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Abs t rac t .  This article presents a new algorithm for segmenting 3D im- 
ages. It is based on a dynamic triangulated surface and on a pyramidal 
representation. The triangulated surface, which can as well modify its 
geometry as its topology, segments images into their components by al- 
tering its shape according to internal and external constraints. In order 
to speed up the whole process, the surface performs a coarse-to-fine ap- 
proach by evolving in a specifically designed pyramid of 3D images. 

1 I n t r o d u c t i o n  

Volunlic segmentation has become a major  research topic in the last years. This 
is due to the appearance of 3D data in medical, geological or biological domains. 
This kind of data  can come from either MR, tomography or confocal microscopy. 
Whereas 2D segmentation tries to mimic the vision process of the human being, 
volumic segmentation widens the detection of forms to the reconstruction of 
complex volumes, which is a difficult operation for our mind. 

Unfortunately the analysis of 3D data and the detection of objects inside 
set a lot of additional problems, such as the control of objects with complex 
topology or the computat ional  cost of the operations in a volumic space. 

Hence the first purpose has been to evaluate the state of the art in order to 
develop a deforma.ble and dynamical model that  possesses a variable topology. 
Then, in order to overstep the scope of classical segmentation and to speed up the 
process, we associate a scalar continuous field with the image and we introduce 
the notion of pyramids composed of 3D images. We have tested our model and 
we have measured the savings given by the use of the hierarchical approach. 

2 D e f o r m a b l e  S u r f a c e s  

A deformable model is a model that  follows a general principle: the object is 
deformed until it minimizes an energy function. This can be done either by a 
direct computat ion (least-square method for instance) or by the repeated appli- 
cation of constraints on the model. We have discarded models based on quadrics 
[12] and derivatives, for they can ' t  manage complex topology objects, and mod- 
els based on implicit surfaces (blobs [14] or front propagation [9]), because their 
computat ionnal  cost is often heavy. 

We prefer instead models of deformable meshes, such as cubic splines [7] 
or triangulated surfaces [10] which carry out segmentation by constraining the 
model on its vertices. 
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Considering the potentiality of the combination of meshes with some char- 
acteristics of bi-dimensionnal snakes [4], such as local minimization and inner 
constraints, we have chosen the last approach, the triangulated mesh, in order to 
segment 3D images. Quickness (O(N 2) vertices for a volumic image with edges 
of N voxels), rendering, are its main advantages. To these points we can add 
the opportunity of extracting features of the object, such as the area and the 
volume defined by the object, moments and topological informations. 

3 Description of the Model 

We define our surface as a closed oriented triangulated mesh. With this definition 
the surface always represents the boundary of a real volume. Our surface may 
thus be composed of several connected components, all closed and oriented. 

P h y s i c a l  A s p e c t .  The mesh is assimilated to a dynamic system of particles 
[11], which are the vertices of the triangles. Practically, interactions between 
particles occur only between direct neighbours. This neighbourhood allows us to 
define two internal constraints, the surface tension ~'c and the surface elasticity 
:Pc, which follow the action/reaction principle. We transform the discrete image 
into a continuous scalar field (see section 4.1), in order to express the image 
influence through two external constraints: the force ~-i which search for an 
isopotential surface and the force JCd~ which is a classical gradient descent. 

The algorithm carrying out the displacement of the surface can be summa- 
rized into an iteration of the following steps: 

1. Computing of internal and external forces for all vertices. 
2. Re-sampling of the time scale to limit the vertex displacements. 
3. Application of the Dynamic Fundamental Law for each vertex. 
4. Effective displacement of the vertices. 

We emphasize that this process expresses only the geometrical displacement 
of the surface and not the intrinsic topological modifications. 

G e o m e t r i c a l  A s p e c t .  Meshes tend to intersect when they evolve. [5] intro- 
duces a global invariant ~ which bounds the minimal and maximal sizes of each 
edge. By this way, local geometrical modifications are made easier and we can 
detect collisions by tests over vertex distance. Let us recall the two geometrical 
constraints induced: 

2.5 V(U,V), if neighbours: 5 < HU---~H < 2.5 (~, and if not: 5 < IIU--~II (1) 

Topological breaks are controlled via Euler-Poinear$'s characteristic X [3]. 
Note that  the different topology changes of the surface correspond to a modifi- 
cation of 2 or - 2  of X. Additionnal informations may be found in [6]. 

