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Abstract
This paper proposes full convexity as an alternative definition of digital convexity, which is valid in arbitrary dimension. It
solves many problems related to its usual definitions, like possible non-connectedness or non-simple connectedness, while
encompassing its desirable features. Fully convex sets are digitally convex, but are also connected and simply connected.
They have a morphological characterization, which induces a simple convexity test algorithm. Arithmetic planes are fully
convex too. Full convexity implies local full convexity, hence it enables local shape analysis, with an unambiguous definition
of convex, concave and planar points. As a kind of relative full convexity, we propose a natural definition of tangent subsets
to a digital set. It gives rise to the tangential cover in 2D, and to consistent extensions in arbitrary dimension. Finally, we
present two applications of tangency: the first one is a simple algorithm for building a polygonal mesh from a set of digital
points, with reversibility property, the second one is the definition and computation of shortest paths within digital sets.

Keywords Digital geometry · Digital convexity · Simple connectedness · Arithmetic planes · Tangential cover ·
Digital surface reconstruction
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1 Introduction

1.1 Classical Digital Convexity

Classically a subset X ⊂ Z
d is said to be digitally convex

whenever

X = cvxh (X) ∩ Z
d , (1)

where cvxh (·) denotes the convex hull operator (so-called
H -convexity [21]). In contrast to continuous convexity, this
definition does not imply digital connectedness of X start-
ing from dimension d ≥ 2 (see Fig. 1abcd). Therefore,
especially in 2D, many works add a connectedness con-
straint or propose a definition that implies it (e.g. [31] or see
overviews of [21,43]). Another definition of convexity relies
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on progressive intersections with half-planes [48]. Connect-
edness is preserved in the first steps at the price of a coarse
approximation of convexity, but at the limit this definition is
equivalent to H -convexity, hence connectedness may also be
lost. Note that the connectedness constraint on 2D H -convex
sets allows for linear convexity test algorithms [27]. When
the connectedness constraint is not added, the best algorithms
are only quasi-linear [16].

1.2 2D Digital Convexity Plus Connectedness

Connectedness of digital convex shapes is not only natu-
ral; it is an essential property for shape analysis. Indeed, it
allows their local analysis, with a possible tracking of the
shape boundary. Adding connectedness to 2D H -convexity
has opened the way to digital contour analysis with digital
straightness [31]. They have led to the classical tangential
cover of a contour [24], which can be used to decom-
pose a contour into its convex and concave parts [20,45].
They induce convergent tangent and length estimators [40]
and even curvature estimators [14,28]. When connected, the
fastest algorithms for digital convexity characterization use
word combinatorics to analyse the word describing the shape
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contour [5,6]. Studying their asymptotic properties give rise
to automatic noise detection along real image contours [29].
Hierarchical shape analysis can also be achieved through
convex–concave decomposition [33]. We finally mention
[32] that characterizes digital convexity and straightness by
means of difference operators.

1.3 3D Digital Convexity and Planarity

It would thus be great to have a definition of digital convex-
ity that extends well to (at least) 3D. As already foreseen in
[30], 2D definitions do not extend well to 3D. In the same
paper, the authors propose a 3D digital convexity definition
that relies on the triangle chordal property plus connected-
ness. Unfortunately, it induces a quite burdensome convexity
check algorithm. But starting from d ≥ 3 a connectedness
constraint is not enough to build meaningful digital con-
vex sets. For instance, when cut by a slice, digital convex
sets may lose connectedness (see Fig. 1e), hence tracking
the boundary of the digital shape may not find the con-
vex/concave geometry of the object. This has led many
people to study instead 3D digital shapes through digital
planarity (e.g. see [3]). The idea is to find digital plane seg-
ments (DPSs) that locally fit the digital shape boundary.
Although there are numerous methods to check planarity,
[7,9,18,23,26,41,50,51], to quote a few, the main problem
is to identify which input points to gather before recogniz-
ing them as planar. In opposition to the 2D case, maximal
DPS are generally not tangent, so the many existing meth-
ods rely on heuristics to determine a candidate set of points
for DPS recognition: greedy decomposition [4,13,34,47],
repetitive identification of largest DPS [12] or approximately
largest [42], expansion frommaximal planar disks [10].More
recently, plane-probing algorithms have emerged as a new
method to analyse the local planarity of digital shapes [36–
39,44]. They perform well on planes, but they still rely on
a sound connectedness on the boundary to analyse general
digital shapes. Last, it was shown that optimal decomposition
of a shape into planar subsets is NP-hard [46], hence DPS
decomposition might not be such a great idea for 3D shape
analysis.

