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Abstra
t

This work presents a generi
 deformable model for extra
ting obje
ts from volumetri


data with a 
oarse-to-�ne approa
h. This model is based on a dynami
 triangulated surfa
e

whi
h alters its geometry a

ording to internal and external 
onstraints to perform shape

re
overy. A new framework for topology 
hanges is proposed to extra
t 
omplex obje
ts:

within this framework, the model dynami
ally adapts its topology to the geometry of its

verti
es a

ording to simple distan
e 
onstraints. In order to speed up the pro
ess, an

algorithm of pyramid 
onstru
tion with any redu
tion fa
tor transforms the image into a set

of images with progressive resolutions. This organization into a hierar
hy, 
ombined with

a model whi
h 
an adapt its sampling to the resolution of the workspa
e, enables a fast

estimation of the shapes in
luded in the image. After that, the model sear
hes for �ner and

�ner details while relying su

essively on the di�erent levels of the pyramid.

Key-words: 3D surfa
e extra
tion, deformable model, adaptive topology, multi-resolution,

3D pyramid.

Running title: Coarse-to-�ne 3D Surfa
e Extra
tion

1 Introdu
tion

A
quisition of 3D data, parti
ularly in biomedi
ine, has be
ome more and more usual this last

de
ade. This kind of 3D data has the parti
ularity to be \visually signi�
ant", as far as it 
an

be per
eived by a human observer.

Presentation of 2D data is trivial, but showing 3D data is a very diÆ
ult problem. In fa
t,

several goals 
an be given: visualization and rendering, a

ess to spe
i�
 information (e.g., sli
es,

grey levels), extra
tion of information (e.g., obje
ts in 3D data, measurements of distan
es, areas,

volumes). All these issues have been more or less studied for the past years.
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Our own target is not to perform rendering: if rendering o�ers some possibilities to the

human observer to understand the 3D data (for instan
e using ray tra
ing, opa
ity, 
olors,

moving 3D data 
ube, et
), it does not provide any information whi
h 
an be later used for a

post-pro
essing. As the same line, showing sli
es or sele
ted grey levels does not provide further

useful data.

Consequently, we are interested in extra
ting information ne
essary for automati
 pro
essing

of 3D data. This 
ould be: de�ning the obje
ts, 
omputing their position and size, re
ognizing

them, et
.

Unlike 2D data, for whi
h everyone 
an rather delineate obje
ts on images, no tool 
an

be provided to delineate 3D obje
ts with a 
omputer 
orre
tly. As a 
onsequen
e, we base

the extra
tion of obje
ts from 3D data on the grey level information. A basi
 method for

that is the Mar
hing-Cubes algorithm [27℄, whi
h extra
ts iso-surfa
es for a given grey level,

but many others exist (e.g., simpli
ial de
omposition [13℄, digital surfa
e tra
king [14℄). They

provide a triangulated surfa
e �tting a given grey level. With some improved algorithms, the


omputed surfa
e is topologi
ally 
onsistent (i.e., 
losed and oriented). But iso-surfa
es are too


onstrained, and we would like to obtain obje
ts that 
an be at varying distan
es from iso-

surfa
es if \ne
essary". \Ne
essary" would mean that the surfa
e 
an be somewhat \soft", more

or less regularly sampled, and that other kinds of information than iso-potentials 
ould be used

(grey levels, similarity, gradients, et
).

To extra
t obje
ts from 3D data, we propose a generi
 deformable model based on a tri-

angulated mesh whose main 
hara
teristi
s are: shape re
overy is performed via internal and

external for
es; no a priori is made on the topology of obje
ts; the model automati
ally adapts

its topology a

ording to the geometry of its verti
es; dete
tion and resolution of topologi
al

breaks are optimized by regularizing edge lengths over the whole mesh; the mesh 
an be re�ned

to be 
onsistent with the image resolution; anisotropi
 images 
an be pro
essed indi�erently.

With this lexible formulation, new 
onstraints 
an easily be added (e.g. user intera
tion, for
es

derived from pre
omputed edge images).

Moreover, in order to provide a 
oarse-to-�ne approa
h to the shape re
overy problem, an

algorithm of pyramid 
onstru
tion with any redu
tion fa
tor is presented. The model 
an thus

evolve in a pyramid of volumetri
 images to qui
kly outline shapes and progressively extra
t

�ner and �ner details. The speed-up o�ered by the introdu
tion of multi-resolution is exhibited

and the robustness of this approa
h is tested.

In se
tion 2, we re
all related work on shape re
overy by deformable models. In se
tion 3,

the physi
al and geometri
al formulation of the model is presented; problems linked to variable

and 
omplex topology are also ta
kled in this se
tion. Se
tion 4 presents the 
onstru
tion of the

pyramid of 3D data, the embedding of the model in this pyramid, and the 
oarse-to-�ne pro
ess.

In se
tion 5, algorithms of shape re
overy with or without multi-resolution are des
ribed, and

their performan
e are 
ompared; we test the robustness of the model on various databases, and

we show several appli
ations.

2 Related work

Deformable models are parti
ularly suited to the problem of extra
ting obje
ts from volumetri


data. They are intensively used in segmentation [20℄, mapping [28℄, tra
king and motion analysis

[34℄ and non-rigid modeling [36℄. Deformable models have various formulations :

Parametri
 form. Models based on quadri
, superquadri
 [2, 38℄ and hyperquadri
 [21℄ seg-

ment images by 
omputing both lo
al and global parameters. In [38℄, a set of for
es


omputed from the image and from model properties guides the surfa
e towards the de-

sired solution. In [2℄, several global parameters are 
omputed with a least-square method
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and then the result is sharpened by adjusting a 
ontrol-box. In all 
ases, segmented obje
ts

must be homeomorphi
 to a sphere for 
orre
t results. The snake representation introdu
ed

in [20℄ is also a parametri
 model that segments images by energy minimization. Examples

of three-dimensional extensions to snakes are parametri
 surfa
es [7℄ ; in this approa
h, a

�nite element method is used to a
hieve minimization. The result has the same topology

as the initial surfa
e. To over
ome this limitation, the surfa
e snake 
an be embedded in

the image grid [30℄ and the tessellation of the surfa
e is updated after ea
h step. In this

extension, the model is no more parametri
 but rather related to deformable meshes.

Impli
it form. Impli
it models are widely used in the 
ontext of image synthesis. Some authors

have proposed the use of impli
it models in the 
ontext of MRI segmentation [40℄ and shape

modeling [29℄. Both methods use fun
tions from R

4

to R to represent variable topology in

R

3

. Equations are solved by embedding the model in the image grid. A multi-resolution

approa
h [40℄ or a restri
tion of the equation domain to a narrow band around the a
tive

shape [29℄ 
an be used to redu
e the 
omputational 
ost. Geometri
al features 
an be

extra
ted from a polygonal approximation of the impli
it model.

Mesh form. Deformation is performed by 
onstraining the model on its verti
es [31℄. Many

deformable or adaptive meshes have been proposed. Some of them 
an handle obje
ts

with no a priori on their topology: simplex meshes as proposed in [8℄ are 
apable of rep-

resenting any oriented two-manifold (even with boundaries); the user intera
ts to perform

topologi
al breaks. The mesh is 
onsidered as a mass-spring system whose nodes are its

verti
es. Regularization 
onstraints or user 
onstraints are thus easily de�ned. Some au-

thors have proposed models whose evolution is not governed by a dynami
. Cubi
 spline

surfa
es as proposed in [25℄ modify their topology by using a series of three-stage evolution

(
ontra
tion on 
onvex areas, then 
ontra
tion on hyperboli
 areas, and after 
ontra
tion

on 
on
ave areas). Bi
ubi
 spline surfa
es presented in [17℄ are more fo
used on the 
om-

putation 
ost than the previous model: an iterative Newton minimization method is used

to extra
t obje
ts from distan
e transform images; the surfa
e parameters are de
oupled

to speed up the 
omputation of ea
h iteration; the drawba
k is that this model 
annot

re
over 
omplex shape.

In this arti
le, we present a generi
 model for re
overing shapes or regions and extra
ting

surfa
es from three-dimensional data, for 
omputing geometri
al and topologi
al informations,

and for visualization. The model is 
exible enough to be used as a 
omplementary tool for

segmentation, tra
king, or mat
hing. These properties indu
e the following 
onstraints on its

formulation:

� The model is expli
it be
ause providing geometri
al (area, volume, lo
al 
urvature) and

topologi
al (Euler-Poin
ar�e 
hara
teristi
) information is of great interest in 
lini
al appli-


ations.

� The model is lo
ally and globally deformable to perform a wider range of tasks and there-

fore has a dynami
 topology. It 
an represent every kind of 
losed and oriented two-

manifold (i.e. oriented two-manifold without boundary). In this way, no a priori knowledge

on the topology of the �nal shape is needed.

