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1. Study of error laws induced by perturbations in normal and position

Recalling notations. Let q̂ be a point of interest (e.g. some x̂ ∈ X) and let q be its projection on S. Let (x̂i)i∈I be the points in the ball

centered on q̂ and of radius δ/2, with I ⊂ {1, . . . ,N}. Let (τ̂l)l=1...L be L triangles with vertices in (x̂i)i∈I . Order of vertices within triangle τ̂l

is chosen so as µ
(0)
û (τ̂l) is a non-negative number. To each triangle τ̂l corresponds an unperturbated triangle τl with vertices on the surface S.

Let Â(0) := ∑
L
l=1 µ

(0)
û (τ̂l), A(0) := ∑

L
l=1 µ

(0)
u (τl), Â(1) := ∑

L
l=1 µ

(1)
û (τ̂l), A(1) := ∑

L
l=1 µ

(1)
u (τl). Finally, let us define Z̄

(0)
L := 1

L (Â
(0)−A(0))

and Z̄
(1)
L := 1

L (Â
(1)−A(1)), which are respectively the error laws in area and mean curvature induced by data perturbations.

Errors in area terms. By linearity of scalar product and cross product or, equivalently, of determinant, noise-related error terms on area

measures are straightforwardly obtained by developing µ
(0)
û (τ̂l)−µ

(0)
u (τl) with the formulas given in Property 1 of the paper. We write

µ
(0)
û (τ̂l)−µ

(0)
u (τl) =

3

∑
m=1

L
(0)
m (τl ;u,∆x;ε,ξ), (1)

where L
(0)
m designates a sum of linear combination ⟨· | ·× ·⟩ of three terms among some u, some difference between positions x and m terms

among the three terms are either a perturbation of position or a perturbation of normals. More precisely, we have:

L
(0)
1 (τl ;u,∆x;ε,ξ) :=

1

2

〈

ξ̄l | (x jl −xil )× (xkl
−xil )

〉

+
1

2

〈

ūl | (x jl −xil )× εkl
+(xkl

−x jl )× εil +(xil −xkl
)× εil

〉

,

L
(0)
2 (τl ;u,∆x;ε,ξ) :=

1

2

〈

ūl | (ε jl − εil )× (εkl
− εil )

〉

+
1

2

〈

ξ̄l | (x jl −xil )× εkl
+(xkl

−x jl )× εil +(xil −xkl
)× εil

〉

,

L
(0)
3 (τl ;u,∆x;ε,ξ) :=

1

2

〈

ξ̄l | (ε jl − εil )× (εkl
− εil )

〉

.

Errors in mean curvature measure terms. The error in curvature measure can also be written as:

µ
(1)
û (τ̂l)−µ

(1)
u (τl) =

3

∑
m=1

L
(1)
m (τl ;u,∆x;ε,ξ), (2)
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and noise-related error terms on mean curvature measures are also obtained as sum of linear combination ⟨· | ·× ·⟩:

L
(1)
1 (τl ;u,∆x;ε,ξ) :=

1

2

〈

ūl | (x jl −xil )×ξkl
+(xkl

−x jl )×ξil +(xil −xkl
)×ξ jl

〉

+
1

2

〈

ξ̄l | (x jl −xil )×ukl
+(xkl

−x jl )×uil +(xil −xkl
)×u jl

〉

+
1

2

〈

ūl | εil × (u jl −ukl
)+ ε jl × (ukl

−uil )+ εkl
× (uil −u jl )

〉

,

L
(1)
2 (τl ;u,∆x;ε,ξ) :=

1

2

〈

ξ̄l | (x jl −xil )×ξkl
+(xkl

−x jl )×ξil +(xil −xkl
)×ξ jl

〉

+
1

2

〈

ūl | (ε jl − εil )×ξkl
+(εkl

− ε jl )×ξil +(εil − εkl
)×ξ jl

〉

+
1

2

〈

ξ̄l | εil × (u jl −ukl
)+ ε jl × (ukl

−uil )+ εkl
× (uil −u jl )

〉

,

L
(1)
3 (τl ;u,∆x;ε,ξ) :=

1

2

〈

ξ̄l | (ε jl − εil )×ξkl
+(εkl

− ε jl )×ξil +(εil − εkl
)×ξ jl

〉

.