I n i t i a l i z a t i o n  o f  t h e  t r i a n g u l a t e d  m e s h .  The triangulated surface is initial- 
ized with one icosahedron embracing the volumic image in real coordinates or 
with several icosahedra scattered in the image. The surface is then globally di- 
vided (see section 5.1) until it follows our geometrical constraints. After that,  
the surface is free to evolve according to its dynamic and geometrical rules. 
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4 Image Workspace and Pyramids 

4.1 T r a n s f o r m a t i o n  t o w a r d  a C o n t i n u o u s  S c a l a r  F i e ld  

Let I(i, j, k) be our discrete image of size M x N • P.  Let p, v, 7r be its real size: it 
corresponds to the volume really occupied by the image in space. We determine 
the continuous potential function Hi(x, y, z), (x C [0, #[, y E [0, v[, z E [0, ~r[), 
by a first degree interpolation of I 0 from space M, N, P to space #, v, ~r. 

In this way we obtain a continuous scalar field that  allows the computat ion 
of Jci, but which is not derivable everywhere. Therefore ~di is computed by in- 
terpolating the discrete gradient deduced from the image. The computed scalar 
field can be interpreted as a stack of isopotential surfaces. Note that  the inter- 
polation degree has no influence about this fact and first degree is sufficient for 
an isopotential surface tracking. 

4.2 M u l t i - s c a l e  A p p r o a c h  w i t h  3-D Pyramids 

Direct approach of image segmentation is not totally satisfactory. The influence 
of the image is indeed localized around vertices and makes sense only if the mesh 
has the same preciseness than the resolution of the 3D image. Common solutions 
either use a mesh with a refinement comparable to the one of the image, or take 
an interest in a wider area around each vertex. Hence the computat ional  cost is 
deeply proportionnal to the image size. Therefore, our approach is to compute  
once and for all the influence of the image areas at different scales. This mixed 
solution can be done by the computat ion of a 3D image pyramid.  

We take a particular interest in pyramids of frequency decomposition [1]: they 
provide a set of images at decreasing resolutions and details. These pyramids 
create no wrong contours, hence the model can exploit the results obtained at 
coarse levels in order to start  the calculation on a finer level with more efficiency. 

Their successive levels are computed by the convolution of a Gaussian kernel 
of side 5 voxels. I t  guarantees a low cost filtering without phase translation linked 
to a reduction factor of two for each image dimension [2]. Let Go be the initial 
3D image and the base of the pyramid. The computat ion of Gh+l according to 
Gh (image of level h in the pyramid) is given by the discrete convolution formula: 

2 2 2 

Gh+l(i',j',k') = ~ ~ ~ ~z(m,n,p).Gh(2i'+m,2j'+n,2k'+p)(2) 
m = - - 2  n------2 p = - - 2  

1 3 

where ~v is a Gaussian convolution kernel of size 5 voxels: (7~-o [1 4 6 4 1]) . 
1s 

4.3 3-D I m a g e  P y r a m i d s  o f  a n y  R e d u c t i o n  F a c t o r  

The previous formulation (2) is not usable as it is, because we have to take into 
account two major  constraints within our context: 

- voxels are not bound to be cubic (sampling frequencies are highly dependent 
of the acquisition means and are not identical in the general case), 

- the reduction factor of the re-sampling must  be coherent to the surface rep- 
resentation. 
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We will realize the convolution operations efficiently, by defining a real work- 
space corresponding to the discrete structure including the initiM data. 

Our goal is to determine a list of discrete images, denoted Go,...,  Grna~,, and 
which represents the pyramid. Go is the initial image (given for segmentation) 
of sizes M, N and P.  It is the image that possesses the greatest amount of 
informations. Gma, will be the image that includes only the lowest frequencies. 
Let Mh, Nh and Ph be the sizes of the discrete image Gh. Their values are still 
unknown. Let Ih = Mh x Nh x Ph. With these definitions a discrete image Gh 
is a function from Ih toward [0, 1]. 