� The evolution of the model is determined by the 
onstraints applied on verti
es. Con-

straints are either internal (elasti
ity, rigidity) or external (intera
tion with images or with

user-spe
i�ed 
onstraints).
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3 Presentation of the deformable model

3.1 Choi
e of representation

Our model is based on a triangulated surfa
e that may have several 
onne
ted 
omponents.

All 
omponents are 
losed and oriented. The data stru
ture minimizes the memory spa
e: ea
h

vertex has a set of parameters (
oordinates, normals, speed) and an oriented list of its neighbors.

Hen
e, all oriented 
ombinatorial two-manifolds without boundary 
an be represented [16℄ (refer

to [12℄ for a de�nition of 
ombinatorial two-manifolds). Boundaries are not allowed be
ause they

introdu
e ambiguities in topologi
al a

idents and need spe
ial handling of their 
onstraints.

Moreover, boundaries in surfa
es are useless to re
over the boundary of a volumetri
 obje
t (the

boundary of a three-manifold is a two-manifold without boundary).

The model does not interse
t itself in the Eu
lidean spa
e: during its evolution, the em-

bedding of the model always represents the boundary of a volumetri
 obje
t. A set of simple

geometri
al 
onstraints is applied on the model to optimize both dete
tion and resolution of

topologi
al a

idents. Therefore, the model 
an adapt its topology to the geometry of its surfa
e

without any intera
tion of the user.

The mesh is 
onsidered as a set of parti
les linked with spring for
es [1, 11℄. External


onstraints are applied on verti
es. As a 
onsequen
e, image resolution and mesh pre
ision must

be similar.

3.2 Geometry and topology

A model based on triangulated meshes o�ers some immediate advantages: simpli
ity, speed and

fast rendering. To these points we 
an add the opportunity to extra
t features of the obje
t, su
h

as the area and the volume de�ned by the obje
t, moments or topologi
al information. Lo
al


urvature 
an be approximated [5℄, geodesi
 distan
es on su
h surfa
e 
an also be 
omputed

[41℄. Thus, triangulated meshes provide an eÆ
ient tool to shape analysis.

A major problem that arises in shape re
overy or segmentation is the possible 
omplex

topology of obje
ts in 3D data. As a matter of fa
t, parametri
 models are bound to their

intrinsi
 topology. Impli
it models are naturally able to dynami
ally modify their \topology"

in R

3

but this \topology" is never expli
it. Currently, one 
lassi
al approa
h is to initialize the

deformable model with an estimation of the topology of the �nal shape [1, 10℄; the model is

then deformed to �t the obje
t more pre
isely. These methods perform well in the re
overy of

unstru
tured 3D data but they are not suited to volumetri
 data. Some deformable models o�er

dynami
 topologi
al modi�
ations with user intera
tion or validation [8℄, or by performing series

of 
ontra
tion [25℄.

As far as we know, only the dynami
 model presented in [30℄ automati
ally modi�es its

topology with regards to its variable geometry. It uses a simpli
ial de
omposition of the image

to segment: a set of tetrahedra is thus partitioning the image. At ea
h step, movements of every

vertex are 
omputed. The moved verti
es belong to a new set of tetrahedra. By analogy with

a 
ame propagation algorithm, the model keeps tra
k of the \burnt" verti
es of the simpli
ial

grid, whi
h the surfa
e has already 
rossed. By 
ombining this information to the new set of

tetrahedra, the model extra
ts the \surfa
e" at the next time step. The nodes of the \surfa
e"

are re
omputed at ea
h iteration with a method similar to a Mar
hing-Tetrahedra [13℄. This

reparameterization performs topologi
al transformations in an impli
it way. However, the model

is bound either to in
ate everywhere or to de
ate everywhere. Therefore, it is deli
ate to modify

the parameters of the model during the evolution or to provide a 
exible intera
tion to the user.

Tra
king of surfa
es in spatiotemporal data is also diÆ
ult. Besides, the a

ura
y of the model

is linked to the resolution of the simpli
ial grid: in
reasing the resolution by two thus requires

eight times as many tetrahedra.
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In this arti
le, we propose a model that adapts its topology to the geometry of its verti
es at

ea
h step, without any user-intera
tion or any grid embedded in the image; topologi
al modi�-


ations are lo
ally done. The method is based on global geometri
al 
onstraints applied to the

verti
es of the model (see [22℄ or [23℄ for a pre
ise des
ription).

We denote T the triangulated mesh, S

T

the set of verti
es of T , s the 
ardinality of S

T

(i.e.,

the number of verti
es). If U 2 S

T

, then V(U) is the set of the neighbors of U , d(U) the number

of neighbors, (U

i

)

0�i<d(U)

the oriented list of the neighbors of U , u the 
oordinates of U . We

also denote #F the 
ardinality of a �nite set F .

We introdu
e an invariant Æ (Æ > 0) whi
h is asso
iated with the mesh. Three geometri
al


onstraints are derived from this invariant. They determine the sampling of the mesh:

8(U; V ) 2 S

T

� S

T

= V 2 V(U); Æ < ku� vk (1)

8(U; V ) 2 S

T

� S

T

= V 2 V(U); ku� vk < 2:5 Æ (2)

8(U; V ) 2 S

T

� S

T

= V 62 V(U);

2:5

p

3

Æ � ku� vk (3)

Constraints (1) and (2) express the upper and lower bounds of one edge length. They for
e

the triangulated surfa
e to remain rather regularly sampled. The fa
t that 
onstraint (3) is not

satis�ed for a 
ouple of non-neighboring verti
es expresses a 
ollision between two distin
t parts

of the surfa
e. This 
onstraint is used to dete
t self-interse
tion.

The numeri
al 
onstant of (2) ensures that 
onstraint (1) is followed after the 
reation of a

vertex on the problemati
 edge. The numeri
al 
onstant of (3) is the longest distan
e between

a vertex of the surfa
e and the three verti
es of a fa
et whi
h the vertex is going through. We

assume that movements of verti
es are small and that the inversion operation is used when-

ever triangles are too elongated (see Figure 1a). Under these two hypotheses, 
orre
t 
ollision

dete
tion is a
hieved by this 
onstraint

1

.

Computing distan
es between verti
es is very fast for (1) and (2) and 
he
king these 
on-

straints 
an be done in O(s). Constraint (3) over the whole mesh is 
he
ked in O(s log(s)) with

a point o
tree. This point o
tree must be 
omputed at ea
h iteration. Note that the test of


onstraint (3) 
an be performed even faster | theoreti
ally in O(s) | with a dis
rete \image"

gathering verti
es at dis
rete positions; in this arti
le, only the point o
tree algorithm has been

implemented. We do not use algorithms for 
ollision dete
tion based on OBB-trees [15℄ be
ause

they are optimized for rigid meshes with motion. Besides, 
ollision dete
tions based on hierar-


hi
al mesh representation [39℄ need �xed topology and are not suited to models with dynami


topology.

3.3 Topologi
al 
hanges

The model 
hanges its topology a

ording to the 
lassi
al Eulerian topologi
al transformations

of 
reation, deletion or inversion (see Figure 1 in 
ase of violation of (1) or (2)). These transfor-

mations are performed in O(1).

Non-Eulerian topologi
al transformations of 
losed and oriented surfa
es that evolve in the

Eu
lidean spa
e are des
ribed on Figure 2. During their evolution, these surfa
es 
an mainly

meet two di�erent transformations (refer to [23℄ for further details): axial transformations, where

1

If these two hypotheses are omitted, then the numeri
al 
onstant of (3) should be set to

p

19=2 (provided

the numeri
al 
onstant of (2) is 2:5). With these 
onstants, it 
an be shown that the 
ombinatorial triangulated

surfa
e is \embedded" in R

3

as a 2-manifold without boundary.
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U V

Creation

Inversion

S
U

S
V U V

Illicit melting (topological problem)

U

V

S

S

Melting

(a) (b)

Figure 1: (a) A 
reation or an inversion is done if the 
ouple (U; V ) does not verify 
onstraint

(2) ; (b) A deletion is done or an annular problem is dete
ted when 
onstraint (1) is not satis�ed

by (U; V ) .

Axial melting

Inverse

Annular
constriction

Axial
constriction

Annular
melting

Inverse

Dual

Dual

Figure 2: Des
ription of the four main topologi
al a

idents for a 
losed oriented surfa
e in R

3

two parts of the surfa
e whi
h are not lo
ally 
onne
ted are 
olliding, and annular transforma-

tions, whi
h o

urs when a 
onne
ted part of the surfa
e homotopi
 to a 
ir
le is shrinking to a

point.

Therefore, we have �rst to dete
t when a non-Eulerian transformation must take pla
e, and

se
ondly to exhibit the 
orresponding mesh operations.

