded to

hek the geometri onstraints orretly. Two methods an be implemented to limit them at

eah iteration: one an impose an upper bound to the speed of eah vertex or the time sale

(used to integrate the evolution equation) an be adjusted aording to the speed of the fastest

vertex. For the purpose of shape reovery, the �rst method an be preferred. For a orret

physial behavior, it is better to hoose the seond one.

A simple heuristi is used to proess motionless or slow verties less frequently than mobile

ones. It is indeed useless to hek the geometri onstraints of these verties at every iteration.

The proessing periodiity of eah vertex is thus made dependent on its speed. A maximal

periodiity of 50 is imposed. The periodiity is one when the vertex movement is greater than

0:1Æ. Between these upper and lower bounds, the periodiity is linear for the speed. This

heuristi is partiularly eÆient in a multi-resolution approah, where lots of verties are quikly

near their �nal position. Note that the dynami of every vertex is omputed at eah iteration,

regardless of its speed.
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3.7 Internal fores

We de�ne two internal fores that depend on the neighborhood of eah vertex: a fore f



of

urvature regularization whih smoothes the shape, and a spring fore f

e

whih spreads loalized

deformations along the whole surfae (it is the lassial spring fore when the rest length is null).

If X (resp. Y ) is a vertex, then x (resp. y) expresses its oordinates,
�
x (resp.

�
y) designates the

mid-point of all the neighbors of X (resp. Y ). We de�ne at eah vertex the following fore:

8X 2 S

T

; f



(X) = �



0

�

�
x� x�

1

d(X)

X

Y 2V(X)

(
�
y � y)

1

A

; (5)

where �



is the \rigidity" oeÆient. Let d

T

be the edge rest length for the whole mesh.

This parameter an be set to null to minimize the area of the mesh; it an be set to a value

given by the user to fore the model to adapt the length of all edges; it an be set to the average

of all edge lengths to regularize them along the entire mesh. The following fore is de�ned at

eah vertex:

8X 2 S

T

; f

e

(X) = �

e

X

Y 2V(X)

(ky � xk � d

T

)

y � x

ky � xk

; (6)

where �

e

is the \sti�ness" oeÆient.

These two fores follow the ation/reation priniple. The �rst one brings bak verties to

their loal tangent plane and minimizes surfae urvature (it simulates thin plate behavior).

The seond one regularizes the edge lengths along the whole surfae and expresses the binding

energy. If the rest length is set to null, then the model tends to minimize its area (the model

ats as a membrane). Note that a non-null rest length with strong elasti fore an make the

system rather unstable (it is also true in the 2D ase, as was stressed for snakes by [26℄).

3.8 External onstraints

Shape reovery is one of our main purposes. To perform this task we introdue two external

fores on verties. They represent the inuene of the image on the embedded surfae. The fore

f

I

will guide the surfae towards an iso-potential value of the image. The fore f

rI

will diret

the surfae to regions of maximal or minimal intensity value. For the appliations we present

here, external fores are not omputed by a ontour traking or reonstrution algorithm suh

as in [32℄. Moreover, the image is not pre-proessed, and fores are not omputed using a loal

sanning of the voxels surrounding the verties [33℄. External fores are just omputed from the

raw data. Both fores are normalized by the geometrial invariant Æ (see setion 3.2), so that

the image inuene is proportional to the mesh density.

The disrete volumetri image I is transformed into a ontinuous salar �eld �

I

, alled

image potential �eld, by a tri-linear interpolation. This potential �eld is normalized to [0; 1℄.

The attration towards an intensity value in this �eld is simply expressed by:

8X; f

I

(X) = Æ�

I

(�

I

��

I

(x))n

X

; (7)

where �

I

is the oeÆient of attration toward a given iso-potential surfae of value �

I

, and

n

X

is an approximation of the normal vetor at vertex X. The fore f

I

is meant to searh for

the iso-potential surfae of value �

I

. Its priniple is to inate or deate loally the model as

long as it does not lie on the desired iso-potential surfae. A positive value is expeted for the

oeÆient �

I

when the potential �eld tends toward one ad in�nitum (objets are omposed of

10



voxels whose intensity value is lower than �

I

), a negative one when it tends toward zero (objets

are omposed of voxels whose intensity value is higher than �

I

).

The disrete vetor image rI is the disrete gradient of I omputed by a Sobel operator. It

is bounded by a maximal value given by the user, then transformed into a ontinuous vetor �eld

�

�

�

rI

by tri-linear interpolation. The following fore moves the surfae along the loal gradient

of the image:

8X; f

rI

(X) = Æ ((�

rI

� �

rI

)(�

�

�

rI

(x) � n

X

)n

X

+ �

rI

�

�

�

rI

(x)) ; (8)

where �

rI

(resp. �

rI

) is the oeÆient of gradient attration along n

X

(resp. n

X

?

). The fore

f

rI

is a lassial gradient asent when �

rI

and �

rI

are equal and positive. The oeÆient �

rI

modulates this fore along the loal surfae normal, and �

rI

along the loal tangent plane.

This fore an simulate the external energy of a snake model. Let J be the image of interest.