We denote IR the space defined by the real image of size [0,/~[• ~,[x [0, ~r[. 
Because all images ah  represent at different scales the same real image, all of 
them have a real size of #, u, zr. The immersion of a voxel (i, j, k) of Gh into the 
real image space IR is given by the transformation 7~ as follows: 

7i : A ---+IR 
. ~  . ~, ~),~ ( a )  (i,j,k) ----+ (Z M, ,JN--~h ,k 

We call unit of the real space the value Uh = min(#/Mh, u/Nh, rr/Ph). It 's 
the smallest distance between the immersions of two voxets in the real image. In 
the case of an isotropic image, we got Uh = #/Mh = ~'/Nh = rr/Ph. 

A reduction factor is needed in order to build the successive pyramid levels. 
Being for the moment unpredictable (see section 5.1), our pyramid construction 
must authorize any reduction factor. Unlike purely discrete formulations, the 
transformation into a continuous image (see section 4.1) associated with our 
immersion process allows us to build pyramids of any factor. The chosen kernel 
is of side 5, therefore the reduction factor T must be less than two. 

Let V0 be the base of our pyramid of real images. V0 is given by the immersion 
then by the interpolation of the discrete data. As a mat ter  of fact V0 = Hao. 
Let Vh be the level h of the real image pyramid. Vh+l is calculated from Vh. The 
number and the localization (in IR) of the points to be calculated are determined 
by the reduction factor T, and the values are obtained after convolution of some 
points of Vh. Their storing after computation on the real image space is of course 
done in an array of voxels, assimilated to the discrete pyramid (Gi) at level h +  1. 

The discrete sizes Mh, Nh, Ph and the measure unit Uh correspond to a real 
image Vh. Its characteristics are defined recursively with: 

M0 = M N0 = N P0 = P U0 = min(#/M,  u/N, re~P) 
Mh+l = [~_~.hJ N~+z = L-~] Ph+z = [-~] Uh+l = O h - T  (4) 

Let R(i, j, k) be a voxel of the discrete data of Gh+t. Its immersion Rv in 
the real image Vh+l has coordinates of Th+l(i,j, k) (see figure la). In order to 
establish the value of R, the convolution operation is defined over points of Vh. 
The central point has the same position in Vh and in Vh+l. The localization of 
the other points involved in the convolution is determined via the use of the unit 
Uh to discretize Va around the point Rv (see figure lb).  

Gh is known, Vh is defined by Huh. We obtain: 
2 2 2 

Gh+l ( i ' j ' k )=E  E E w(m,n,p) Vh[Th+t(i,j,k)+(mUh,nUh,pUh)](5) 
rn----.- 2 n : - 2 p - - - - - 2  
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Gh+l defined then Vh+l implicitly (Vh+l = Ha~+x). 
Because of the unknown reduction factor, the 5 3 points involved in the convo- 

lution do not coincide with given points of Gh in the general case (see figure lc). 
Moreover there usually won't be any cover between points involved in two neigh- 
bouring convolutions. Besides, each point of Vh compulsory for the convolution 
computation is interpolated from 8 data points of Vh (so stored in Gh) which 
form the parallelepiped containing this point (see section 4.1 and figure lc too). 

0 !) Uh l :=~ "di.: I'~ 

.................... i ~ It ~,~ MI~ 

%V s (a) 

0 / !.:~ ; '~1 i 

v (b) 

~t 

0 U h 1 a 
M .  -1 

-----t ----.-'-t -""'~ , "" '~  

(~) (I  .) I ~ ) 

(c) 

[0,g[x[0,v[: real image 
[0,Mh-1 [ [0,Nh-l[:discrete image G h 
[0,Mh+ 1 -1[ [0Nh+l -l[:discrete image Gh+ 1 

�9 : Points ofG h localized in the real image 
: Points OfGh+ I localized in the real image 

