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Abstract

This work highlights the relation existing between

isosurfaces of an image with a given threshold (as clas-

sically computed by a Marching-Cubes algorithm) and

digital surfaces of this thresholded image. The �rst

step has been to extend the classical adjacency rela-

tion de�ned between elements of a digital surface. It

turns out that the induced surface graphs are 2D com-

binatorial manifolds without boundary which can easily

be mapped into closed and orientable surfaces in R3.

Hence, digital surfaces can be processed to compute

corresponding isosurfaces; the converse is also true.

1 Introduction

Volumetric imaging is an active domain of research
because of its many applications in the biomedical
area. One of its main challenges is the extraction of
geometric representations from a volumetric image (a
three-dimensional matrix of intensity values). Medical
practitioners need these representations to carry out
many purposes such as accurate visualization, quanti-
tative analysis, surgical planning and simulation, ra-
diotherapy planning, prosthesis manufacturing. Bi-
ologists study them to understand the structures of
microscopic entities.

Numerous approaches exist to tackle this issue, and
some have the special feature to exploit the discrete
nature of images (we refer to these approaches as
discrete approaches). This feature makes these ap-
proaches very fast, and they are thus widely used for
visualization at interactive rates. This paper focuses
on the two major discrete approaches (digital surface
tracking, isosurface construction by Marching-Cubes)
and highlights their relations.

Digital surfaces have been introduced by Liu [1].
A digital surface is a set of elements called surfels,
which can be seen as faces of voxels (a more formal

de�nition follows), and which separates interior vox-
els from exterior voxels: the image is thus made binary
with a user-given threshold. Artzy et al. [2] have pro-
posed an algorithm to extract closed digital surfaces
by tracking surfels through their adjacencies. An im-
proved version of this algorithm has been presented by
Gordon et Udupa [3]. If the image has a size n3, then
the extraction of a connected digital surface can be
performed in O(n2) time complexity. Therefore this
method is intensively used in the biomedical area for
fast visualization [3]. Drawbacks are the geometrical
and topological characteristics of these surfaces. Seen
from close quarters, such surfaces look rather jagged
because of their digital geometry. Besides, they are
generally not 2-manifolds in the Euclidean space R3.

Isosurfaces as provided by the Marching-Cubes al-
gorithm [4] have also proved to be useful in the same
domain (i.e. visualization). Isosurfaces are triangu-
lated surfaces which are meant to approximate the
shape of an isopotential inside the image transformed
into a continuous �eld (for instance by tri-linear inter-

polation). The isopotential value is given by the user
and is therefore analogous to a threshold over the im-
age. The Marching-cubes algorithm builds an isosur-
face by scanning all image voxels eight by eight (these
eight voxels forming a \cube"); inside each \cube", a
precomputed set of triangles is extracted depending
on the binary values of the eight voxels (28 = 256
di�erent con�gurations). With some improved algo-
rithms (see [5] for a survey), the resulting surface is a
2-manifold in R3. Consequently, although algorithms
derived from Marching-Cubes are slower than digital
surface algorithms (their time complexity is in O(n3)),
they provide surfaces with interesting properties (both
geometrical and topological), and may be used as a
preprocessing for segmentation or shape recovery al-
gorithms [6, 7]: deformable models can start their pro-
cess with this rough initialization.

These two approaches are often used independently.
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In this article, we show that several di�erent isosur-
faces can easily be derived from a digital surface with
connectedness considerations. First, we recall some
classical de�nitions of digital topology. Then, we add
an adjacency relation between surfels of a digital im-
age to build a surface graph (classical algorithms of
surface tracking [2, 3] can be used to do it). Finally,
we show that any surface graph directly de�nes a 2-
manifold in R3 which corresponds to the intuitive no-
tion of isosurface.

2 Digital topology de�nitions

An image I is a couple (E ; h) where h is a mapping
from a subset E ofZ3, called the support of I, toward
a set D(I) called the value domain of I . An image
whose domain is f0; 1g is called a binary image. Any
thresholded image is a binary image. In the following,
I is any binary image with a �nite support and I� is
its negative. A voxel v is an element of E; h(v) is the
value of the voxel v in I . A voxel of value 0 (resp. 1) is
a 0-voxel (resp. 1-voxel). The background N (I) (resp.
foreground U(I)) of I is the subset of 0-voxels (resp.
1-voxels) of E . We only consider images whose border
is either a subset of the foreground or a subset of the
background. Under these hypotheses, I is a scene over

Z
3 as de�ned in [8].