Axial transformations. If equation (3) is not satis�ed by a 
ouple of non-neighboring verti
es

(U; V ), then two di�erent parts of the surfa
e are 
olliding. Now, these two verti
es

may have 
ommon neighbors as it 
an be seen on Figure 3. Consequently, the fa
t that


onstraint (3) is not veri�ed may hide an annular transformation. So intermediary verti
es

are 
reated between U and its neighbors and between V and its neighbors (Figure 4a),

and, only after, a triangulation is done between the neighbors of U and V (Figure 4b)

(be
ause of the intermediary verti
es, U and its neighbors, and V and its neighbors, form

two parts of the surfa
e that are not lo
ally 
onne
ted).

Annular transformations. These transformations are dete
ted with 
onstraint (1). A tubular

part of the surfa
e is 
ollapsing onto itself. If a 
ouple of neighboring verti
es does not

satisfy 
onstraint (1), then we have to 
he
k whether the neighborhood of these two verti
es

is a tubular part of the surfa
e. To do so, the value # (V(U) \ V(V )) is 
he
ked. If this

value is equal to 2, then the two verti
es U and V are simply merged into one vertex
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(a) (b) (
)

Figure 3: These �gures show several 
on�gurations where the geometri
 
onstraint (3) is not

satis�ed : (a) no 
ommon neighbor; (b) one group of 
ommon neighbors; (
) two groups of


ommon neighbors.

intermediary points
Creation of

Triangulation

(a) (b)

Figure 4: Implementation of axial transformations: (a) 
reation of intermediary verti
es; (b)

triangulation between the two surfa
es and deletion of the two old verti
es.

at their mid-point. Otherwise, the neighborhood of U and V is so bent that it forms a

narrow tube (or possibly several narrow tubes joining up at this lo
ation). In this 
ase,

the surfa
e is 
ut in two along the edges UV , V O, OU | O is a 
ommon neighbor of U

and V , but OUV is not a fa
e of the triangulated surfa
e | (see Figure 5). After that,

the two 
reated holes are �lled in by two triangles, and the split verti
es (U

1

V

1

and U

2

V

2

)


an be merged separately.

It is easy to show that the so-built transformations follow the expe
ted variations of the Euler-

Poin
ar�e 
hara
teristi
. The proposed topologi
al transformations obey both the evolution of

the geometry of the verti
es and the \embedding" | a more 
orre
t word would be imbedding

| of the 
ombinatorial surfa
e as a two-manifold in R

3

without boundary. Of 
ourse, there

may be three or more parts of the surfa
e whi
h are not lo
ally 
onne
ted that are 
olliding.

As well, a part of the surfa
e whi
h 
onsists of several narrow tubes joining up at one pla
e

may 
ollapse onto itself pre
isely at this lo
ation. In these 
ases | whi
h are very un
ommon

but may theoreti
ally o

ur |, the previous transformations are applied su

essively (annular

transformations are performed before axial transformations).

All non-Eulerian transformations are performed in O(1). Deletion of a tetrahedron 
an also

be done with the same performan
e. The 
reation of a tetrahedron is governed by the user.
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U

O2

2

V2

O1

U1

V1
O

U

V

Figure 5: Implementation of annular transformations: splitting of the problemati
 set UV O in

two parts, then separate merging.

(a) (b) (
)

Figure 6: Example of a global re�nement over a polyhedron with sixty fa
ets: (a) before re�ne-

ment; (b) after �rst pass; (
) after se
ond pass.

3.4 Global re�nement

We propose an Eulerian transformation denoted �
1

p

3

that globally re�nes any triangulated mesh

(see Figure 6). This transformation redu
es the average edge length to

1

p

3

of the old one, thus

in
reasing the sampling by

p

3. This transformation allows multi-resolution modeling. It 
an be

de
omposed into two stages:

1. In a �rst pass, a new vertex is 
reated at the mid-point of ea
h fa
et of the model; the

vertex is 
onne
ted to the three verti
es that bound its fa
et.

2. In a se
ond pass, the edges whi
h 
onne
t the old verti
es (those whi
h were not 
reated

during the �rst pass) are inverted in order to regularize edge lengths.

This algorithm redu
es the average edge length to 1=

p

3 of the old one. The global asso
iated

invariant Æ must also be divided by

p

3. The transformed surfa
e possesses about three times as

many verti
es as before transformation. This re�nement algorithm has been preferred to another

one based on the 
reation of one vertex on ea
h edge, be
ause the former is adapted to the data

stru
ture of the mesh: this stru
ture where every vertex has an ordered list of its neighboring

verti
es is 
onsistent only when all fa
e elements are triangular. This would be false during the

re�nement pro
ess if the algorithm 
reated four triangles on ea
h triangle.
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3.5 Dynami


The mesh is assimilated to a dynami
 system of parti
les, whi
h are the verti
es of the mesh,

following both 
onstraints of other parti
les and of environment. Thus, intera
tions between

parti
les o

ur only between dire
t neighbors and the 
omputation time of internal 
onstraints

is in O(s) for the whole mesh. We have 
hosen a dynami
 evolution for the verti
es of the model

(verti
es undergo inertia: mass m is greater than zero). This 
hoi
e is motivated by our personal

experien
e. We have indeed observed that the model has better 
onvergen
e properties when

mesh verti
es undergo an inertia (in parti
ular when internal for
es are strong). Besides, the

evolution of the mesh is then less sensitive to the parameters (espe
ially to the damping fa
tor).

Let X be a vertex of S

T

. We denote x its 
oordinates (
_
x its velo
ity and

�
x its a

eleration).

The Newtonian law of motion is applied on ea
h vertex:

m
�
x+ 


_
x = f

int

+ f

ext

; (4)

where m is the mass of the vertex and 
 the damping fa
tor, f

int

the internal for
es on

X, f

ext

the external for
es applied on X. 
 must not be too low to es
ape os
illations and

not too high to avoid slow displa
ements [1℄. After numerous experiments, we have 
hosen to

integrate equation (4) by Runge-Kutta's method. This method is slower than a simple Euler's

method, but presents a better behavior when internal 
onstraint are strong. The robustness of

this method is nevertheless limited by the topologi
al transformations whi
h are unpredi
table.

Unlike snake-like models, we do not perform any energy minimization. In fa
t, our approa
h

shares several similarities with an energy minimization, be
ause minimization is often performed

with the asso
iated Euler-Lagrange equation. It is easy to see that the two internal for
es whi
h

we de�ned in Se
tion 3.7 
orrespond to the regularization terms of �rst and se
ond order of

snakes. The \energy" of the mesh is thus minimal when it rea
hes a stable position. Several

models use an approa
h similar to ours [9, 30℄.

3.6 Evolution

Depending on the appli
ation, the triangulated surfa
e 
an be initialized with any number of

non-interse
ting i
osahedra s
attered in the volumetri
 image, or for instan
e, one i
osahedron

in
luding the whole volumetri
 image. The surfa
e may then optionally be re�ned (see se
-

tion 3.4) until the density of the mesh 
orresponds to the appli
ation. After that, the surfa
e is

free to evolve a

ording to its dynami
 and geometri
al rules.

The algorithm 
arrying out the evolution of the surfa
e 
an be summarized as an iteration

of the pseudo-
ode pro
edure of Figure 9. Note that vertex movements have to be bounded to


he
k the geometri
 
onstraints 
orre
tly. Two methods 
an be implemented to limit them at

ea
h iteration: one 
an impose an upper bound to the speed of ea
h vertex or the time s
ale

(used to integrate the evolution equation) 
an be adjusted a

ording to the speed of the fastest

vertex. For the purpose of shape re
overy, the �rst method 
an be preferred. For a 
orre
t

physi
al behavior, it is better to 
hoose the se
ond one.

A simple heuristi
 is used to pro
ess motionless or slow verti
es less frequently than mobile

ones. It is indeed useless to 
he
k the geometri
 
onstraints of these verti
es at every iteration.

The pro
essing periodi
ity of ea
h vertex is thus made dependent on its speed. A maximal

periodi
ity of 50 is imposed. The periodi
ity is one when the vertex movement is greater than

0:1Æ. Between these upper and lower bounds, the periodi
ity is linear for the speed. This

heuristi
 is parti
ularly eÆ
ient in a multi-resolution approa
h, where lots of verti
es are qui
kly

near their �nal position. Note that the dynami
 of every vertex is 
omputed at ea
h iteration,

regardless of its speed.

9



3.7 Internal for
es

We de�ne two internal for
es that depend on the neighborhood of ea
h vertex: a for
e f




of


urvature regularization whi
h smoothes the shape, and a spring for
e f

e

whi
h spreads lo
alized

deformations along the whole surfa
e (it is the 
lassi
al spring for
e when the rest length is null).

If X (resp. Y ) is a vertex, then x (resp. y) expresses its 
oordinates,
�
x (resp.