�9 : Points ofV h calculated for the convolution 
and providing G h +  1 

I~ :  Points of G h used during the calculation of 
each point ofV h used during the convolution 
process 

F i g .  1. V iew of  a c o n v o l u t i o n  c o m p u t a t i o n  in 2-D: (a)  T h e  two  s u p e r p o s e d  levels  G h  
and Gh+t, (b )  c o m p u t a t i o n  of  level Gh+I t o g e t h e r  w i t h  t h e  l oca l i za t i on  of  t h e  convo-  
l u t i o n  m a s k  app l i ed  o n  one  po in t ,  (c) a p p l i c a t i o n  of t h e  c o n v o l u t i o n  m a s k  over  level  
G h  a n d  v i s u a l i z a t i o n  of t h e  d i sc re t e  p o i n t s  of ah i nvo lved  in  t h e  c o m p u t a t i o n .  

The Gaussian convolution kernel (of size 5 3) is applied successively along the 
three dimensions because of its separability. We can estimate the optimization 
savings by using the following notations and equations: Let T be the reduction 
factor, tl  the execution time of a classical algorithm, t2 the execution time of 
the optimized algorithm. A short calculation gives: 

t2 _ 1 (T 2 + T + 1) if the Gaussian kernel size is 5 3 (6) 
t l  25  

T h e  o p t i m i z e d  a l g o r i t h m  is t h u s  f a s t e r  f o r  0 _< T _< -1+v~ ( ~  4 . 4 2 ) .  
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5 S e g m e n t a t i o n  

5.1 Image/Model Appropriateness 

In section 4.2 we have chosen to express surface-image interaction with con- 
straints locally computed around each vertex. In order to obtain a correct ap- 
propriateness between the surface and the pyramid images, we must first examine 
the relations linking the model preciseness to the resolution of an image, and 
secondly, we must establish an algorithm of surface refinement, which ensures 
the appropriateness surface-image during the whole coarse-to-fine process. 

S u r f a c e - I m a g e  R e l a t i o n s h i p s .  According to (1) we have drain = 5 and dma~ = 
2.5 (f. The refinement can so be defined entirely with the invariant (f. Let (fh be 

h h the invariant (f at level h of the pyramid, dmi n and dma x are defined as same. 
The image resolution is linked to the unit Uh (see section 4.3). We can deduce 

the relationships between 5a and Uh with the help of the following considerations: 

1. an edge may represent a contour formed by two 6-connected voxels (distant 
h of Uh), s o  drain ~__ Uh, 

2. an edge may represent a contour formed by two stricly 26-connected voxels 
h (distant of x/~ Uh), so draa~ >_ x/~ Uh. 

Hence, x / ~ <  Uh ( /z u r e )  2.--5 - ~-h -< 1 with Uh = min M h ' f f a ' P a  (7) 

S u r f a c e  R e f i n e m e n t .  The surface works in an image pyramid and, conse- 
quently, must refine its mesh every time it goes clown a level of the pyramid. We 
propose a process refining triangulated surface with a factor K.  This factor will 
determine the reduction factor T of the pyramid. 

Refinement process (or global surface division) (see figure 2): 
1. in a first scan, a new vertex is created in the center of each facet of the 

model; the vertex is connected to the three vertices that delimit its facet, 
2. in a second scan, the edges, which link together the old vertices (those which 

were not created during the first pass), are reversed in order to regularize 
edge lengths in a systematic way. 

Such an algorithm reduces the average edge length to 1/x/~ of the old one. 
We may so apply to the invariant a reduction factor whose value is also x/~, so 
K = v/3. In order that  inegality (7) be respected at the initialization moment 
and during all successive pyramid levels, an identical reduction factor is chosen 
for the pyramid construction: 

{ ~ihm~ = ,fi,ut, ,fh = , fh+l/K 
T = K -- x/~ and V(h -- 0 . . .hmax - 1), Uo = U, Uh+l = Uh" T (8) 

thus we got < 1 

At the initialization moment, a bubble or a set of bubbles, whose invariant 
5i~it is consistent with (7) at level hmax, are created. After that,  the recursive 
process described by (8) guarantees a correct surface-image appropriateness, 
whichever are the iteration or the current level in the pyramid. 
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Fig. 2. Example of a global division process over a polyhedron with sixty facets: (a) 
before global division, (b) after first pass, (c) after second pass. 