We use the classical de�nitions of �-adjacency in a
digital space for � 2 f6; 18; 26g. De�nitions of strict
�-adjacency, �-connectedness in a set of voxels and �-
components of a set are supposed to be known (refer
to [8] otherwise). Two �-adjacent (resp. strictly �-
adjacent) voxels u and v are denoted �(u; v) (resp.
��(u; v)). We de�ne an 8-cube C8 as a set of eight voxels
such that 8u; v 2 C8; u 6= v ) 26(u; v). An 8-cube has

six 4-faces, each composed of 4 voxels. Two strictly
26-adjacent m-voxels are contained in a unique 8-cube
of I, say C. C forms a strict 26-con�guration for m-

voxels if all other voxels of C are (1�m)-voxels.

For any 6-adjacent voxels v and v0, the pair fv; v0g
is called a surfel s (surfel for surface element). The ori-
ented pair (v; v0) is called an oriented surfel. A digital

surface is a non-empty set of surfels. The boundary

@(A;B) of any two disjoint sets of voxels A and B is
the set of surfels f(v; v0) 2 (A;B) j 6(v; v0)g.

De�nition 2.1 (��-boundary) Let O be a �-
component of U(I) and Q a �-component N (I).
The (oriented) digital surface @(O;Q) is called a ��-
boundary of I if not empty.

The surfels (v; v0) such that v 2 U(I) and v0 2 N (I)
are called the bels (for boundary elements) of I . The
set of all bels of I is denoted B(I).
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Figure 1: Illustration of ��:�-adjacency between surfels:
(a) point (i); (b) point (ii); (c) point (iii); (d) point (iv).

The four connectedness couples (18; 6), (6; 18),
(26; 6) and (6; 26), called valid couples, are Jordan

pairs (of Z3): for these connectedness couples (�; �)
it has indeed been demonstrated [9, 10] that any ��-
boundary has a �-connected interior and a �-connec-
ted exterior, and that any 6-path from the interior to
the exterior contains a bel (see [8] for more formal def-
initions). Therefore, ��-boundaries of an image follow
a Jordan-like theorem and separate �-components of
the foreground from �-components of the background.

3 Digital surface and surface graph

We de�ne a local adjacency relation between bels
of I . This adjacency relation allows the tracking of
digital surfaces. Unless otherwise stated, (�; �) is a
valid couple (hence a Jordan pair), � (resp. �) is the
connectedness of the 1-voxels (resp. 0-voxels).

De�nition 3.1 (��:�-adjacency) Let s1 = (u; u0)
and s2 = (v; v0) be two bels. These surfels are said to
be ��:�-adjacent if one of the statements below is true
(see Figure 1):

(i) u = v and, either �(u0; v0) or the voxel w such
that 6(u0; w) and 6(w; v0) is a 0-voxel;

(ii) u0 = v0 and, either �(u; v) or the voxel w such
that 6(u;w) and 6(w; v) is a 1-voxel;

(iii) 6(u; v) and 6(u0; v0);

(iv) ��(u; v) and ��(u0; v0).

This adjacency relation induces a ��:�-connectedness
and ��:�-components in B(I).

Points (i), (ii), (iii) are classical de�nitions of adja-
cency between bels sharing an edge for couples (18,6)
and (6,18) [8] (or [2, 3] when oriented). As far as
we know, only Perroton et Miguet [11, 10] have in-
troduced one adjacency link between surfels in case of
Figure 1d and proved the validity of a surface tracking
algorithm for these digital surfaces. Point (iv) builds
six links in a strict 26-con�guration for 1-voxels (resp.
0-voxels) when � = 26 (resp. � = 26) (the tracking
algorithm of [11] is still valid). From this, we de�ne:

De�nition 3.2 (Surface graph) Let � be a ��-
boundary of I. The ��:�-surface graph G��:�(�) is
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Figure 2: (a) Voxel representation of an image; (b) its
�6:�-surface graph; (c) its �18:6-surface graph; (d) its
�26:6-surface graph; (e) the �26:6-surface graph displayed
as a combinatorial manifold; (f) convex subdivision in R3

of (e).

the �nite graph whose vertices are the surfels of �
and whose arcs correspond to two ��:�-adjacent surfels
of �. The ��:�-surface graph of I G��:�(B(I )) is the
(disjoint) union of all the ��:�-surface graphs de�ned
by the ��-boundaries of I.

With a little abuse (and to simplify notations),
this (abstract) graph is identi�ed to its corresponding
graph embedded in R3, where each surfel is associated
with its centroid and each arc is associated with an
open segment between centroids.