�
y) designates the

mid-point of all the neighbors of X (resp. Y ). We de�ne at ea
h vertex the following for
e:

8X 2 S

T

; f




(X) = �




0

�

�
x� x�

1

d(X)

X

Y 2V(X)

(
�
y � y)

1

A

; (5)

where �




is the \rigidity" 
oeÆ
ient. Let d

T

be the edge rest length for the whole mesh.

This parameter 
an be set to null to minimize the area of the mesh; it 
an be set to a value

given by the user to for
e the model to adapt the length of all edges; it 
an be set to the average

of all edge lengths to regularize them along the entire mesh. The following for
e is de�ned at

ea
h vertex:

8X 2 S

T

; f

e

(X) = �

e

X

Y 2V(X)

(ky � xk � d

T

)

y � x

ky � xk

; (6)

where �

e

is the \sti�ness" 
oeÆ
ient.

These two for
es follow the a
tion/rea
tion prin
iple. The �rst one brings ba
k verti
es to

their lo
al tangent plane and minimizes surfa
e 
urvature (it simulates thin plate behavior).

The se
ond one regularizes the edge lengths along the whole surfa
e and expresses the binding

energy. If the rest length is set to null, then the model tends to minimize its area (the model

a
ts as a membrane). Note that a non-null rest length with strong elasti
 for
e 
an make the

system rather unstable (it is also true in the 2D 
ase, as was stressed for snakes by [26℄).

3.8 External 
onstraints

Shape re
overy is one of our main purposes. To perform this task we introdu
e two external

for
es on verti
es. They represent the in
uen
e of the image on the embedded surfa
e. The for
e

f

I

will guide the surfa
e towards an iso-potential value of the image. The for
e f

rI

will dire
t

the surfa
e to regions of maximal or minimal intensity value. For the appli
ations we present

here, external for
es are not 
omputed by a 
ontour tra
king or re
onstru
tion algorithm su
h

as in [32℄. Moreover, the image is not pre-pro
essed, and for
es are not 
omputed using a lo
al

s
anning of the voxels surrounding the verti
es [33℄. External for
es are just 
omputed from the

raw data. Both for
es are normalized by the geometri
al invariant Æ (see se
tion 3.2), so that

the image in
uen
e is proportional to the mesh density.

The dis
rete volumetri
 image I is transformed into a 
ontinuous s
alar �eld �

I

, 
alled

image potential �eld, by a tri-linear interpolation. This potential �eld is normalized to [0; 1℄.

The attra
tion towards an intensity value in this �eld is simply expressed by:

8X; f

I

(X) = Æ�

I

(�

I

��

I

(x))n

X

; (7)

where �

I

is the 
oeÆ
ient of attra
tion toward a given iso-potential surfa
e of value �

I

, and

n

X

is an approximation of the normal ve
tor at vertex X. The for
e f

I

is meant to sear
h for

the iso-potential surfa
e of value �

I

. Its prin
iple is to in
ate or de
ate lo
ally the model as

long as it does not lie on the desired iso-potential surfa
e. A positive value is expe
ted for the


oeÆ
ient �

I

when the potential �eld tends toward one ad in�nitum (obje
ts are 
omposed of
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voxels whose intensity value is lower than �

I

), a negative one when it tends toward zero (obje
ts

are 
omposed of voxels whose intensity value is higher than �

I

).

The dis
rete ve
tor image rI is the dis
rete gradient of I 
omputed by a Sobel operator. It

is bounded by a maximal value given by the user, then transformed into a 
ontinuous ve
tor �eld

�

�

�

rI

by tri-linear interpolation. The following for
e moves the surfa
e along the lo
al gradient

of the image:

8X; f

rI

(X) = Æ ((�

rI

� �

rI

)(�

�

�

rI

(x) � n

X

)n

X

+ �

rI

�

�

�

rI

(x)) ; (8)

where �

rI

(resp. �

rI

) is the 
oeÆ
ient of gradient attra
tion along n

X

(resp. n

X

?

). The for
e

f

rI

is a 
lassi
al gradient as
ent when �

rI

and �

rI

are equal and positive. The 
oeÆ
ient �

rI

modulates this for
e along the lo
al surfa
e normal, and �

rI

along the lo
al tangent plane.

This for
e 
an simulate the external energy of a snake model. Let J be the image of interest.

Let I be the norm of the gradient image of J (possibly 
onvolved with a Gaussian kernel). It

is easy to see that our model is attra
ted to strong 
ontours of image J when it is guided by

for
e f

rI

on image I (with positive 
oeÆ
ients). This approa
h to edge �nding 
ould 
ertainly

be improved by using an edge image (
omputed by a Canny-Deri
he operator for instan
e).

3.9 Example on a potential fun
tion

Figures 7a-e exhibit the behavior of the model during the shape extra
tion from a potential

fun
tion: the expe
ted shape is a 
hain with two intertwined rings. This potential fun
tion

is similar to a distan
e transform image, whi
h represents the distan
e to the torus skeletons.

The model is initialized with a re�ned i
osahedron in
luding the whole shape. In these �gures,

the shape was extra
ted with external for
e f

I

(parameters �

I

= �1:0 and �

I

= 0:5) together

with smoothing internal 
onstraint f




(�




= 0:1) and regularization 
onstraint f

e

(�

e

= 0:1).

Ninety iterations are ne
essary for the surfa
e to lie pre
isely on the shape. We also initialized

the model with a set of 11 � 11 � 11 small bubbles and we have run the pro
ess on the same

potential fun
tion, but with no internal 
onstraint. Figures 8a-f show that the model is robust


ompared with its initialization.

4 Image workspa
e and pyramids

4.1 Multi-s
ale approa
h with 3-D pyramids

A straight approa
h to image segmentation is not fully satisfa
tory. The in
uen
e of a potential

fun
tion derived from an image is indeed lo
alized around verti
es (a

ording to the de�nitions

of the external for
es f

I

and f

rI

) and does not make sense if the mesh has a resolution lower

than the resolution of the three-dimensional image. The following two approa
hes 
an be taken:

� The �rst one 
onsists in using a triangulated mesh with a density 
omparable to the

resolution of the image. The surfa
e is then 
onsistent with the frequen
y domain in

whi
h it evolves. One drawba
k is the need of using a very �ne surfa
e: the 
omputational


ost is in
reased a

ordingly.

� The se
ond one does not make any assumption about the resolution of the mesh. For
es

are 
omputed from the image by a lo
al s
anning over a suÆ
iently large neighborhood of

voxels. A pre-pro
essing on the image 
an improve this approa
h [33℄.

In order to take advantage of both solutions, we propose to 
ompute only on
e the in
uen
e

of the image areas at di�erent s
ales. This hybrid solution 
an be done by 
omputing a three-

dimensional image pyramid, where ea
h resolution (i.e. ea
h image) 
orresponds to distin
t
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(a) (b) (
) (d) (e)

Figure 7: Mesh evolution during the re
overy of a 
hain shape 
omposed of two intertwined tori:

(a) at initialization; (b) at iteration 20; (
) at iteration 40; (d) at iteration 60; (e) at iteration

90.

(a) (b) (
) (d) (e) (f)

Figure 8: Mesh evolution during the re
overy of a 
hain shape 
omposed of two intertwined tori:

(a) at initialization; (b) at iteration 10; (
) at iteration 30; (d) at iteration 40; (e) at iteration

70; (f) at iteration 160.

re�nement of the triangulated mesh. The model will rely on the results obtained at a 
oarser

resolution in order to start the 
omputation at a �ner resolution with more eÆ
ien
y.

Pyramidal image representations as proposed in [37℄ have been the �rst ones to de�ne and

exploit image redu
tion. However several purposes may be sought, among whi
h are the fast


omputation of parameters, 
ompression, signal de
omposition, segmentation, et
 [19℄.

Pyramids of frequen
y de
omposition presented in [3, 4℄ are more interesting for our purpose:

they provide a set of images at de
reasing resolutions whi
h are 
losed to the visual per
eption

of an observer at an in
reasing distan
e. The appli
ation of a Gaussian kernel �lters high

frequen
ies. After this �ltering, a sampling of lower resolution provides an image of higher level.

Pra
ti
ally, one operator 
ombines the operations of �ltering and re-sampling. This pro
ess

builds the Gaussian pyramid, taking advantage of the fa
t that a Gaussian kernel does not


reate any wrong 
ontours. When its size is 5 � 5 in a two-dimensional spa
e, the waveband is

redu
ed from one o
tave, hen
e the sampling frequen
y is redu
ed from the same fa
tor.

To get the best out of pyramidal representations we need to extend pyramids of frequen
y

de
omposition to volumetri
 images 
omposed of non-
ubi
 voxels, and to link them together

with our model of surfa
e representation. Be
ause the pre
eding pyramids are not always suited

to 3D appli
ations that are based on the embedding of a triangulated mesh into data, we have

developed an algorithm for 
reating volumetri
 pyramids of any redu
tion fa
tor. Therefore, the

adequa
y between the density of the embedded mesh and the resolution of the pyramidal image

is preserved.