Property of error laws.

Property 1 The error laws Z̄
(0)
L and Z̄

(1)
L have both null expectations. Their variance follows, for C and C′ some constants:

V

[

Z̄
(0)
L

]

≤
C

L

(

(σ2
ξδ2 +σ2

ε)δ
2 +σ2

εσ2
ξδ2 +σ4

ε(1+σ2
ξ)
)

V

[

Z̄
(1)
L

]

≤
C′

L

(

σ2
ξδ2 +σ2

ε +σ2
εσ2

ξ +σ4
ξδ2 +σ2

εσ4
ξ

)

.

Proof First, to prove that the error laws Z̄
(0)
L and Z̄

(1)
L have both null expectations, it suffices to examine the expectation of each term

L
(r)
m (τl ;u,∆x;ε,ξ). Either there is an isolated normal perturbation ξ, or there is an average of independent normal perturbations ξ̄ or even an

isolated position perturbation ε. All those cases imply trivially a null expectation for this term. The only trickier cases are terms of the form
〈

· | (ε jl − εil )× (εkl
− εil )

〉

. But developing them leads to independent terms ε, while the non-independent term ⟨· | (εil × εil ⟩ is trivially null.

So the two laws have null expectation.

Now let us prove the bounds on their variance. From the definition of Z̄
(0)
L , we get that Z̄

(0)
L = 1

L ∑
L
l=1(µ

(0)
û (τ̂l)−µ

(0)
u (τl)). Since the triangles

are independent, we get that V
[

Z̄
(0)
L

]

= 1
LV

[

µ
(0)
û (τ̂l)−µ

(0)
u (τl)

]

, for any l. Let us bound the latter term. From (1) we have

V

[

µ
(0)
û (τ̂l)−µ

(0)
u (τl)

]

=
3

∑
m=1

V

[

L
(0)
m (τl ;u,∆x;ε,ξ)

]

+2
3

∑
m=1

m−1

∑
n=1

Cov
[

L
(0)
m (τl ;u,∆x;ε,ξ),L

(0)
n (τl ;u,∆x;ε,ξ)

]

.

Since δ bounds the distance between points (xil ,x jl ,xkl
), ūl is a unit vector, and since

• for all (k, l) the random variables ξk and εl are independent,

• for all k ̸= l εk is independent from εl

• for all i ̸= j Cov [εl(i),εl( j)] = 0,

• for a random variable X , V [X ] = E

[

X2
]

when E [X ] = 0,

we get

V

[

L
(0)
1 (τl ;u,∆x;ε,ξ)

]

≤C(σ2
ξδ4 +σ2

εδ2),

V

[

L
(0)
2 (τl ;u,∆x;ε,ξ)

]

≤C(σ4
ε +σ2

εσ2
ξδ2),

V

[

L
(0)
3 (τl ;u,∆x;ε,ξ)

]

≤C(σ4
εσ2

ξ).

The assumptions on the random variables ξ and ε give that for all m ̸= n it holds

Cov
[

L
(0)
m (τl ;u,∆x;ε,ξ),L

(0)
n (τl ;u,∆x;ε,ξ)

]

= 0

and the first result follows. As for Z̄
(0)
L , we get that V

[

Z̄
(1)
L

]

= 1
LV

[

µ
(1)
û (τ̂l)−µ

(1)
u (τl)

]

, for any l. Let us bound the latter term. From (2), we

have

V

[

µ
(1)
û (τ̂l)−µ

(1)
u (τl)

]

=
3

∑
m=1

V

[

L
(1)
m (τl ;u,∆x;ε,ξ)

]

+2
3

∑
m=1

m−1

∑
n=1

Cov
[

L
(1)
m (τl ;u,∆x;ε,ξ),L

(1)
n (τl ;u,∆x;ε,ξ)

]

.

submitted to Eurographics Symposium on Geometry Processing (2023)



J.-O. Lachaud et al. / Lightweight Curvature Estimation on Point Clouds with Randomized Corrected Curvature Measures — Supplementary 3

Using the same arguments as before yields

V

[

L
(1)
1 (τl ;u,∆x;ε,ξ)

]

≤C(σ2
ξδ2 +σ2

ε),

V

[

L
(1)
2 (τl ;u,∆x;ε,ξ)

]

≤C(σ4
ξδ2 +σ2

εσ2
ξ),

V

[

L
(1)
3 (τl ;u,∆x;ε,ξ)

]

≤C(σ2
εσ4

ξ),

and the covariance terms are null.