1.4 Contributions

We present here a more consistent definition of digital con-
vexity, which naturally entails connectedness as well as
simple connectedness, and that is valid in arbitrary dimension
(Sects. 2 and 3). This new definition, called full convex-
ity, encompasses digital arithmetic planes or digitizations
of thick enough convex shapes, and has a certain stability
under intersections. In Sect. 4, we give a morphologi-

cal characterization of full convexity, which shares—but
does not originate from—the thickening idea present in
[17] for connecting 2D digital convex sets. This induces a
practical full convexity check algorithm. Finally, full con-
vexity nicely addresses classical digital geometry problems
(Sects. 5 and 6): it encompasses digital planarity, allows for
unambiguous local characterization of convexity and concav-
ity, defines a natural tangential cover in arbitrary dimension,
induces a piecewise affine reversible and tight polyhedriza-
tion of digital shapes, as well as shortest paths into digital
sets.

1.5 Extensions

This article is an extended version of [35], with the follow-
ing differences and addenda. First, we introduce stable sets,
whose intersection with fully convex sets induces fully con-
vex subsets. In particular, it induces that axis-aligned slices
of full convex sets are full convex, and that global full con-
vexity implies local full convexity. We have added the proof
of the theorem giving the Euler characteristic of the inter-
sected complex of a fully convex set. We have provided
two additional applications of full convexity, one related to
local shape analysis, which allows a classification of points
into convex/concave/planar/other classes, the other related to
shortest paths and shortest paths computation, with a proof
of algorithm correctness.

2 Full Convexity

2.1 Cubical Complex; Intersection Complex

Let Z
d be the d-dimensional digital space, d > 0. Let Cd be

the (cubical) cell complex inducedby the latticeZ
d : its 0-cells

are the points of Z
d , its 1-cells are the open unit segments

joining two 0-cells at distance 1, its 2-cells are the open unit
squares, etc., and its d-cells are the d-dimensional open unit
hypercubes with vertices inZ

d . We denote Cdk the set of its k-
cells. In the following, a cellwill always designate an element
of Cd , and the term subcomplex always designates a subset
of Cd . A cell σ is a face of another cell τ whenever σ is a
subset of the topological closure τ̄ of τ , and we write σ � τ .
Given any subcomplex K of Cd , the closure Cl (K ) of K is
the complex {τ ∈ Cd , s.t. ∃σ ∈ K , τ � σ } and the star
Star (K ) of K is {τ ∈ Cd , s.t. ∃σ ∈ K , σ � τ }.

In combinatorial topology, a subcomplex K with
Star (K ) = K is open, while being closedwhenCl (K ) = K .
The body of a subcomplex K , i.e. the union of its cells in R

d ,
is written ‖K‖. Finally, if Y is any subset of the Euclidean
space R

d , we denote by C̄ d
k [Y ] the set of k-cells whose

topological closure has a non-empty intersection with Y , i.e.
C̄ d
k [Y ] := {c ∈ Cdk , c̄ ∩ Y �= ∅}. The complex made of all
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k-cells having a non-empty intersection with Y , 0 ≤ k ≤ d
is called the intersection (cubical) complex of Y and denoted
by C̄ d [Y ].
Lemma 1 The intersection complex of a set Y is open and its
body covers Y .

Proof If Y is the empty set, C̄ d [Y ] is empty and is open. If
Y is not empty, let σ be any cell of C̄ d [Y ]. Let τ be any
cell of Cd with σ � τ . Thus, σ ⊂ τ̄ ⇒ σ̄ ⊂ τ̄ (since
topological closure is increasing and idempotent). It follows
that σ ∈ C̄ d [Y ] ⇔ σ̄ ∩ Y �= ∅ ⇒ τ̄ ∩ Y �= ∅ ⇔
τ ∈ C̄ d [Y ]. We have just proved that Star (σ ) ⊂ C̄ d [Y ],
hence Star

(
C̄ d [Y ]) ⊂ C̄ d [Y ]. The converse inclusion being

obvious, C̄ d [Y ] is open. The fact that Y ⊂ ∥∥C̄ d [Y ]∥∥ is
straightforward. �

The following remark is quite straightforward and tells
that the 0-cells of the intersection complex of some set are
exactly its digital points.

Remark 1 For any Y ⊂ R
d , we have

C̄ d
0 [Y ] = {c ∈ Cd0 , c ∩ Y �= ∅}

= {c ∈ Z
d , c ∩ Y �= ∅} = Y ∩ Z

d . (2)

2.2 Full Convexity

We define now our new notion of digital convexity:

Definition 1 (Full convexity) An arbitrary subset X ⊂ Z
d is

digitally k-convex for 0 ≤ k ≤ d whenever

C̄ d
k [X ] = C̄ d

k [cvxh (X)]. (3)

Set X is fully (digitally) convex if it is digitally k-convex for
all k, 0 ≤ k ≤ d.

Equivalently, the intersection complex of a fully convex set
Z covers the convex hull of Z . We can already make the
following observation:

Lemma 2 Commondigital convexity is the digital 0-convexity.