4.2 3D image pyramids of any redu
tion fa
tor

The algorithm of pyramid 
onstru
tion we propose here does not assign a spe
i�
 value to the

redu
tion fa
tor. Thus, any re�nement 
an be used for the triangulated mesh. For instan
e, the

re�nement presented in se
tion 3.4 requires a non-rational redu
tion fa
tor of

p

3. We 
an noti
e

that the authors of [35℄ have adapted the 
onstru
tion me
hanism of dis
rete pyramids to allow

rational redu
tion fa
tors. However, the so-de�ned transformation is not a 
onvolution pro
ess.

Consequently, the �lters are not low-pass ones and the resulting signals are not well de�ned. In
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Pro
edure Evolution ( Mesh & T , 
onst Image & I )

for ea
h Vertex U 2 T ,


ompute U:f

int

(T ) and U:f

ext

(I)

for ea
h Vertex U 2 T ,

appli
ation of the Newtonian law of motion on U with the previously 
omputed �t,

U:f

int

and U:f

ext

; make e�e
tive movement of U .

ListOfVertex L � all verti
es of T

Boolean x � false

repeat

while L.isNotEmpty() do

Vertex U  � L.popVertex ()

for ea
h Vertex V 2 U .neighborhood ()

for (U; V ) 
he
k 
onstraints (1) and (2); perform transformation (
reation,

deletion, inversion, annular transformation) a

ordingly; for ea
h Vertex W

involved in transformation, L.putAtEnd (W )

end for

done

Update T .pointO
tree and extra
t pairs ( Vertex U , Vertex V ) whi
h do not satisfy


onstraint (3)

if 6 9(U; V ) then x � true

else

for ea
h (U; V ), perform axial transformation; for ea
h Vertex W involved

in the transformation, L.putAtEnd(W )

endif

until x

end

Figure 9: This pro
edure des
ribes the main steps of one iteration of deformation.

order that the 
onsisten
y of the �ltering/re-sampling operation be veri�ed, the redu
tion fa
tor

per dimension. denoted �, must be less than 2.

We will �rst re
all the 
onstru
tion of a 
lassi
al Gaussian pyramid. The su

essive levels

of that kind of pyramid are 
omputed with the 
onvolution of a Gaussian kernel of side 5 pixels

(or voxels). It guarantees a low 
ost �ltering without a phase translation linked to a redu
tion

fa
tor of two for ea
h image dimension [6℄.

Let I

0

be the initial image of 3D voxels and the base of the pyramid. The 
omputation of

I

h+1

(image of level h+1 in the pyramid) from I

h

(image of level h in the pyramid) is given by

the dis
rete 
onvolution formula:

I

h+1

(i

0

; j

0

; k

0

) =

2

X

m=�2

2

X

n=�2

2

X

p=�2

!(m;n; p) � I

h

(2i

0

+m; 2j

0

+ n; 2k

0

+ p); (9)

where ! is a Gaussian 
onvolution kernel of size 5 voxels:

�

1

16

[1 4 6 4 1℄

�

3

.

Within our 
ontext, two major 
onstraints have to be taken into a

ount: voxels are not

bound to be 
ubi
 (sampling frequen
ies are highly dependent on the a
quisition devi
es and

are not identi
al in the general 
ase), the redu
tion fa
tor of the re-sampling must be 
oherent

with both the surfa
e representation and its re�nement.
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Therefore the previous formulation (9) is not usable as is.

Making our voxel spa
e isotropi
 in order to apply 
onvolution operators 
oherently would

be very memory intensive (the resolution would be
ome the lowest 
ommon multiple of the

sampling frequen
ies). Instead, by de�ning a real 
ontinuous workspa
e 
orresponding to the

dis
rete stru
ture 
ontaining the initial data, we will realize the 
onvolution operations eÆ
iently.

In the following, a dis
rete image refers to the dis
rete volumetri
 data stru
ture whose nodes

(i.e. voxels) store intensity values. A real image designates the 
ontinuous s
alar �eld obtained

by the \embedding" of the dis
rete image into a subset of the Eu
lidean spa
e: this \embedding"

de�nes a real size for the image, whi
h is generally not proportional to its dis
rete size. Intensity

values in this �eld are 
omputed by tri-linear interpolation. Images intensities are supposed to

be normalized to [0; 1℄.

Our goal is to determine a list of volumetri
 dis
rete images I

0

; I

1

; : : : ; I

m

representing the

three-dimensional pyramid. I

0

is the initial image (i.e., the image I given for pro
essing) of dis-


rete size (M;N;P ) and of real size (�; �; �). This image has the greatest amount of information.

I

m

will be the image that in
ludes only the lowest frequen
ies. Let M

h

, N

h

and P

h

be the sizes

of the dis
rete image I

h

for h between 0 and m. Their values are still unknown. Let E

h

be the

Cartesian spa
e M

h

�N

h

�P

h

. With these de�nitions, a dis
rete image I

h

is a fun
tion from E

h

towards [0; 1℄ � R. Let V

0

; : : : ; V

m

be the pyramid of real images 
orresponding to the pyramid

of dis
rete images. Any real image V

h

is given by the embedding then by the interpolation of the

dis
rete data of I

h

(i.e., V

h

= �

I

h

). Every so-de�ned embedding preserves the real size (�; �; �)

of the initial image I

0

, be
ause these images are meant to represent the same image at di�erent

s
ales.

We denote E the spa
e de�ned by the real image of size [0; �℄ � [0; �℄ � [0; �℄, whi
h is a

subset of R

3

. Be
ause ea
h I

h

represents at di�erent s
ale the same real image, they all have a

real size of �; �; �. The embedding of a voxel (i; j; k) of a dis
rete image I

h

into the real image

spa
e E is given by the transformation T

h

(depending on the level of the pyramid) as below:

T

h

: E

h

! E

(i; j; k) 7!

�

(i+

1

2

)

�

M

h

; (j +

1

2

)

�

N

h

; (k +

1

2

)

�

P

h

�

(10)

We 
all unit of the real spa
e and we denote U

h

the value min(

�

M

h

;

�

N

h

;

�

P

h

). It is the smallest

distan
e between the embedding of two voxels in the real image. In the 
ase of an anisotropi


image, the 
onvolution mask applied during the 
onstru
tion must indeed be isotropi
 with

respe
t to the real spa
e where the image is embedded. If this is not properly done, pyramids

will tend to preserve the 
ontours following a dire
tion where image resolution is �ne, and to

smooth too mu
h those following a dire
tion where image resolution is proportionally 
oarse.

The unit U

h

provides the isotropi
 distan
e separating the points of the 
onvolution mask.

The dis
rete sizes M

h

, N

h

, P

h

and the measure unit U

h


orrespond to a dis
rete image I

h

and its asso
iated real image V

h

. Their values are de�ned re
ursively as below:

M

0

=M N

0

= N P

0

= P U

0

= min(�=M; �=N; �=P )

M

h+1

=

j

M

h

�

k

N

h+1

=

j

N

h

�

k

P

h+1

=

j

P

h

�

k

U

h+1

= �U

h

(11)

Let R = (i

0

; j

0

; k

0

) be a voxel of the dis
rete data of I

h+1

. Our goal is to �nd its value for any

(i

0

; j

0

; k

0

) 2 E

h+1

. Its embedding R

E

in the real image V

h+1

has 
oordinates of T

h+1

(i

0

; j

0

; k

0

)

(see Figure 10a).

In order to establish the value of R, the 
onvolution operation is de�ned over points of V

h

.

The 
entral point has the same position in V

h

and in V

h+1

. The lo
alization of the other points

involved in the 
onvolution (5

3

� 1 in 3D for a kernel of size 5) is determined with the unit U

h

:

V

h

is thus dis
retized around the point R

E

(see Figure 10b). Supposing I

h

is known, then V

h

is
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h

[0,µ]  [0,ν]:

[0,     −1]  [0,     −1]:

[0,         −1]  [0,        −1]:

h: Points of I   localized in the real image

h+1: Points of I      localized in the real image

and providing I
h: Points of V   calculated for the convolution

h+1

h

h: Points of I   involved in the calculation of 

the points of V   which form the convolution

mask

real imagex

Mh Nh Idiscrete image hx

Mh+1 Nh+1 Idiscrete image h+1x

(
)

Figure 10: View of a 
onvolution 
omputation in 2D: (a) the two superposed levels I

h

and I

h+1

;

(b) 
omputation of level I

h+1

together with the lo
alization of the 
onvolution mask applied to

one point; (
) appli
ation of the 
onvolution mask over level I

h

, dis
rete points of I

h

involved in

the 
omputation are also displayed with bla
k 
ir
les.

de�ned by �

I

h

. We obtain the 
onvolution formula:

I

h+1

(i

0

; j

0

; k

0

) =

2

X

m=�2

2

X

n=�2

2

X

p=�2

!(m;n; p)V

h

�

T

h+1

(i

0

; j

0

; k

0

) + (mU

h

; nU

h

; pU

h

)

�

: (12)

To 
ompute points at the boundary of I

h+1

, the boundary voxels of image I

h

are repli
ated.