2. Discussion on CNC-Avg-Hexagram

One could wonder why the CNC-Avg-Hexagram variant produces such accurate results while being apparently quite far from the hypotheses

of stability Theorem 1 and error laws (Property 2). The answer lies in the linearity of all interpolated curvature measure formula. Since the

positions ŷ j and the normals v̂ j are averaged, they can be replaced in each linear combination ⟨· | ·× ·⟩ by these averages. For instance, to

simplify the reasoning, if each region j had the same number of vertices, say k, each term ⟨· | ·× ·⟩ of any measure formula can be developed

as k3 different terms. It is as if we are testing all possible combinations of points/normals between the three regions of each triangle. But

instead of computing k3 triangles (as CNC-Uniform is doing) we only compute one triangle. Even better, since the points are taken in well-

chosen regions, all these possible triangle combinations are much more equilateral than a uniform random generation. Finally, if the number

of triangles is not the same within the three regions, the reasoning still holds since this situation induces weighted combinations of triangles.

Note that this method works solely because curvature measures are normalized by the corresponding area measures, with the same weights

involved.

3. Experimental evaluation

3.1. Extraction of principal directions

Although we did not showcase it in the main paper, our method also provides accurate estimates of principal directions. We could also achieve

the same kind of stability theorem for principal directions that we did with mean curvature. It would require to use matrix perturbation theory

results, using Davis-Kahan theorem [?] and Lidskii-Weyl inequality. We display on Figure 1 an example of principal directions computation

on real scanned data.

3.2. Influence of the neighborhood size

Figure 2 completes Figure 5 of the main paper and shows how different curvature estimators behave on perfect and noisy data for the torus

shape for K = 50. Figures 3 and 4 present mean and gaussian curvature results on the goursat and torus shape when considering a larger

neighborhood, i.e. K = 200 neighbors (parameters are given in the figures caption). These figures must be compared with Figure 4 in the

main document and Figure 2 where only 50 neighbors have been considered. As expected, when K increases, JetFitting and ASO results get

improved. For big K, the accuracy of ASO is comparable to our method.

3.3. Point clouds with non-uniform densities

Figures 5, 6, 7 and 8 show results on non-uniform density point clouds, illustrating the stability of our approach. Finally, 9 and 10 illustrate

curvature results on strongly anisotropic point clouds, generated using a LIDAR-like sampling of the goursat and torus surfaces. Note

that normal vectors of perfect data are obtained from the respective implicit surfaces (perturbated using the Gaussian noise model for the

noisy data experiments).
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Figure 1: First and second principal directions on scanned data (from https://threedscans.com), using CNC-Avg-Hexagram with

K = 50, objects is composed of 499500 points.
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Figure 2: Visual comparisons for K = 50 on point clouds sampling the zero level set surface of torus (N = 25000), without or with noise

(σε = σξ = 0.1). We compare JetFitting [?], ASO [?], CNC-Uniform (L = 100), CNC-Hexagram and CNC-Avg-Hexagram. The colormap

range for mean curvature (resp. Gaussian curvature) values is [0.125,0.32] (resp. [−0.125,0.0625]).
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ground truth JetFitting ASO CNC-Uniform CNC-Hexagram CNC-Avg-Hexagram
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Figure 3: Visual comparisons for K = 200 on point clouds sampling the zero level set surface of goursat (N = 25000), without or with noise