5.2 A n i s o t r o p y  d u r i n g  s e g m e n t a t i o n  

During the segmentation process, the edges have to keep their meaning with re- 
gards to a voxel space deformed by a possible anisotropy. So we make the surface 
evolve in a real space derived from the space (tt, u, 7r) by afflne t ransformation 
such that  it has the same proportions than the discrete image it interpolates (its 
sizes are thus (,k Mh, )t Nh, )~ Ph). The internal forces have a slightly different 
behaviour than the one they would have in the real physical space. An alterna- 
tive was to equip the real space with an anisotropic metrics in order to obtain 
a real physical behaviour, but such a work would not have been relevant in the 
context of segmentation. 

6 R e s u l t s  

We first test our model on a volumic image of a human skull 1 of discrete sizes 
2,56 x 256 x 68 and of real sizes 1.0 x 1.0 x 1.0625. The model segments the image 
by searching an isopotential surface. We give the surface some inner constraints 
to smooth the result. We provide our process with a full reliable heuristic that  
quickens the t reatment  of motionless or quasi-motionless vertices. The segmen- 
tation process is run two times for comparison purposes: 

- First a direct processing on the image without any pyramid is shown on 
figure 3: the surface slowly sticks on the outer part  of the skull and then 
goes inside to segment its inner part  (orbits of the eyes, brain cavity, . . . ) .  
The surface needs more than 400 iterations to meet equilibrium. 
We run after the process by making use of the pyramid built up from this 
volumic image with a reduction factor of v~ .  The process waits for its com- 
plete convergence at one pyramid level before going down one level. Figure 4 
represents the coarse-to-fine evolution of the surface in the image pyramid.  

Figure 5 analyzes the behaviour of both algorithms. The one of the classical 
segmentation algorithm is quite simple: the kinetic energy curve shows the slow 
segmentation convergence (see figure 5b), the number of vertex (see figure 5d) 
and the average edge length (see figure 5c) are subject to few changes, the t ime 
cost (see figure 5a) slowly decreases but only because of the use of the heuristic. 

1 Thanks to Yves Usson (C.H.U. Grenoble) for the volumic database. 
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Fig. 3. Surface evolution during a segmentation without pyramid: (a) iteration 0 on 
image G1, (b) iter. 100 on image G~, (c) iter. 250 on image G~, (d) iter. 700 on image 
G1. 

Fig. 4. Surface evolution during a pyramidal segmentation: (a) iteration 0 on image 
G3, (b) iter. 225 on image G3, (c) iter. 333 on image G2, (d) iter. 461 on image G1. 

The behaviour of the pyramidal segmentation algorithm displays the four used 
pyramid levels: the number of vertex (see figure 5d) and the average edge length 
(see figure 5c) show that the triangulated mesh has gone down a level at the 
iterations 226, 334 and 462. The kinetic energy evolution (see figure 5b) high- 
lights the convergences at each step and the duration graph of each iteration 
(see figure 5a) explains the time savings provided by a coarse-to-fine process. 
The final surface has 1 connected component and 23 topological holes. 

We then test our model in a more problematic case: a phase contrast MR 
angiographic image 2. Its discrete sizes are 256 • 256 • 124. We can observe that  
such images are mainly composed of vessels whose proportions are not suited 
for a pyramidal representation. Within this context, the top image represents 
nearly nothing and the initialization of the process is very bad. Nevertheless the 
model succeeds in following the vessels to recover the forgotten ones as shown by 
figure 6, but each level needs more time to converge than for the first example. 