Be
ause of the unknown redu
tion fa
tor, the 5

3

points involved in the 
onvolution do not


oin
ide with given points of I

h

in the general 
ase (see Figure 10
). Ea
h one of these points is


omputed with a tri-linear interpolation from the 8 data points of I

h

whi
h surround it.

The Gaussian 
onvolution kernel (of size 5

3

) is applied su

essively along the three dimensions

be
ause of its separable property. We 
an estimate the savings o�ered by this optimization (the

following notations are used: let t

0

be the a

ess time to a point value, t

1

the running time of a


lassi
al algorithm, t

2

the running time of the optimized algorithm):

t

1

t

0

= 5

3

M

h+1

N

h+1

P

h+1

t

2

t

0

= 5M

h+1

N

h

P

h

+ 5M

h+1

N

h+1

P

h

+ 5M

h+1

N

h+1

P

h+1

Hen
e,

t

2

t

1

=

1

25

(�

2

+ �+ 1): (13)

The optimized algorithm is thus faster when the redu
tion fa
tor � is between 0 and

�1+

p

97

2

(about 4:4). An overview of the 3D pyramid 
onstru
tion algorithm is given in appendix A.
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(a) (b) (
)

(d) (e) (f)

Figure 11: Resolution of a pyramidal image and density of a triangulated mesh: (d) evolves in (a), (e)

in (b), (f) in (
).

4.3 Image-model relation

In se
tion 4.1 we have 
hosen to express surfa
e-image intera
tion with for
es lo
ally 
omputed

around ea
h vertex. Using a pyramid requires a model suÆ
iently 
exible to adapt its density to

image resolution. The edges of our model should neither be too long, otherwise high frequen
y


ontours 
ould be missed, nor too small, be
ause they would then represent the de
omposition

of a small 
ontour of two voxels. In order to obtain a 
orre
t adequa
y between the surfa
e

and the images of the pyramid, we �rst examine the relations linking the model density to the

resolution of an image, then we show how to maintain the surfa
e{image adequa
y during the

whole 
oarse-to-�ne pro
ess.

A

ording to 
onstraints (1) and (2), the mesh density is de�ned by the invariant Æ. The


oarse-to-�ne approa
h implies a re�nement of the model every time it goes down a level of the

pyramid (see Figure 11). The invariant Æ is thus dependent on the image of the pyramid in

whi
h the model is 
urrently evolving (i.e, Æ is a fun
tion of the level h). Let Æ

h

be the invariant

Æ of the mesh at level h of the pyramid. Let d

h

(resp. D

h

) be the minimal (resp. maximal) edge

length of the mesh at level h. Constraints (1) and (2) give d

h

= Æ

h

and D

h

= 2:5 Æ

h

.

The image resolution is 
losely linked to the unit U

h

. In this se
tion, we suppose that images

are isotropi
 (see Se
tion 4.4 for anisotropi
 images). Edges of the mesh represent dis
rete


ontours of the voxel image. Both 6-
onne
ted 
ontours and 26-
onne
ted 
ontours are likely

to have 
orresponding edges. Consequently, an edge of the mesh may be smaller than two 6-


onne
ted voxels, whi
h implies d

h

� U

h

, and may be longer than two 26-
onne
ted voxels,

giving D

h

�

p

3 U

h

. Hen
e,

2:5

p

3

�

U

h

Æ

h

� 1: (14)

Equation (14) 
onstraints mesh density as a fun
tion of image resolution.

A surfa
e of given invariant Æ may be built only at initialization. After that, modi�
ations

of the invariant 
an be limited by the 
urrent mesh geometry. The re�nement transformation

�
1

p

3

(see Se
tion 3.4) redu
es the average edge length to 1=

p

3 of the old one. Therefore we

apply to the invariant a redu
tion fa
tor whose value is

p

3. In order that the inequality (14)

be respe
ted at the initialization and during all su

essive levels, an identi
al redu
tion fa
tor is


hosen for the pyramid 
onstru
tion; thus Æ

h

and U

h

are re
ursively de�ned by:

� =

p

3 and 8h = 0 : : : m� 1;

�

Æ

m

= Æ

init

; Æ

h

= Æ

h+1

=�

U

0

= U; U

h+1

= �U

h

(15)

At the initialization moment, a bubble or a set of bubbles, whose invariant Æ

init

is 
onsistent

with (14) at level m, is 
reated. During the evolution and the 
oarse-to-�ne pro
ess, de�nitions
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of (15) ensure a 
orre
t surfa
e-image adequa
y whi
hever are the iteration or the 
urrent level

in the pyramid (i.e., Æ

h

and U

h

follow (14)). The time when the mesh is re�ned and the

resolution in
reased is determined by a 
riterion based on a motion estimate of the mesh (refer

to Se
tion 5.1).

4.4 Mesh evolution in an anisotropi
 image

During the segmentation pro
ess, edges of the mesh have to keep their meaning with regards to

the voxel spa
e. On one hand, if we de
ide to work in the real image with size (�; �; �), edges

lose their 
onsisten
y with respe
t to the resolution of data. On the other hand, mesh evolution

in a real image where voxels are 
ubi
 modi�es the 
onstraints that must be applied: for
es lose

their physi
al interpretation. Three di�erent ways 
an be outlined to ta
kle this problem:

� The surfa
e evolves in a real spa
e of size (�; �; �) and follows the physi
ally-based 
on-

straints. Surfa
e-image 
onsisten
y is a
hieved only on the axes of �ne resolution.

� The surfa
e evolves in a real spa
e de�ned from the spa
e (�; �; �) by aÆne transforma-

tion. This spa
e has the same proportions than the dis
rete image it interpolates (its

sizes is (�M

h

; �N

h

; �P

h

)). The behavior of internal for
es is slightly di�erent from the


orresponding for
es in the real physi
al spa
e.

� The surfa
e evolves in a real spa
e of sizes (�; �; �). An anisotropi
 metri
 is 
oupled with

this spa
e. This metri
 is de�ned from the 
urrent dis
rete image (M

h

; N

h

; P

h

): adequa
y

between the surfa
e and the image is a
hieved along all axes and internal for
es keep a

physi
al meaning.

The �rst method gives good results with a weak anisotropy; the se
ond one provides better

results when the anisotropy is more signi�
ant; the last one is theoreti
ally the best solution

whi
hever is the 
ontext but has the slowest implementation. For most appli
ations dedi
ated

to volumetri
 data analysis, exa
t physi
al behavior is not 
riti
al and the se
ond method is

preferred to the latter.

5 Implementation and results

5.1 Algorithms of surfa
e extra
tion

Figure 12 presents the algorithm of shape re
overy on an image and Figure 13 presents the


oarse-to-�ne algorithm on a pyramid of images. The 
onvergen
e 
riterion, whi
h de
ided

when the mesh is re�ned and goes down one level in the pyramid, is the average kineti
 energy

along the normal to the surfa
e (the other part represents the sliding of verti
es over the surfa
e).

This energy is normalized by the invariant Æ

h

and also by the time step. This 
riterion may

optionally be sharpened with a maximal speed 
he
k or a validation by user intera
tion. Other


riteria may be added easily.

The model is tested on a syntheti
 fra
tal image (the 
lassi
al Sierpinski's 
ube) to point out

both topologi
al transformations and multi-resolution approa
h. The image size is 81� 81� 81.

The topology of the shape to re
over is highly 
omplex and unpredi
table. The model has

the expe
ted behavior whi
h is to extra
t �rst areas of higher density (see Figure 14). The

physi
al parameters were set to the following values: �




= 0:05 and �

e

= 0:001 for internal

for
es, �

I

= �1:0, �

I

= 0:4, �

rI

= 0:0 and �

rI

= 0:0 for external for
es. Note that �

I

is

slightly de
reased for the uppermost levels of the pyramid: the fra
tal obje
t has indeed an

empty volume ad in�nitum and therefore a null density.
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Pro
edure Re
overShape ( Mesh & T , 
onst Image & I, 
onst double � )

/* Adequa
y surfa
e-image */

while T:Æ > I:U do

T .globalRe�nement�
1

p

3

()

done

/* Deformation until a stable position is a
hieved */

repeat

Evolution (T , I)

double E  � T .
omputeKineti
EnergyAlongNormals()

until E < �

end

Figure 12: Algorithm of shape re
overy over a given image. The mesh T given as initialization

is re�ned as long as its density is not 
onsistent with the resolution of image I.