(σε = σξ = 0.1). We compare JetFitting [?], ASO [?], CNC-Uniform (L = 200), CNC-Hexagram and CNC-Avg-Hexagram. The colormap

range for mean curvature (resp. Gaussian curvature) values is [−0.107,0.345] (resp. [−0.034,0.119]).
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ground truth JetFitting ASO CNC-Uniform CNC-Hexagram CNC-Avg-Hexagram
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Figure 4: Visual comparisons for K = 200 on point clouds sampling the zero level set surface of torus (N = 25000), without or with noise

(σε = σξ = 0.1). We compare JetFitting [?], ASO [?], CNC-Uniform (L = 200), CNC-Hexagram and CNC-Avg-Hexagram. The colormap

range for mean curvature (resp. Gaussian curvature) values is [0.125,0.32] (resp. [−0.125,0.0625]).
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ground truth JetFitting ASO CNC-Uniform CNC-Hexagram CNC-Avg-Hexagram
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Figure 5: Visual comparisons for K = 50 on point clouds with non-uniform density sampling the zero level set surface of goursat (N =
25000), without or with noise (σε = σξ = 0.1). We compare JetFitting [?], ASO [?], CNC-Uniform (L = 200), CNC-Hexagram and CNC-

Avg-Hexagram. The colormap range for mean curvature (resp. Gaussian curvature) values is [−0.107,0.345] (resp. [−0.034,0.119]).
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ground truth JetFitting ASO CNC-Uniform CNC-Hexagram CNC-Avg-Hexagram
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Figure 6: Visual comparisons for K = 50 on point clouds with non-uniform density sampling the zero level set surface of torus (N = 25000),

without or with noise (σε = σξ = 0.1). We compare JetFitting [?], ASO [?], CNC-Uniform (L = 200), CNC-Hexagram and CNC-Avg-

Hexagram. The colormap range for mean curvature (resp. Gaussian curvature) values is [0.125,0.32] (resp. [−0.125,0.0625]).
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ground truth JetFitting ASO CNC-Uniform CNC-Hexagram CNC-Avg-Hexagram
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Figure 7: Visual comparisons for K = 200 on point clouds with non-uniform density sampling the zero level set surface of goursat

(N = 25000), without or with noise (σε = σξ = 0.1). We compare JetFitting [?], ASO [?], CNC-Uniform (L = 200), CNC-Hexagram and

CNC-Avg-Hexagram. The colormap range for mean curvature (resp. Gaussian curvature) values is [−0.107,0.345] (resp. [−0.034,0.119]).
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ground truth JetFitting ASO CNC-Uniform CNC-Hexagram CNC-Avg-Hexagram
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Figure 8: Visual comparisons for K = 200 on point clouds with non-uniform density sampling the zero level set surface of torus (N =
25000), without or with noise (σε = σξ = 0.1). We compare JetFitting [?], ASO [?], CNC-Uniform (L = 200), CNC-Hexagram and CNC-

Avg-Hexagram. The colormap range for mean curvature (resp. Gaussian curvature) values is [0.125,0.32] (resp. [−0.125,0.0625]).
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ground truth JetFitting ASO CNC-Uniform CNC-Hexagram CNC-Avg-Hexagram
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Figure 9: Visual comparisons for K = 50 on point clouds mimicking LiDAR density sampling the zero level set surface of goursat

(N = 2947), without or with noise (σε = σξ = 0.1). We compare JetFitting [?], ASO [?], CNC-Uniform (L = 200), CNC-Hexagram and

CNC-Avg-Hexagram. The colormap range for mean curvature (resp. Gaussian curvature) values is [−0.107,0.345] (resp. [−0.034,0.119]).
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ground truth JetFitting ASO CNC-Uniform CNC-Hexagram CNC-Avg-Hexagram
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Figure 10: Visual comparisons for K = 50 on point clouds mimicking LiDAR density sampling the zero level set surface of torus (N = 2086),

without or with noise (σε = σξ = 0.1). We compare JetFitting [?], ASO [?], CNC-Uniform (L = 200), CNC-Hexagram and CNC-Avg-

Hexagram. The colormap range for mean curvature (resp. Gaussian curvature) values is [0.125,0.32] (resp. [−0.125,0.0625]).
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