Let I be the norm of the gradient image of J (possibly onvolved with a Gaussian kernel). It

is easy to see that our model is attrated to strong ontours of image J when it is guided by

fore f

rI

on image I (with positive oeÆients). This approah to edge �nding ould ertainly

be improved by using an edge image (omputed by a Canny-Derihe operator for instane).

3.9 Example on a potential funtion

Figures 7a-e exhibit the behavior of the model during the shape extration from a potential

funtion: the expeted shape is a hain with two intertwined rings. This potential funtion

is similar to a distane transform image, whih represents the distane to the torus skeletons.

The model is initialized with a re�ned iosahedron inluding the whole shape. In these �gures,

the shape was extrated with external fore f

I

(parameters �

I

= �1:0 and �

I

= 0:5) together

with smoothing internal onstraint f



(�



= 0:1) and regularization onstraint f

e

(�

e

= 0:1).

Ninety iterations are neessary for the surfae to lie preisely on the shape. We also initialized

the model with a set of 11 � 11 � 11 small bubbles and we have run the proess on the same

potential funtion, but with no internal onstraint. Figures 8a-f show that the model is robust

ompared with its initialization.

4 Image workspae and pyramids

4.1 Multi-sale approah with 3-D pyramids

A straight approah to image segmentation is not fully satisfatory. The inuene of a potential

funtion derived from an image is indeed loalized around verties (aording to the de�nitions

of the external fores f

I

and f

rI

) and does not make sense if the mesh has a resolution lower

than the resolution of the three-dimensional image. The following two approahes an be taken:

� The �rst one onsists in using a triangulated mesh with a density omparable to the

resolution of the image. The surfae is then onsistent with the frequeny domain in

whih it evolves. One drawbak is the need of using a very �ne surfae: the omputational

ost is inreased aordingly.

� The seond one does not make any assumption about the resolution of the mesh. Fores

are omputed from the image by a loal sanning over a suÆiently large neighborhood of

voxels. A pre-proessing on the image an improve this approah [33℄.

In order to take advantage of both solutions, we propose to ompute only one the inuene

of the image areas at di�erent sales. This hybrid solution an be done by omputing a three-

dimensional image pyramid, where eah resolution (i.e. eah image) orresponds to distint

11



(a) (b) () (d) (e)

Figure 7: Mesh evolution during the reovery of a hain shape omposed of two intertwined tori:

(a) at initialization; (b) at iteration 20; () at iteration 40; (d) at iteration 60; (e) at iteration

90.

(a) (b) () (d) (e) (f)

Figure 8: Mesh evolution during the reovery of a hain shape omposed of two intertwined tori:

(a) at initialization; (b) at iteration 10; () at iteration 30; (d) at iteration 40; (e) at iteration

70; (f) at iteration 160.

re�nement of the triangulated mesh. The model will rely on the results obtained at a oarser

resolution in order to start the omputation at a �ner resolution with more eÆieny.

Pyramidal image representations as proposed in [37℄ have been the �rst ones to de�ne and

exploit image redution. However several purposes may be sought, among whih are the fast

omputation of parameters, ompression, signal deomposition, segmentation, et [19℄.

Pyramids of frequeny deomposition presented in [3, 4℄ are more interesting for our purpose:

they provide a set of images at dereasing resolutions whih are losed to the visual pereption

of an observer at an inreasing distane. The appliation of a Gaussian kernel �lters high

frequenies. After this �ltering, a sampling of lower resolution provides an image of higher level.

Pratially, one operator ombines the operations of �ltering and re-sampling. This proess

builds the Gaussian pyramid, taking advantage of the fat that a Gaussian kernel does not

reate any wrong ontours. When its size is 5 � 5 in a two-dimensional spae, the waveband is

redued from one otave, hene the sampling frequeny is redued from the same fator.

To get the best out of pyramidal representations we need to extend pyramids of frequeny

deomposition to volumetri images omposed of non-ubi voxels, and to link them together

with our model of surfae representation. Beause the preeding pyramids are not always suited

to 3D appliations that are based on the embedding of a triangulated mesh into data, we have

developed an algorithm for reating volumetri pyramids of any redution fator. Therefore, the

adequay between the density of the embedded mesh and the resolution of the pyramidal image

is preserved.

4.2 3D image pyramids of any redution fator

The algorithm of pyramid onstrution we propose here does not assign a spei� value to the

redution fator. Thus, any re�nement an be used for the triangulated mesh. For instane, the

re�nement presented in setion 3.4 requires a non-rational redution fator of

p

3. We an notie

that the authors of [35℄ have adapted the onstrution mehanism of disrete pyramids to allow

rational redution fators. However, the so-de�ned transformation is not a onvolution proess.

Consequently, the �lters are not low-pass ones and the resulting signals are not well de�ned. In
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Proedure Evolution ( Mesh & T , onst Image & I )

for eah Vertex U 2 T ,

ompute U:f

int

(T ) and U:f

ext

(I)

for eah Vertex U 2 T ,

appliation of the Newtonian law of motion on U with the previously omputed �t,

U:f

int

and U:f

ext

; make e�etive movement of U .