Arcs de�ned by De�nition 3.1.(i-iii) are called 1-

arcs (the intersection of the two bels is a 1-cell). Arcs
de�ned by De�nition 3.1.(iv) are called 0-arcs (the in-
tersection is a 0-cell). An illustration of surface graphs
for several Jordan pairs is given in Figure 2a-d. An
interesting property (which cannot be achieved when
bel adjacency is restricted to bels sharing an edge) is:

Theorem 3.1 Let (�; �) be a valid couple (hence

a Jordan pair of Z3). Every ��-boundary in ev-

ery binary image is a ��:�-component of B(I) (i.e.,

(�; �; ��:�) is a Jordan triple in the terminology of

[8]).

Proof. For (6,18) (and (18,6) with I�), a demon-
stration is in [8] because �18:6 is indeed a bel adja-
cency. For (26,6) (and (6,26)) we only sketch a
demonstration: each 26-component is divided into its
18-components. On these 18-components the �26:6-
surface graph F (say) corresponds to the �18:6-surface
graph. Every strict 26-con�guration for 1-voxels in-
duces �26:6-adjacencies between bels of di�erent �18:6-
components of F , thus connecting them together. 2

(a) (b)

(c) (d) (e)

Figure 3: (a) (resp. (b)) displays ��:�-adjacencies inside
a 4-face in the digital space (resp. in the lattice space),
for any (�; �); (c) and (b) also, but only for �18:6- or
�26:6-adjacency; (e) displays a loop de�ned by an 8-cube:
all arcs are 1-arcs (the voxel and lattice representations
are mixed).

4 Surface graph and Marching-Cubes

isosurface

In this section, we exhibit the link existing between
the surface graph and a surface generated by an algo-
rithm similar to the Marching-Cubes (often called an
isosurface): we show indeed that any surface graph
can be transformed into a 2-manifold in R3 without

boundary (i.e., a closed and orientable surface without
self-intersection in R3 which may have several connec-
ted components).

The lattice representation I? of an image I maps
voxels to their centroids at integer coordinates inR3: a
?-point v? is associated to each voxel v, a ?-edge (open
segment) to each surfel, a ?-face (open square) to each
4-face and a ?-cube (open cube) to each 8-cube. Any
point belonging to a ?-edge is called a midpoint and
can be assimilated to the surfel fu; vg corresponding
to the ?-edge. This midpoint is said to be separating

if fu; vg is an (unoriented) bel of I. See Figure 3 for
a visual interpretation of the two following lemmas:

Lemma 4.1 Any vertex of a surface graph of I is a

separating midpoint. Any 1-arc (resp. 0-arc) of a sur-

face graph is included in a ?-face (resp. ?-cube) of

I.

Lemma 4.2 Let C8 be any 8-cube. Let SG be the sub-

graph of G��:�(B(I)) induced by C8 (i.e., the vertices

of SG are the vertices of G��:�(B(I)) whose surfels are

de�ned by voxels of C8, idem for the arcs). Then the

set of arcs of SG can be arranged into a set of loops,

such that each 1-arc is visited exactly once and each

0-arc is visited exactly twice.

Note that vertices created by a Marching-Cubes al-
gorithm on an image for a threshold are separating
midpoints of the thresholded image. In fact, there is
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one-to-one correspondence between these vertices and
the vertices of G��:�(B(I)).

If G is a �nite graph and L a set of loops over G.
Then L forms an umbrella around a vertex v 2 G if
all the loops of L containing v can be arranged into a
circular permutation (L0; : : : ; Ll�1) such that Li has
one common arc with Li+1, indices taken modulo l.

Theorem 4.1 The set of arcs of the ��:�-surface

graph of I can be arranged into a set of loops such that

each arc is visited exactly twice. Moreover this set of

loops forms an umbrella around each vertex of the sur-

face graph. Consequently, the ��:�-surface graph of I

together with this set of loops, denoted �G��:�(B(I))
is a 2D combinatorial manifold without boundary [12]

(see Figure 2e).