Pro
edure PyramidalRe
overShape ( Mesh & T , 
onst PyramidOfImage & P ,


onst double �, 
onst int m )

int i �m

while i >= 0 do

Re
overShape( T , P .image(i), � )

i � i� 1

done

end

Figure 13: Shape re
overy with a pyramidal approa
h: m is a given level in the pyramid P of

images. The mesh evolves in ea
h image P .image(i) of the pyramid with i from m to 0. The

mesh T is given as an initialization on the 
oarser level of the pyramid. After 
onvergen
e on

level i, the result (i.e., T ) is given as initialization for level i�1. Re�nement is done in pro
edure

Re
overShape().

(a) (b) (
) (d)

Figure 14: Multi-resolution evolution of the mesh on a syntheti
 image (fra
tal volume of Sierpin-

ski): (a) after 
onvergen
e on image I

3

; (b) after 
onvergen
e on image I

2

; (
) after 
onvergen
e

on image I

1

; (d) �nal result on I

0

.
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5.2 Comparison of the two approa
hes on medi
al data

We 
ompare the two approa
hes on a 
omputed tomography of a head. Figure 19a displays a

volumetri
 rendering of this data (ea
h intensity value has an asso
iated opa
ity). The dis
rete

size of the image is 256�256�68 and its real size is 1:0�1:0�1:0625. The image is signi�
antly

anisotropi
, thus the se
ond method des
ribed in se
tion 4.4 is used to pro
ess it. Physi
al

parameters are set to the following values: �




= 0:4 for a gentle smoothing of the surfa
e,

�

e

= 0:0 be
ause regularizing edges is not a 
riti
al point in our appli
ation, �

I

= �1:0 and

�

I

= 0:1 to tra
k bone intensity value, �

rI

= 0:0 and �

rI

= 0:0 be
ause gradient maxima do

not 
orrespond to the shape to re
over.

A pyramid P 
omposed of images I

0

; : : : ; I

m

(m = 3) is built up from this data set with a

redu
tion fa
tor of

p

3. The pro
ess is run twi
e for 
omparison purposes on a Pentium 300Mhz

with 128Mb of memory:

� The pro
ess is run �rst on the volumetri
 image I

0

without multi-resolution by 
alling the

pro
edure Re
overShape() with a bubble in
luding the whole image. Figure 15 shows the

surfa
e evolution: at �rst, the surfa
e is automati
ally re�ned (at this time, the mesh has

more than 65000 verti
es), then the surfa
e slowly sti
ks on the outer part of the skull,

and afterwards goes inside to re
over its inner part (orbits of the eyes, brain 
avity, et
).

More than 700 iterations are ne
essary for the surfa
e to rest perfe
tly on the inner part

of the skull.

� The pro
ess is now run on the pyramid P at level m: pro
edure PyramidalRe
overShape()

is 
alled with the same mesh at initialization. The pro
ess waits for the 
onvergen
e at

one pyramid level before going down one level. Figure 16 displays surfa
e evolution with

a multi-resolution method. The surfa
e, at �rst 
oarse, qui
kly outlines the skull shape.

Then, it relies on the shape extra
ted at one level to start the evolution on next level as

near as possible of the expe
ted result.

The Figure 17 
ompares the behavior of both methods. The behavior of the �rst one (dire
t

approa
h) is 
lear. The kineti
 energy 
urve shows the slow 
onvergen
e of the model (see

Figure 17a) and the small variations of its number of verti
es (see Figure 17b). At the beginning,

the mesh has more than 65000 verti
es and, at the end of the pro
ess, about 120000 verti
es. The

behavior of the se
ond method (multi-resolution approa
h) is also displayed on theses �gures,

and points out the evolution in four levels of the pyramid: the mesh has goes down a level at

iterations 400, 600, and 800. At the beginning, the mesh has only 6000 verti
es, and more than

120000 verti
es at the end. For this image, the surfa
es obtained by these two methods have

an area that di�ers by less than 1:0% and a volume that di�ers by 0:3%. These (very) small

di�eren
es 
an be explained by the fa
t that the two surfa
es may have stabilized in di�erent lo
al

minima. Both triangulated surfa
es have one 
onne
ted 
omponent and twenty-three topologi
al

holes.

The Figure 18 shows the 
omputation time of both methods and 
lari�ed the amounts of time

spent by the 
omputation of topologi
al operations (dete
tion and resolution), the 
omputation

of surfa
e normals, and the 
omputation of the model dynami
s. Note that the 
omputation time

of topologi
al operations and of normals slightly de
reased along with the model 
onvergen
e

be
ause of the heuristi
 presented in Se
tion 3.6. The Table 1 displays the total 
omputation

time (in se
onds) for the two methods.

The skull is outlined with 3800 verti
es in less than one minute. Two minutes later, the skull

shape is re�ned and has now 12000 verti
es. Six minutes thirty se
onds later, we have a skull

model 
omposed of more than 38000 verti
es. Thirty more minutes are ne
essary to a
hieve


onvergen
e on the �nest level (the model has more than 120000 verti
es). The dire
t approa
h

is nearly three times as long as the multi-resolution approa
h.
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(a) (b) (
) (d)

Figure 15: Surfa
e evolution without a pyramidal approa
h (no Gouraud shading is done): (a)

iteration 0 on image I

0

; (b) iteration 200 on image I

0

; (
) iteration 400 on image I

0

; (d) iteration

1100 on image I

0

.

(a) (b) (
) (d)

Figure 16: Surfa
e evolution on a pyramid of images (no Gouraud shading is done): (a) iteration

399 on image I

3

; (b) iteration 599 on image I

2

; (
) iteration 799 on image I

1

; (d) iteration 999

on image I

0

.
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Figure 17: Two methods of shape extra
tion from volumetri
 data are 
ompared on these graphs

(with and without multi-resolution): (a) evolution of the average kineti
 energy a

umulated

along the surfa
e normals; (b) evolution of the number of verti
es.

5.3 Other results

We have tested the robustness of our model and of the multi-resolution approa
h over di�erent

kinds of volumetri
 data. The se
ond data set is a phase 
ontrast MR angiographi
 image of

the brain vessels and is more problemati
 for a pyramidal approa
h. The Figure 19b displays

a volumetri
 rendering of this data. Its dis
rete size is 256 � 256 � 124. Angiographi
 images
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Table 1: Comparison between the dire
t approa
h and the multi-resolution approa
h: 
ompu-

tation time on a 
omputed tomography.

Image Approa
h T(s) on I

3

T(s) on I

2

T(s) on I

1

T(s) on I

0

Total

CT multi- T 17,0 30,0 108,7 543,8 11min 39s

resolution N 1,4 5,5 22,3 97,6 2min 27s

F 38,8 77,8 258,3 1242,6 26min 58s

= 0min 57s 1min 53s 6min 30s 31min 24s 40min 45s

CT dire
t T 2701,7 45min 01s

N 553,8 9min 13s

F 3476,4 57min 56s

= 112min 12s 112min 12s

Symbols T , N , F respe
tively designate the 
omputation time of topologi
al operations, of normals, and of dynami
s.
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(a) (b)

Figure 18: Evolution of the 
omputation time as a fun
tion of the iteration number: (a) 
ompu-

tation time for a dire
t approa
h (in ms); (b) 
omputation time for a multi-resolution approa
h

(in ms). As it 
an be seen on both graphs, 
omputing the movement of verti
es takes the longest

time and varies as a linear fun
tion of the number of verti
es.

(a) (b)

Figure 19: Volumetri
 rendering of two medi
al data set: (a) a 
omputed tomography of a skull;

(b) a phase 
ontrast MR angiography of the vessels of the brain.
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Table 2: Comparison between the dire
t approa
h and the multi-resolution approa
h: 
ompu-

tation time on a MR angiography.

Image Approa
h T(s) on I

3

T(s) on I

2

T(s) on I

1

T(s) on I

0

Total

aRM multi- T 6,8 0,0 3,8 196,9 3min 27s

resolution N 1,4 0,0 0,0 26,4 0min 28s

F 4,3 0,1 27,8 729,2 12min 41s

= 0min 13s 0min 0s 0min 32s 15min 52s 16min 37s

aRM dire
t T 1521,0 25min 21s

N 344,6 5min 45s

F 986,4 16min 26s

= 47min 32s 47min 32s

Symbols T , N , F respe
tively designate the 
omputation time of topologi
al operations, of normals, and of dynami
s.

are highly 
ontrasted. They are not suited to a pyramidal representation be
ause vessels are

thin obje
ts: therefore they are 
omposed of high frequen
y information and little information

remains on the 
oarsest level of the pyramid. Consequently, the mesh extra
ts few data from


oarse levels. As shown in Figure 20, the model su

eeds in following the vessels: 
onne
ted

vessels are re
overed on �ne levels. Physi
al parameters were set to the following values: �




=

0:07 and �

e

= 0:0 for internal for
es, �

I

= �1:0, �

I

= 0:05, �

rI

= 0:0 and �

rI

= 0:0 for external

for
es. The Table 2 displays the 
omputation time on this database for the two approa
hes.