ListOfVertex L � all verties of T

Boolean x � false

repeat

while L.isNotEmpty() do

Vertex U  � L.popVertex ()

for eah Vertex V 2 U .neighborhood ()

for (U; V ) hek onstraints (1) and (2); perform transformation (reation,

deletion, inversion, annular transformation) aordingly; for eah Vertex W

involved in transformation, L.putAtEnd (W )

end for

done

Update T .pointOtree and extrat pairs ( Vertex U , Vertex V ) whih do not satisfy

onstraint (3)

if 6 9(U; V ) then x � true

else

for eah (U; V ), perform axial transformation; for eah Vertex W involved

in the transformation, L.putAtEnd(W )

endif

until x

end

Figure 9: This proedure desribes the main steps of one iteration of deformation.

order that the onsisteny of the �ltering/re-sampling operation be veri�ed, the redution fator

per dimension. denoted �, must be less than 2.

We will �rst reall the onstrution of a lassial Gaussian pyramid. The suessive levels

of that kind of pyramid are omputed with the onvolution of a Gaussian kernel of side 5 pixels

(or voxels). It guarantees a low ost �ltering without a phase translation linked to a redution

fator of two for eah image dimension [6℄.

Let I

0

be the initial image of 3D voxels and the base of the pyramid. The omputation of

I

h+1

(image of level h+1 in the pyramid) from I

h

(image of level h in the pyramid) is given by

the disrete onvolution formula:

I

h+1

(i

0

; j

0

; k

0

) =

2

X

m=�2

2

X

n=�2

2

X

p=�2

!(m;n; p) � I

h

(2i

0

+m; 2j

0

+ n; 2k

0

+ p); (9)

where ! is a Gaussian onvolution kernel of size 5 voxels:

�

1

16

[1 4 6 4 1℄

�

3

.

Within our ontext, two major onstraints have to be taken into aount: voxels are not

bound to be ubi (sampling frequenies are highly dependent on the aquisition devies and

are not idential in the general ase), the redution fator of the re-sampling must be oherent

with both the surfae representation and its re�nement.
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Therefore the previous formulation (9) is not usable as is.

Making our voxel spae isotropi in order to apply onvolution operators oherently would

be very memory intensive (the resolution would beome the lowest ommon multiple of the

sampling frequenies). Instead, by de�ning a real ontinuous workspae orresponding to the

disrete struture ontaining the initial data, we will realize the onvolution operations eÆiently.

In the following, a disrete image refers to the disrete volumetri data struture whose nodes

(i.e. voxels) store intensity values. A real image designates the ontinuous salar �eld obtained

by the \embedding" of the disrete image into a subset of the Eulidean spae: this \embedding"

de�nes a real size for the image, whih is generally not proportional to its disrete size. Intensity

values in this �eld are omputed by tri-linear interpolation. Images intensities are supposed to

be normalized to [0; 1℄.

Our goal is to determine a list of volumetri disrete images I

0

; I

1

; : : : ; I

m

representing the

three-dimensional pyramid. I

0

is the initial image (i.e., the image I given for proessing) of dis-

rete size (M;N;P ) and of real size (�; �; �). This image has the greatest amount of information.

I

m

will be the image that inludes only the lowest frequenies. Let M

h

, N

h

and P

h

be the sizes

of the disrete image I

h

for h between 0 and m. Their values are still unknown. Let E

h

be the

Cartesian spae M

h

�N

h

�P

h

. With these de�nitions, a disrete image I

h

is a funtion from E

h

towards [0; 1℄ � R. Let V

0

; : : : ; V

m

be the pyramid of real images orresponding to the pyramid

of disrete images. Any real image V

h

is given by the embedding then by the interpolation of the

disrete data of I

h

(i.e., V

h

= �

I

h

). Every so-de�ned embedding preserves the real size (�; �; �)

of the initial image I

0

, beause these images are meant to represent the same image at di�erent

sales.

We denote E the spae de�ned by the real image of size [0; �℄ � [0; �℄ � [0; �℄, whih is a

subset of R

3

. Beause eah I

h

represents at di�erent sale the same real image, they all have a

real size of �; �; �. The embedding of a voxel (i; j; k) of a disrete image I

h

into the real image

spae E is given by the transformation T

h

(depending on the level of the pyramid) as below:

T

h

: E

h

! E

(i; j; k) 7!

�

(i+

1

2

)

�

M

h

; (j +

1

2

)

�

N

h

; (k +

1

2

)

�

P

h

�

(10)

We all unit of the real spae and we denote U

h

the value min(

�

M

h

;

�

N

h

;

�

P

h

). It is the smallest

distane between the embedding of two voxels in the real image. In the ase of an anisotropi

image, the onvolution mask applied during the onstrution must indeed be isotropi with

respet to the real spae where the image is embedded. If this is not properly done, pyramids

will tend to preserve the ontours following a diretion where image resolution is �ne, and to

smooth too muh those following a diretion where image resolution is proportionally oarse.

The unit U

h

provides the isotropi distane separating the points of the onvolution mask.