Proof. Each 0-arc belongs to exactly one ?-cube
(Lemma 4.1) and can only be visited by loops de�ned
over it (Lemma 4.2). Each 1-arc belongs to one ?-face
which is the face of two ?-cubes. Hence it belongs to
two loops de�ned over these two ?-cubes. Any vertex
of the surface graph belongs to four 8-cubes; inside
each 8-cube, this vertex belongs to exactly one loop;
two arcs of this loop are incident to this vertex, and
each of these arcs also belongs to a loop on an adja-
cent 8-cube. This point shows that an umbrella can be
formed around each vertex. The loops of �G��:�(B(I))
are the ones de�ned in each 8-cube of the image (Lem-
ma 4.2). 2

This theorem shows that every loop belongs to one
8-cube: loops of the combinatorial manifold can thus
be computed locally. To obtain a triangulation, the
loops of �G��:�(B(I)) must be subdivided (i.e., trian-
gulated) into loops composed of three arcs. We call

convex subdivision the following scheme to subdivide
each loop: any loop L = (a1; : : : ; ak) is built from
an 8-cube C8 (Lemma 4.2). Every (ai) is a separat-
ing midpoint. For � 2 f18; 26g, let H be the closed
convex hull in R3 of �rstly the points (ai), secondly
the ?-points of the 1-voxels of C8. The loop L is a
Jordan curve of the boundary of H. Consequently H

induces a subdivision of L into planar elements de-
�ned by a subset of the points (ai). We decompose
L into loops (Lj) according to these subsets. Any Lj

either has three arcs or has a planar embedding (and
is then randomly subdivided). For � 2 f18; 26g, the
process is symmetrical. The Figure 4 depicts a convex
subdivision inside an 8-cube. With this triangulation,
we infer:

Theorem 4.2 Let 4G��:�(B(I )) be the convex sub-

division of �G��:�(B(I)). Then the embedding of

4G��:�(B(I)) in the Euclidean space such that its ver-

tices are mapped into midpoints, its arcs into open

edges between midpoints, its loops (composed of three

arcs) into the open triangles bordered by the edges, is a

2-manifold in R3 without boundary (see Figure 2f). It

is also orientable, because every closed non-orientable

2-manifold intersects itself in R3.

Proof. The umbrella around each vertex of
4G��:�(B(I)) ensures that each vertex has a neigh-
borhood locally homeomorphic to R2. On an edge,
the two faces sharing it also de�ne a suitable neigh-
borhood. The argument is trivial for a point on a face.
Now, it can be proved that this surface do not inter-
sect itself [6] (self-intersection can only occur between
loops de�ned in the same 8-cube). 2

It can be shown [6] that this 2-manifold separates
the embeddings of the �-components of 1-voxels from
the �-components of 0-voxels (i.e., the surface does
not intersect the \connections" between two connec-
ted 1-voxels or 0-voxels). The 2-manifold generated for
the negative image with inverse connectedness couple
(��:�) is exactly the same. Because of these properties,
this 2-manifold is called a ��-isosurface. Figure 5 illus-
trates the extraction of three di�erent ��-isosurfaces
from a binary image.

5 Conclusion

The two previous theorems imply that a 2-manifold
in R3 can be built from any ��:�-surface graph of
an image locally (when (�; �) is a Jordan pair). The
Marching-Cubes algorithm has exactly the same pur-
pose and is indeed built over the same vertices (i.e.,
the separating midpoints). Now, a surface tracking
algorithm (such [2] or [11] for f26; 6g), which stores
bel adjacencies in memory, builds a surface graph of
a ��-boundary in O(n2) time complexity (for an im-
age of size n3). The traversal of the surface graph
has the same complexity and each convex subdivision
can be made in O(1). Hence, the computation of a
closed 2-manifold inR3 (i.e., a Marching-Cubes isosur-
face) that separates a �-component of the foreground
from a �-component of the background can be done
in O(n2). Note that the classical hole problem in the
Marching-Cubes algorithm [5] is solved in passing.

It is a signi�cant improvement to the Marching-
Cubes algorithm (whose time complexity is O(n3))
when we do not need to compute the whole isosur-
face of an image but merely one of its components.
Moreover, it shows that a digital surface can be trans-
formed into an isosurface easily and that the converse
can also be realized.
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(a) (c)(b) (d)

Figure 4: These �gures display the creation of a loop and its convex subdivision: (a) set of bels (depicted with thicker
squares) belonging to an 8-cube, centroids of these bels along with their adjacencies (case �18:6 or �26:6); (b) lattice
representation of this 8-cube, loop built on the graph of bel-adjacencies; (c) closed convex hull de�ned on this 8-cube
(the loop forms a Jordan curve on the surface of this set); (d) convex subdivision on the loop determined by this set.

(a) (b) (c) (d)

Figure 5: (a) Digital surface of a \connection" cube; (b) the 2-manifold derived from the �6:�-surface graph (the �6:18-
and the �6:26-surface graphs are the same on this image); (c) the 2-manifold derived from the �18:6-surface graph; (d)
the 2-manifold derived from the �26:6-surface graph.
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