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Our contribution in a nutshell

• New estimators of curvatures for oriented point clouds 

• Use theory of corrected curvature measures


• Local and independent computations per point


• More accurate and faster than state-of-the-art


• Stability theorem in case of positions and normals perturbations


• Error bounded by , for  the computation window


• Convergence if variances of perturbations are lower than 

O(δ) δ

O(δ2)



Curvature estimations for point clouds

• Polynomial fitting : osculating jets [Cazals, Pouget 05], wave jets [Béarzi, Digne, Chaîne 18]


• Point set surfaces and extensions : 


• moving least squares [Alexa et al 01], 


• algebraic sphere fitting [Guennebaud, Gross 07][Mellado et al 12]


• whole curvature tensor through differentiation [Lejemble, Coeurjolly, Barthe, Mellado 21]


• Integral invariants + kernel functions [Pottmann et al. 07 and 09] [Digne, Morel 14]


• Deep learning methods : PCPNet [Guerrero, Kleiman, Ovsjanikov, Mitra 18]

Smooth surface fitting

+

Classical differential geometry

Usual approach:

Efficient algorithms, but challenging to have

 guarantees in case of noise in data



Curvature estimations: theories with stability

• Voronoi Covariance measures for compact set [Mérigot, Ovsjanikov, Guibas 10]


• Stable notion of normals, ridges, features… but not curvatures


• Stable to ouliers with distance to a measure [Cuel, L., Mérigot, Thibert 14]


• Curvature measures for piecewise smooth surfaces : 


• Normal cycle [Wintgen 82][Cohen-Steiner, Morvan 03 and 06], 


• Point clouds through double offsets [Chazal, Cohen-Steiner, Lieutier, Thibert 09]


• Varifolds : [Almgren 66] [Buet, Leonardi, Masnou 17, 18, and 19]


• Unsigned variants of curvatures

Nice theories, but lack of efficient algorithms

for curvature estimation

• Embed discrete and smooth objects 
in the same framework


• Define geometric information as 
integral measures

Stability in normal and position 
 stability in features/curvatures⇒



Corrected curvatures measures for discrete 
surfaces [L., Romon, Thibert 22]


Curvature measures for discrete surfaces


• triangulated


• quadrangulated


• noisy positions or normals


• digital surfaces


• Schwarz lantern

Stable notions of area, mean, Gaussian, 
principal curvatures



Extend a surface theory to oriented point clouds

Key idea: 

measures do not need consistent mesh topology
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÷ = curvature at 

1. Measures for triangles2. Generate triangles

3. Sum and normalize measures
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[L., Romon, Thibert, Coeurjolly SGP2020]


1. Interpolated corrected curvature measures on a triangle



[L., Romon, Thibert, Coeurjolly SGP2020]


1. Interpolated corrected curvature measures on a triangle

Mean curvature measure 

                        


                              


Gaussian curvature measure  
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⟨ū ∣ (uj − ui) × (uk − ui)⟩

Anisotropic form  curvature tensor measure≈
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differential forms 

(Mean and Gaussian forms)



CNC-AvgHexagram


2 triangles with average nearest points

2. Per point , generate locally random triangles x

CNC-Hexagram


2 triangles with nearest points

CNC-Uniform


uniform random triangles
CNC-Delaunay


local Delaunay reconstruction


• Neighbours of : either  nearest or within Ball( , )


• Choose a strategy to build  triangles within

x K x δ

L



3. Sum up results and normalise curvature measures

Mean curvature Ĥ(x) = ̂A(1)/ ̂A(0)

• Sum area measures         
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Triangles oriented


such that μ(0)
u

( ̂τl) ≥ 0

Lightweight computations:


• either K-NN


• or 6-NN for CNC-Hexagram


• sums of  and formulas per triangle⟨ ⋅ ∣ ⋅ ⟩ ⋅ × ⋅



Example: mean curvature with Avg-Hexagram





Works well in practice

What tells the theory ?



• Perturbated sampling of smooth surface 


•  point of computation, 


•  a computation window


•   input points/normals


  with  i.i.d. random variables 

of null exp. and variance 


  with  i.i.d. random variables 

of null exp. and variance 


• Focus here on mean curvature
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Hypotheses and notations



Theorem If  and  (perfect data), then


 

̂A(0) = A(0) ̂A(1) = A(1)

Ĥ(q̂) − H(q) ≤ O(δ)

Stability of curvature estimates (perfect data)
True curvature on SEstimated curvature

Variation of  in ball of radius  

+ 

Measure errors between  and 
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τ τS

ui
uj

uk

q

q̂ • Requires 


• One triangle is enough, the smaller the better

xi, xj, xk ∈ Ball(q, δ)



Theorem If  then
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ûj
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Stability of curvature estimates 
(noisy data)

 = average area of triangleŝA(0)/L
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Property of error laws

Convergence if  and  are below Z̄(0)

L
Z̄(1)

L
O(δ2)

 Increasing  decreases both errors ! L = #triangles

Area error is very low (order 4) Mean curvature error is essentially σ2
ϵ



Proof (sketch)
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 Null exp., variance easily bounded⇒



Comparative evaluation
[SGP 2021]

Algebraic Sphere Operator (ASO)


• theoretical stability wrt position 
perturbations


• accurate and fast

[SGP 2003]

Jet Fitting


• classic method


• accurate without noise



Accuracy on « Goursat » shape (visual comparison)



Accuracy and timings (mean curvature)

• Goursat shape : , N ∈ {10000,25000,50000,75000,100000} σϵ, σξ ∈ {0,0.1,0.2}

JetFittingASOCNC-UniformCNC-AvgHexagram

CNC-Hexagram



Accuracy and timings (Gaussian curvature)

• Goursat shape : , N ∈ {10000,25000,50000,75000,100000} σϵ, σξ ∈ {0,0.1,0.2}



Results on filtered LiDAR data

• 2,5M of points, K=300



Simplest Hexagram gives multiscale geometric information

• 1,8M of points, 4s for all  curvatures, 81s for NNH, G, κ1, κ2, v1, v2

δ 11δ

More results / comparisons in paper and 
supplementary 

(Other shapes, simulated LiDAR samples, etc)



Conclusion

• new method for curvature estimations on oriented point clouds


• local computations without surface reconstruction, fully parallelizable 


• theoretical stability in the presence of noise on positions and normals


• smaller computation window than state-of-the-art for better accuracy, faster


•          https://github.com/JacquesOlivierLachaud/PointCloudCurvCNC



Future works

• Extend this approach to unoriented point clouds


• Stability results for non iid noise perturbations


• Specific randomization strategies for data with 
outliers


• Automatic global/local tuning of window  or 


• Higher-order differential quantities using an 
extended Grassmannian

δ K