The disrete sizes M

h

, N

h

, P

h

and the measure unit U

h

orrespond to a disrete image I

h

and its assoiated real image V

h

. Their values are de�ned reursively as below:

M

0

=M N

0

= N P

0

= P U

0

= min(�=M; �=N; �=P )

M

h+1

=

j

M

h

�

k

N

h+1

=

j

N

h

�

k

P

h+1

=

j

P

h

�

k

U

h+1

= �U

h

(11)

Let R = (i

0

; j

0

; k

0

) be a voxel of the disrete data of I

h+1

. Our goal is to �nd its value for any

(i

0

; j

0

; k

0

) 2 E

h+1

. Its embedding R

E

in the real image V

h+1

has oordinates of T

h+1

(i

0

; j

0

; k

0

)

(see Figure 10a).

In order to establish the value of R, the onvolution operation is de�ned over points of V

h

.

The entral point has the same position in V

h

and in V

h+1

. The loalization of the other points

involved in the onvolution (5

3

� 1 in 3D for a kernel of size 5) is determined with the unit U

h

:

V

h

is thus disretized around the point R

E

(see Figure 10b). Supposing I

h

is known, then V

h

is
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mask

real imagex

Mh Nh Idiscrete image hx
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()

Figure 10: View of a onvolution omputation in 2D: (a) the two superposed levels I

h

and I

h+1

;

(b) omputation of level I

h+1

together with the loalization of the onvolution mask applied to

one point; () appliation of the onvolution mask over level I

h

, disrete points of I

h

involved in

the omputation are also displayed with blak irles.

de�ned by �

I

h

. We obtain the onvolution formula:

I

h+1

(i

0

; j

0

; k

0

) =

2

X

m=�2

2

X

n=�2

2

X

p=�2

!(m;n; p)V

h

�

T

h+1

(i

0

; j

0

; k

0

) + (mU

h

; nU

h

; pU

h

)

�

: (12)

To ompute points at the boundary of I

h+1

, the boundary voxels of image I

h

are repliated.

Beause of the unknown redution fator, the 5

3

points involved in the onvolution do not

oinide with given points of I

h

in the general ase (see Figure 10). Eah one of these points is

omputed with a tri-linear interpolation from the 8 data points of I

h

whih surround it.

The Gaussian onvolution kernel (of size 5

3

) is applied suessively along the three dimensions

beause of its separable property. We an estimate the savings o�ered by this optimization (the

following notations are used: let t

0

be the aess time to a point value, t

1

the running time of a

lassial algorithm, t

2

the running time of the optimized algorithm):

t

1

t

0

= 5

3

M

h+1

N

h+1

P

h+1

t

2

t

0

= 5M

h+1

N

h

P

h

+ 5M

h+1

N

h+1

P

h

+ 5M

h+1

N

h+1

P

h+1

Hene,

t

2

t

1

=

1

25

(�

2

+ �+ 1): (13)

The optimized algorithm is thus faster when the redution fator � is between 0 and

�1+

p

97

2

(about 4:4). An overview of the 3D pyramid onstrution algorithm is given in appendix A.
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(a) (b) ()

(d) (e) (f)

Figure 11: Resolution of a pyramidal image and density of a triangulated mesh: (d) evolves in (a), (e)

in (b), (f) in ().

4.3 Image-model relation

In setion 4.1 we have hosen to express surfae-image interation with fores loally omputed

around eah vertex. Using a pyramid requires a model suÆiently exible to adapt its density to

image resolution. The edges of our model should neither be too long, otherwise high frequeny

ontours ould be missed, nor too small, beause they would then represent the deomposition

of a small ontour of two voxels. In order to obtain a orret adequay between the surfae

and the images of the pyramid, we �rst examine the relations linking the model density to the

resolution of an image, then we show how to maintain the surfae{image adequay during the

whole oarse-to-�ne proess.

Aording to onstraints (1) and (2), the mesh density is de�ned by the invariant Æ. The

oarse-to-�ne approah implies a re�nement of the model every time it goes down a level of the

pyramid (see Figure 11). The invariant Æ is thus dependent on the image of the pyramid in

whih the model is urrently evolving (i.e, Æ is a funtion of the level h). Let Æ

h

be the invariant

Æ of the mesh at level h of the pyramid. Let d

h

(resp. D

h

) be the minimal (resp. maximal) edge

length of the mesh at level h. Constraints (1) and (2) give d

h

= Æ

h

and D

h

= 2:5 Æ

h

.

The image resolution is losely linked to the unit U

h

. In this setion, we suppose that images

are isotropi (see Setion 4.4 for anisotropi images). Edges of the mesh represent disrete

ontours of the voxel image. Both 6-onneted ontours and 26-onneted ontours are likely

to have orresponding edges. Consequently, an edge of the mesh may be smaller than two 6-

onneted voxels, whih implies d

h

� U

h

, and may be longer than two 26-onneted voxels,

giving D

h

�

p

3 U

h

. Hene,

2:5

p

3

�

U

h

Æ

h

� 1: (14)

Equation (14) onstraints mesh density as a funtion of image resolution.