However, the surfa
es obtained by these two approa
hes do not possess the same number

of 
onne
ted 
omponents. In fa
t, the multi-resolution approa
h has kept only one 
omponent

(the only one with low frequen
y information) and has avoided several small 
omponents. The

volume 
ontained in these surfa
es di�ers by 3:7%.

(a) (b) (
) (d)

Figure 20: Surfa
e evolution during the re
overy of brain vessels from an angiographi
 image

with a pyramidal approa
h: (a) after 
onvergen
e on image I

3

; (b) after 
onvergen
e on image

I

2

; (
) after 
onvergen
e on image I

1

; (d) �nal result on image I

0

.

The model 
an also extra
t several stru
tures from the same image. Figure 21a is a volumetri


rendering of a 
omputed tomography of a 
hild head. Figure 21b is a surfa
e rendering of the

data with the iso-value 0:29. Figure 21
 is the shape extra
ted by our model with for
e f

I

and the

same iso-value. Figure 21d displays the surfa
e obtained with for
e f

I

and parameters �

I

= �1

and �

I

= 0:1. Figure 21e displays the surfa
e obtained with for
e f

rI

and parameters �

rI

= 0:1

and �

rI

= 0:05: the model has sear
hed for maxima of intensity value and has thus rested on
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the skull \surfa
e" while �lling the gaps in it (orbits, spa
e between jaws, et
). Figure 21f is a

mixed view of these shapes.

(a) (b) (
) (d) (e) (f)

Figure 21: Comparison between the two for
es f

I

and f

rI

on the same database (initialization is

the same in all 
ases): (a) volumetri
 rendering; (b) surfa
e rendering with iso-value of 0:29; (
)

extra
tion of skull shape with f

I

(�

I

= 0:29); (d) extra
tion of skin 
ontour using f

I

(�

I

= 0:1);

(e) extra
tion of skull \hull" using f

rI

; (f) mixed view of three shapes from the database: the


ontour skin, the skull \hull" and vertebrae.

In 
ellular imaging, it is sometimes ne
essary to mark only the boundary of the stru
tures of

interest. The re
overy of 
omponents of that kind of images 
annot be done with iso-surfa
es.

On the other hand, the for
e f

rI


an be used to extra
t shapes from su
h images be
ause

it seeks intensity maxima. We have tested our model on an image obtained by 
onfo
al mi-


ros
opy, representing a nu
leus of a polynu
lear 
ell, and whose boundary has been marked

with 
uores
en
e.

For this image, for
e f

rI

is used with 
oeÆ
ients �

rI

= 0:1 and �

rI

= 0:0. A bubble is

initialized around the image. In order that the bubble retra
t on the shape, the model undergoes

a slight elasti
 for
e f

e

(�

e

= 0:2) with a null rest length. The image is rather noisy, so we impose

a regularization for
e f




with 
oeÆ
ient �




= 1:5. The Figure 22a shows the surfa
e obtained

after 
onvergen
e, and the Figure 22b shows the adequa
y of the model to the data on three

orthogonal sli
es.

The model 
an deform any 
losed and oriented triangulated surfa
e. The result of a Mar
hing-

Cubes algorithm [27℄ 
an therefore be used as an initialization for our pro
ess. Figure 23a

shows an extra
ted iso-surfa
e from a 
omputed tomography using an extended version of the

Mar
hing-Cubes [24℄, whi
h ensures the 
losure and the orientability of the generated iso-surfa
e.

Figure 23b displays this surfa
e after several iterations of our model parameterized with a \rigid-

ity" 
onstraint �




= 0:3. The iso-surfa
e 
omputed by the Mar
hing-Cubes has 354 
onne
ted


omponents and 958 topologi
al holes (and about 295; 000 verti
es) whereas the deformed surfa
e

has only 45 
onne
ted 
omponents and 181 holes (and about 191; 000 verti
es). The introdu
tion

of inner for
es has removed the most physi
ally unstable parts of the surfa
e. We stress that

this is not a mesh simpli�
ation: the smoothing is physi
al, neither geometri
al nor topologi
al.

Classi
al simpli�
ation algorithms 
an be used eÆ
iently as a post-pro
essing for our model but

they are not suited to remove small artifa
ts; most simpli�
ation algorithms indeed tend to keep

these artifa
ts and simplify quasi-planar regions [18℄ [42℄.

Iso-surfa
e tra
king 
an also be a
hieved eÆ
iently: Figure 24a displays an image of a lym-

pho
yte obtained by 
onfo
al mi
ros
opy. Figures 24b-d show the extra
ted shapes with an

in
reasing parameter �

I

.

6 Con
lusion

We have designed and developed an eÆ
ient model for shape re
overy on volumetri
 images.

This deformable model 
an automati
ally adapt its topology to the variation of its geometry

for an a

eptable 
omputational burden: it takes about 5 se
onds to dete
t and solve topo-
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(a) (b)

Figure 22: Shape extra
ted from a 
onfo
al mi
ros
opy image with for
e f

rI

: (a) view of the

triangulated surfa
e obtained after 
onvergen
e (the mesh has about 41000 verti
es, 1 
onne
ted


omponent and 2 holes); (b) embedding of the surfa
e into the image on three orthogonal sli
es

(surfa
e points are in white).

(a) (b)

Figure 23: Chaining of a Mar
hing-Cubes with our model: (a) result of the Mar
hing-Cubes

algorithm; (b) after deformation under smoothness for
es.

(a) (b) (
) (d)

Figure 24: Iso-surfa
e extra
tion on a lympho
yte image with variation of parameter �

I

: (a)

volume rendering; (b) parameter �

I

is set to 0:3; (
) parameter �

I

is set to 0:45, (d) parameter

�

I

is set to 0:75.
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logi
al transformations over a mesh with 65000 verti
es (and without the use of the heuristi
),

and less than 2 se
onds with 125000 verti
es when the heuristi
 optimizes 85% of the verti
es

(whi
h is often the 
ase with the multi-resolution approa
h). This model 
an be 
oupled with a

three-dimensional image pyramid to qui
kly outline obje
ts within the image. We have tested

the model and the multi-resolution approa
h on various databases. Shape re
overy results are

en
ouraging and the 
oarse-to-�ne pro
ess is extremely eÆ
ient on images that have relevant low

frequen
y information. After the pro
ess is 
omplete, any 
lassi
al mesh redu
tion algorithm


an be run to obtain a 
ompa
t surfa
e representation of obje
ts.

Several points may nevertheless be explored:

� The 
onvergen
e may be guided by some new 
onstraints, for instan
e by introdu
ing

attra
tive for
es generated either by atta
hment points of the obje
t or by parti
ular edges

dete
ted during a pre-pro
essing. At the moment, we are working on wavelet pyramids in

order to dete
t high 
ontrasts and singularities of images. This pre-pro
essing would speed

up the 
onvergen
e of the algorithm and provide a better dete
tion of unstable parts of

the surfa
e.

� In order to widen the appli
ation s
ope of our model, the physi
al formulation 
an be 
om-

plemented by adding global dynami
 parameters, su
h as global speed or instant rotation

ve
tor [38℄.

� The sampling of the mesh is more or less uniform and is not optimized for quasi-planar

regions. The simplex mesh model of [9℄ allows a non-uniform sampling a

ording to the

lo
al 
urvature but topologi
al breaks are neither dete
ted nor performed any more. The


hallenge is to allow a non-uniform sampling to pro
ess fewer verti
es without losing the

speed of topologi
al break dete
tion given by a uniform sampling. Non-Eu
lidean metri


system (i.e., distan
e 
omputation may vary a

ording to the lo
ation) is 
urrently studied

to 
ombine both advantages.
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A Constru
tion of a three-dimensional pyramid

Let I be an image of dis
rete sizesM�N�P and of real sizes �����. � is the redu
tion fa
tor

and �

max

the maximal redu
tion. The following pro
edure BuildPyramid() builds a pyramid P

from the image I with a redu
tion �.

Pro
edure BuildPyramid ( 
onst Image & I, PyramidOfImage & P , double � )

int h � 0

int Mupper, Nupper, Pupper

int Mlower  � I:M

int Nlower  � I:N

int P lower  � I:P

P .image(h) � I

while �

h

< �

max

do

int Mupper � bMlower=�


int Nupper � bNlower=�


int Pupper � bP lower=�


Image G(Mupper, Nlower, P lower)

G � ConvolutionAlongX ( P .image(h), [1 4 6 4 1℄=16, �)

Image H(Mupper, Nupper, P lower)

H  � ConvolutionAlongY ( G, [1 4 6 4 1℄=16, �)

Image P .image(h+ 1) (Mupper, Nlower, Pupper)

P .image(h + 1)  � ConvolutionAlongZ( H, [1 4 6 4 1℄=16, � )

delete G, H

h � h� 1

done

end
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