7 Conclusion 

We have designed and developed an efficient volumic segmentation algorithm by 
means of a deformable triangulated surface evolving in a 3D image pyramid. The 
obtained results show that their quality is identical to other similar algorithms; 

2 Acknowledgements to the UMDS Image Processing Group, London, for the angio- 
graphic image. 
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Fig.  5. Statistics over a skull segmentation process and comparison between the ap- 
proach without a pyramid (in dotted line) and the pyramidal approach (in solid line): 
(a) duration of each iteration, /b) evolution of the average kinetic energy accumu- 
lated along the surface normals, (c) average edge length according to the iteration, (d) 
number of vertex of the surface according to the iteration. 

the tests demonstrate  the efficiency and the quickness of our algorithm. Several 
points may be nevertheless explored: 

- The first convergence step can be greatly speeded up if the surface initial- 
ization contains more information. A marching-cube process [8] applied on 
the highest level of the pyramid would give a better  first approximation.  
However surfaces obtained by this process are generally not closed. 

- The convergence may be also guided by some new constraints, for instance 
by introducing attractive forces generated either by s u r e  points of the object 
or by particular edges detected during a pre-treatment .  

- The overall speed can be improved by accelerating the detection of topo- 
logical breaks. For instance the use of some efficient algorithms [13] would 
reduce the cost of self-collision detection, which is for the moment  within 
O ( n  �9 log(n)) if n is the number of vertex. 

R e f e r e n c e s  

1. P. J. Bu~rr. "Fast filter transforms for image processing". Computer Graphics and 
Image Processing, 16:20-51, January 1981. 



146 

Fig. 6. Surface evolution during the segmentation of an angiographic image with pyra- 
mid: (a) After convergence on image 63, (b) After convergence on image G2,(c) After 
convergence on image G1, (d) Final result 

2. A. CHEHIKIAN. "Algorithmes optimaux pour la g6n6ration de pyramides passes- 
bas et laplaciennes'. Traitement du Signal, 9:297-308, January 1992. 

3. H.B. GRIFFITIJS. "Surfaces". Cambridge University Press, January 1976. 
4. M. KASS, A. WITKIN, and D. TERZOPOULOS. "Snakes: active contour models". In 

1st Conference on Computer Vision, Londres, June 1987. 
5. J.O. LACHAUD and A. MONTANVERT. "Volumic Segmentation using Hierarchical 

Representation and Triangulated Surface". Research Report 95-37, LIP - ENS 
Lyon, France, November 1995. 

6. J.O. LACI-IAUD and A. MONTANVERT. "Segmentation tridimensionnelle hi,rat- 
cAique par triangulation de surface". In lO~me Congr~s Reconnaissance des 
Formes et Intelligence Artificielle, January 1996. 

7. F. LEITNER and P. CINQUIN. "Complex topology 3D objects segmentation". In 
Advances in Intelligent Robotics Systems, volume 1609 of SPIE, Boston, November 
1991. 

8. W. E. LORENSEN and H. E. CLINE. "Marching Cubes: A High Resolution 3D 
Surface Construction Algorithm". Computer Graphics, 21:163-169, January 1987. 

9. R. MALLADI, J. A. SETHIAN, and B. C. VEMURI. "Shape Modelling with Front 
Propagation: A Level Set Approach". IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 17(2):158-174, February 1995. 

10. J.V. MILLER, D.E. BREEN, W.E. LORENSEN, R.M. O'BARNES, and M.J. WOZNY. 
"Geometrically deformed models: A method for extracting closed geometric models 
from volume data". Computer Graphics, 25(4), July 1991. 

11. R. SZELISKI and D. TONNESEN. "Surface Modeling with oriented Particle Sys- 
tems". Technical Report CRL-91-14, DEC Cambridge Research Lab., December 
1991. 

12. D. TERZOPOULOS and A. WITKIN. "Deformable Models: Physically based models 
with rigid and deformable components". IEEE Computer Graphics and Applica- 
tions, 8(6):41-51, November 1988. 

13. P. VOLINO and Thalmann N. MAGNENAT. "Efficient serf-collision detection on 
smoothly discretized surface animations using geometrical shape regularity". In 
Eurographics'94, volume 13(3), September 1994. 

14. R.T. WI-IITAKER. "Volumetric deformable models: active blobs". In VBC, volume 
2359 of SPIE, pages 122-134, March 1994. 