A surfae of given invariant Æ may be built only at initialization. After that, modi�ations

of the invariant an be limited by the urrent mesh geometry. The re�nement transformation

�
1

p

3

(see Setion 3.4) redues the average edge length to 1=

p

3 of the old one. Therefore we

apply to the invariant a redution fator whose value is

p

3. In order that the inequality (14)

be respeted at the initialization and during all suessive levels, an idential redution fator is

hosen for the pyramid onstrution; thus Æ

h

and U

h

are reursively de�ned by:

� =

p

3 and 8h = 0 : : : m� 1;

�

Æ

m

= Æ

init

; Æ

h

= Æ

h+1

=�

U

0

= U; U

h+1

= �U

h

(15)

At the initialization moment, a bubble or a set of bubbles, whose invariant Æ

init

is onsistent

with (14) at level m, is reated. During the evolution and the oarse-to-�ne proess, de�nitions
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of (15) ensure a orret surfae-image adequay whihever are the iteration or the urrent level

in the pyramid (i.e., Æ

h

and U

h

follow (14)). The time when the mesh is re�ned and the

resolution inreased is determined by a riterion based on a motion estimate of the mesh (refer

to Setion 5.1).

4.4 Mesh evolution in an anisotropi image

During the segmentation proess, edges of the mesh have to keep their meaning with regards to

the voxel spae. On one hand, if we deide to work in the real image with size (�; �; �), edges

lose their onsisteny with respet to the resolution of data. On the other hand, mesh evolution

in a real image where voxels are ubi modi�es the onstraints that must be applied: fores lose

their physial interpretation. Three di�erent ways an be outlined to takle this problem:

� The surfae evolves in a real spae of size (�; �; �) and follows the physially-based on-

straints. Surfae-image onsisteny is ahieved only on the axes of �ne resolution.

� The surfae evolves in a real spae de�ned from the spae (�; �; �) by aÆne transforma-

tion. This spae has the same proportions than the disrete image it interpolates (its

sizes is (�M

h

; �N

h

; �P

h

)). The behavior of internal fores is slightly di�erent from the

orresponding fores in the real physial spae.

� The surfae evolves in a real spae of sizes (�; �; �). An anisotropi metri is oupled with

this spae. This metri is de�ned from the urrent disrete image (M

h

; N

h

; P

h

): adequay

between the surfae and the image is ahieved along all axes and internal fores keep a

physial meaning.

The �rst method gives good results with a weak anisotropy; the seond one provides better

results when the anisotropy is more signi�ant; the last one is theoretially the best solution

whihever is the ontext but has the slowest implementation. For most appliations dediated

to volumetri data analysis, exat physial behavior is not ritial and the seond method is

preferred to the latter.

5 Implementation and results

5.1 Algorithms of surfae extration

Figure 12 presents the algorithm of shape reovery on an image and Figure 13 presents the

oarse-to-�ne algorithm on a pyramid of images. The onvergene riterion, whih deided

when the mesh is re�ned and goes down one level in the pyramid, is the average kineti energy

along the normal to the surfae (the other part represents the sliding of verties over the surfae).

This energy is normalized by the invariant Æ

h

and also by the time step. This riterion may

optionally be sharpened with a maximal speed hek or a validation by user interation. Other

riteria may be added easily.

The model is tested on a syntheti fratal image (the lassial Sierpinski's ube) to point out

both topologial transformations and multi-resolution approah. The image size is 81� 81� 81.

The topology of the shape to reover is highly omplex and unpreditable. The model has

the expeted behavior whih is to extrat �rst areas of higher density (see Figure 14). The

physial parameters were set to the following values: �



= 0:05 and �

e

= 0:001 for internal

fores, �

I

= �1:0, �

I

= 0:4, �

rI

= 0:0 and �

rI

= 0:0 for external fores. Note that �

I

is

slightly dereased for the uppermost levels of the pyramid: the fratal objet has indeed an

empty volume ad in�nitum and therefore a null density.
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Proedure ReoverShape ( Mesh & T , onst Image & I, onst double � )

/* Adequay surfae-image */

while T:Æ > I:U do

T .globalRe�nement�
1

p

3

()

done

/* Deformation until a stable position is ahieved */

repeat

Evolution (T , I)

double E  � T .omputeKinetiEnergyAlongNormals()

until E < �

end

Figure 12: Algorithm of shape reovery over a given image. The mesh T given as initialization

is re�ned as long as its density is not onsistent with the resolution of image I.

Proedure PyramidalReoverShape ( Mesh & T , onst PyramidOfImage & P ,

onst double �, onst int m )

int i �m

while i >= 0 do

ReoverShape( T , P .image(i), � )

i � i� 1

done

end

Figure 13: Shape reovery with a pyramidal approah: m is a given level in the pyramid P of

images. The mesh evolves in eah image P .image(i) of the pyramid with i from m to 0. The

mesh T is given as an initialization on the oarser level of the pyramid. After onvergene on

level i, the result (i.e., T ) is given as initialization for level i�1. Re�nement is done in proedure

ReoverShape().

(a) (b) () (d)

Figure 14: Multi-resolution evolution of the mesh on a syntheti image (fratal volume of Sierpin-

ski): (a) after onvergene on image I

3

; (b) after onvergene on image I

2

; () after onvergene

on image I

1

; (d) �nal result on I

0

.
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5.2 Comparison of the two approahes on medial data

We ompare the two approahes on a omputed tomography of a head. Figure 19a displays a

volumetri rendering of this data (eah intensity value has an assoiated opaity). The disrete

size of the image is 256�256�68 and its real size is 1:0�1:0�1:0625. The image is signi�antly

anisotropi, thus the seond method desribed in setion 4.4 is used to proess it. Physial

parameters are set to the following values: �



= 0:4 for a gentle smoothing of the surfae,

�

e

= 0:0 beause regularizing edges is not a ritial point in our appliation, �

I

= �1:0 and

�

I

= 0:1 to trak bone intensity value, �

rI

= 0:0 and �

rI

= 0:0 beause gradient maxima do

not orrespond to the shape to reover.

A pyramid P omposed of images I

0

; : : : ; I

m

(m = 3) is built up from this data set with a

redution fator of

p

3. The proess is run twie for omparison purposes on a Pentium 300Mhz

with 128Mb of memory:

� The proess is run �rst on the volumetri image I

0

without multi-resolution by alling the

proedure ReoverShape() with a bubble inluding the whole image. Figure 15 shows the

surfae evolution: at �rst, the surfae is automatially re�ned (at this time, the mesh has

more than 65000 verties), then the surfae slowly stiks on the outer part of the skull,

and afterwards goes inside to reover its inner part (orbits of the eyes, brain avity, et).

More than 700 iterations are neessary for the surfae to rest perfetly on the inner part

of the skull.

� The proess is now run on the pyramid P at level m: proedure PyramidalReoverShape()

is alled with the same mesh at initialization. The proess waits for the onvergene at

one pyramid level before going down one level. Figure 16 displays surfae evolution with

a multi-resolution method. The surfae, at �rst oarse, quikly outlines the skull shape.

Then, it relies on the shape extrated at one level to start the evolution on next level as

near as possible of the expeted result.

The Figure 17 ompares the behavior of both methods. The behavior of the �rst one (diret

approah) is lear. The kineti energy urve shows the slow onvergene of the model (see

Figure 17a) and the small variations of its number of verties (see Figure 17b). At the beginning,

the mesh has more than 65000 verties and, at the end of the proess, about 120000 verties. The

behavior of the seond method (multi-resolution approah) is also displayed on theses �gures,

and points out the evolution in four levels of the pyramid: the mesh has goes down a level at

iterations 400, 600, and 800. At the beginning, the mesh has only 6000 verties, and more than

120000 verties at the end. For this image, the surfaes obtained by these two methods have

an area that di�ers by less than 1:0% and a volume that di�ers by 0:3%. These (very) small

di�erenes an be explained by the fat that the two surfaes may have stabilized in di�erent loal

minima. Both triangulated surfaes have one onneted omponent and twenty-three topologial

holes.

The Figure 18 shows the omputation time of both methods and lari�ed the amounts of time

spent by the omputation of topologial operations (detetion and resolution), the omputation

of surfae normals, and the omputation of the model dynamis. Note that the omputation time

of topologial operations and of normals slightly dereased along with the model onvergene

beause of the heuristi presented in Setion 3.6. The Table 1 displays the total omputation

time (in seonds) for the two methods.

The skull is outlined with 3800 verties in less than one minute. Two minutes later, the skull

shape is re�ned and has now 12000 verties. Six minutes thirty seonds later, we have a skull

model omposed of more than 38000 verties. Thirty more minutes are neessary to ahieve

onvergene on the �nest level (the model has more than 120000 verties). The diret approah

is nearly three times as long as the multi-resolution approah.
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(a) (b) () (d)

Figure 15: Surfae evolution without a pyramidal approah (no Gouraud shading is done): (a)

iteration 0 on image I

0

; (b) iteration 200 on image I

0

; () iteration 400 on image I

0

; (d) iteration

1100 on image I

0

.

(a) (b) () (d)

Figure 16: Surfae evolution on a pyramid of images (no Gouraud shading is done): (a) iteration

399 on image I

3

; (b) iteration 599 on image I

2

; () iteration 799 on image I

1

; (d) iteration 999

on image I
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Figure 17: Two methods of shape extration from volumetri data are ompared on these graphs

(with and without multi-resolution): (a) evolution of the average kineti energy aumulated

along the surfae normals; (b) evolution of the number of verties.

5.3 Other results

We have tested the robustness of our model and of the multi-resolution approah over di�erent

kinds of volumetri data. The seond data set is a phase ontrast MR angiographi image of

the brain vessels and is more problemati for a pyramidal approah. The Figure 19b displays

a volumetri rendering of this data. Its disrete size is 256 � 256 � 124. Angiographi images
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Table 1: Comparison between the diret approah and the multi-resolution approah: ompu-

tation time on a omputed tomography.

Image Approah T(s) on I

3

T(s) on I

2

T(s) on I

1

T(s) on I

0

Total

CT multi- T 17,0 30,0 108,7 543,8 11min 39s

resolution N 1,4 5,5 22,3 97,6 2min 27s

F 38,8 77,8 258,3 1242,6 26min 58s

= 0min 57s 1min 53s 6min 30s 31min 24s 40min 45s

CT diret T 2701,7 45min 01s

N 553,8 9min 13s

F 3476,4 57min 56s

= 112min 12s 112min 12s

Symbols T , N , F respetively designate the omputation time of topologial operations, of normals, and of dynamis.
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Figure 18: Evolution of the omputation time as a funtion of the iteration number: (a) ompu-

tation time for a diret approah (in ms); (b) omputation time for a multi-resolution approah

(in ms). As it an be seen on both graphs, omputing the movement of verties takes the longest

time and varies as a linear funtion of the number of verties.

(a) (b)

Figure 19: Volumetri rendering of two medial data set: (a) a omputed tomography of a skull;

(b) a phase ontrast MR angiography of the vessels of the brain.
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Table 2: Comparison between the diret approah and the multi-resolution approah: ompu-

tation time on a MR angiography.

Image Approah T(s) on I

3

T(s) on I

2

T(s) on I

1

T(s) on I

0

Total

aRM multi- T 6,8 0,0 3,8 196,9 3min 27s

resolution N 1,4 0,0 0,0 26,4 0min 28s

F 4,3 0,1 27,8 729,2 12min 41s

= 0min 13s 0min 0s 0min 32s 15min 52s 16min 37s

aRM diret T 1521,0 25min 21s

N 344,6 5min 45s

F 986,4 16min 26s

= 47min 32s 47min 32s

Symbols T , N , F respetively designate the omputation time of topologial operations, of normals, and of dynamis.

are highly ontrasted. They are not suited to a pyramidal representation beause vessels are

thin objets: therefore they are omposed of high frequeny information and little information

remains on the oarsest level of the pyramid. Consequently, the mesh extrats few data from

oarse levels. As shown in Figure 20, the model sueeds in following the vessels: onneted

vessels are reovered on �ne levels. Physial parameters were set to the following values: �



=

0:07 and �

e

= 0:0 for internal fores, �

I

= �1:0, �

I

= 0:05, �

rI

= 0:0 and �

rI

= 0:0 for external

fores. The Table 2 displays the omputation time on this database for the two approahes.

However, the surfaes obtained by these two approahes do not possess the same number

of onneted omponents. In fat, the multi-resolution approah has kept only one omponent

(the only one with low frequeny information) and has avoided several small omponents. The

volume ontained in these surfaes di�ers by 3:7%.

(a) (b) () (d)

Figure 20: Surfae evolution during the reovery of brain vessels from an angiographi image

with a pyramidal approah: (a) after onvergene on image I

3

; (b) after onvergene on image

I

2

; () after onvergene on image I

1

; (d) �nal result on image I

0

.

The model an also extrat several strutures from the same image. Figure 21a is a volumetri

rendering of a omputed tomography of a hild head. Figure 21b is a surfae rendering of the

data with the iso-value 0:29. Figure 21 is the shape extrated by our model with fore f

I

and the

same iso-value. Figure 21d displays the surfae obtained with fore f

I

and parameters �

I

= �1

and �

I

= 0:1. Figure 21e displays the surfae obtained with fore f

rI

and parameters �

rI

= 0:1

and �

rI

= 0:05: the model has searhed for maxima of intensity value and has thus rested on
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the skull \surfae" while �lling the gaps in it (orbits, spae between jaws, et). Figure 21f is a

mixed view of these shapes.

(a) (b) () (d) (e) (f)

Figure 21: Comparison between the two fores f

I

and f

rI

on the same database (initialization is

the same in all ases): (a) volumetri rendering; (b) surfae rendering with iso-value of 0:29; ()

extration of skull shape with f

I

(�

I

= 0:29); (d) extration of skin ontour using f

I

(�

I

= 0:1);

(e) extration of skull \hull" using f

rI

; (f) mixed view of three shapes from the database: the

ontour skin, the skull \hull" and vertebrae.

In ellular imaging, it is sometimes neessary to mark only the boundary of the strutures of

interest. The reovery of omponents of that kind of images annot be done with iso-surfaes.

On the other hand, the fore f

rI

an be used to extrat shapes from suh images beause

it seeks intensity maxima. We have tested our model on an image obtained by onfoal mi-

rosopy, representing a nuleus of a polynulear ell, and whose boundary has been marked

with uoresene.

For this image, fore f

rI

is used with oeÆients �

rI

= 0:1 and �

rI

= 0:0. A bubble is

initialized around the image. In order that the bubble retrat on the shape, the model undergoes

a slight elasti fore f

e

(�

e

= 0:2) with a null rest length. The image is rather noisy, so we impose

a regularization fore f



with oeÆient �



= 1:5. The Figure 22a shows the surfae obtained

after onvergene, and the Figure 22b shows the adequay of the model to the data on three

orthogonal slies.

The model an deform any losed and oriented triangulated surfae. The result of a Marhing-

Cubes algorithm [27℄ an therefore be used as an initialization for our proess. Figure 23a

shows an extrated iso-surfae from a omputed tomography using an extended version of the

Marhing-Cubes [24℄, whih ensures the losure and the orientability of the generated iso-surfae.

Figure 23b displays this surfae after several iterations of our model parameterized with a \rigid-

ity" onstraint �



= 0:3. The iso-surfae omputed by the Marhing-Cubes has 354 onneted

omponents and 958 topologial holes (and about 295; 000 verties) whereas the deformed surfae

has only 45 onneted omponents and 181 holes (and about 191; 000 verties). The introdution

of inner fores has removed the most physially unstable parts of the surfae. We stress that

this is not a mesh simpli�ation: the smoothing is physial, neither geometrial nor topologial.

Classial simpli�ation algorithms an be used eÆiently as a post-proessing for our model but

they are not suited to remove small artifats; most simpli�ation algorithms indeed tend to keep

these artifats and simplify quasi-planar regions [18℄ [42℄.

Iso-surfae traking an also be ahieved eÆiently: Figure 24a displays an image of a lym-

phoyte obtained by onfoal mirosopy. Figures 24b-d show the extrated shapes with an

inreasing parameter �

I

.

6 Conlusion

We have designed and developed an eÆient model for shape reovery on volumetri images.

This deformable model an automatially adapt its topology to the variation of its geometry

for an aeptable omputational burden: it takes about 5 seonds to detet and solve topo-
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(a) (b)

Figure 22: Shape extrated from a onfoal mirosopy image with fore f

rI

: (a) view of the

triangulated surfae obtained after onvergene (the mesh has about 41000 verties, 1 onneted

omponent and 2 holes); (b) embedding of the surfae into the image on three orthogonal slies

(surfae points are in white).

(a) (b)

Figure 23: Chaining of a Marhing-Cubes with our model: (a) result of the Marhing-Cubes

algorithm; (b) after deformation under smoothness fores.

(a) (b) () (d)

Figure 24: Iso-surfae extration on a lymphoyte image with variation of parameter �

I

: (a)

volume rendering; (b) parameter �

I

is set to 0:3; () parameter �

I

is set to 0:45, (d) parameter

�

I

is set to 0:75.
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logial transformations over a mesh with 65000 verties (and without the use of the heuristi),

and less than 2 seonds with 125000 verties when the heuristi optimizes 85% of the verties

(whih is often the ase with the multi-resolution approah). This model an be oupled with a

three-dimensional image pyramid to quikly outline objets within the image. We have tested

the model and the multi-resolution approah on various databases. Shape reovery results are

enouraging and the oarse-to-�ne proess is extremely eÆient on images that have relevant low

frequeny information. After the proess is omplete, any lassial mesh redution algorithm

an be run to obtain a ompat surfae representation of objets.

Several points may nevertheless be explored:

� The onvergene may be guided by some new onstraints, for instane by introduing

attrative fores generated either by attahment points of the objet or by partiular edges

deteted during a pre-proessing. At the moment, we are working on wavelet pyramids in

order to detet high ontrasts and singularities of images. This pre-proessing would speed

up the onvergene of the algorithm and provide a better detetion of unstable parts of

the surfae.

� In order to widen the appliation sope of our model, the physial formulation an be om-

plemented by adding global dynami parameters, suh as global speed or instant rotation

vetor [38℄.

� The sampling of the mesh is more or less uniform and is not optimized for quasi-planar

regions. The simplex mesh model of [9℄ allows a non-uniform sampling aording to the

loal urvature but topologial breaks are neither deteted nor performed any more. The

hallenge is to allow a non-uniform sampling to proess fewer verties without losing the

speed of topologial break detetion given by a uniform sampling. Non-Eulidean metri

system (i.e., distane omputation may vary aording to the loation) is urrently studied

to ombine both advantages.
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A Constrution of a three-dimensional pyramid

Let I be an image of disrete sizesM�N�P and of real sizes �����. � is the redution fator

and �

max

the maximal redution. The following proedure BuildPyramid() builds a pyramid P

from the image I with a redution �.

Proedure BuildPyramid ( onst Image & I, PyramidOfImage & P , double � )

int h � 0

int Mupper, Nupper, Pupper

int Mlower  � I:M

int Nlower  � I:N

int P lower  � I:P

P .image(h) � I

while �

h

< �

max

do

int Mupper � bMlower=�

int Nupper � bNlower=�

int Pupper � bP lower=�

Image G(Mupper, Nlower, P lower)

G � ConvolutionAlongX ( P .image(h), [1 4 6 4 1℄=16, �)

Image H(Mupper, Nupper, P lower)

H  � ConvolutionAlongY ( G, [1 4 6 4 1℄=16, �)

Image P .image(h+ 1) (Mupper, Nlower, Pupper)

P .image(h + 1)  � ConvolutionAlongZ( H, [1 4 6 4 1℄=16, � )

delete G, H

h � h� 1

done

end
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