Proof From (1), X ⊂ Z
d is digitally convex iff X =

cvxh (X) ∩ Z
d , otherwise said X ∩ Z

d = cvxh (X) ∩
Z
d . Applying (2) (Remark 1) on both sides for sets X

and cvxh (X), respectively, it is equivalent to C̄ d
0 [X ] =

C̄ d
0 [cvxh (X)], which is exactly (3) for k = 0. �
Figure 1 shows several digitally 0-convex sets, but which

are not fully convex. Clearly, full convexity forbids too thin
convex sets, which are typically the ones that are not con-
nected or not simply connected in the digital sense.

2.3 Elementary Properties

Denoting by # (X) the cardinal of a finite set X , the
straightforward lemma below shows that it suffices to count
intersected cells to check for full convexity.

Lemma 3 A finite subset X ⊂ Z
d is digitally k-convex for

0 ≤ k ≤ d iff #
(
C̄ d
k [X ]) ≥ #

(
C̄ d
k [cvxh (X)]).

For example, the digital tetrahedraT (l)={(0, 0, 0), (1, 0, 0),
(0, 1, 0), (1, 1, l)}, for positive integer l, is digitally 0-
convex. However, cvxh (T (l)) intersects as many 2-cells and
3-cells aswanted above the unit squarewith vertices (0, 0, 0),
(1, 0, 0), (1, 1, 0), (1, 0, 0), just by increasing l. Meanwhile,
T (l) only intersects the same finite number of 2-cells and
3-cells. Hence, for l ≥ 2, T (l) is not fully convex.

It is not necessary to check digital d-convexity to verify
if a digital set is fully convex, and this property is useful
to speed up algorithms to check for full convexity. You can
observe the contraposition of this lemma in Fig. 1, left, where
non-digitally 2-convex sets in 2D are not digitally 1-convex
too.

Lemma 4 If Z ⊂ Z
d is digitally k-convex for 0 ≤ k < d, it

is also digitally d-convex, hence fully convex.

Proof Let Z be such set. The conclusion of the lemma is true
if Z is empty. Otherwise let σ ∈ C̄ d

d [cvxh (Z)]. Let B = ∂σ̄

be the topological boundary of σ . By hypothesis, we have
σ̄ ∩ cvxh (Z) �= ∅, hence (B ∪ σ) ∩ cvxh (Z) �= ∅.

The surface B separates R
d into two components, one

finite equal to σ , the other infinite. Assume B ∩ cvxh (Z) =
∅. Since cvxh (Z) is arc-connected, then cvxh (Z) lies
entirely in one component. The relation (B∪σ)∩cvxh (Z) �=
∅ then implies cvxh (Z) ⊂ σ . This is impossible since
cvxh (Z) ∩ Z

d = Z while σ ∩ Z
d = ∅.

It follows that B ∩ cvxh (Z) �= ∅. But B is a union of
k-cells (bi )i=0...m of Cd , with 0 ≤ k < d. There exists at
least one k-cell b j with b j ∩ cvxh (Z) �= ∅. Thus, b j ∈
C̄ d
k [cvxh (Z)]. But Z is digitally k-convex for 0 ≤ k < d,

so b j ∈ C̄ d
k [Z ]. To conclude, σ ∈ Star

(
b j

)
and C̄ d [Z ] is

open, so σ belongs also to C̄ d [Z ]. We have just shown that
every d-cell of C̄ d [cvxh (Z)] are in C̄ d [Z ], so Z is digitally
d-convex and hence fully convex. �

Other implications of digital k-convexities over digital l-
convexities are unlikely. For instance in 3D, some digital
sets are digitally 0-convex, 1-convex, 3-convex but are not 2-
convex, like {(0, 0, 0), (1, 1, 2), (1, 1, 3), (1, 2, 3), (2, 1, 3)}.

2.4 Digital Connectedness

We will need the definition of (digital) connectedness in
the next section. Two elements x, y of Z

d are k-adjacent
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(a) (b) (c) (d) (e)

Fig. 1 a–d Digital triangles that are not fully convex: digital points are
depicted as black disks, missing 1-cells for digital 1-convexity as blue
lines, missing 2-cells for digital 2-convexity as green squares. e Usual

digital convexity (1) plus 3D connectivity does not imply connected-
ness on the upper slice; it is also not fully convex (Color figure online)

if ‖x − y‖∞ ≤ 1 and ‖x − y‖1 ≤ k. The transitive closure
of this relation defines the k-connectedness relation. Histori-
cally, d-connectedness was called 8-connectivity in 2D, and
26-connectivity in 3D, and 1-connectedness was called 4-
connectivity in 2D, and 6-connectivity in 3D.

2.5 Stability by Intersection

Unfortunately, we do not have in general the stability of
full convexity by intersection. As elementary example, pick
Z1 := {(0, 0), (1, 0), (2, 1)} and Z2 :={(0, 0), (1, 1), (2, 1)},
which are both fully convex. Their intersection Z1 ∩ Z2 is
reduced to the two points {(0, 0), (2, 1)}, which is not a d-
connected set. By Theorem 2, this set is not fully convex.
However, we do have a stability by intersection with the fol-
lowing subsets of R

d :

Definition 2 (Stable set) A subset Y of R
d is called stable

whenever Y is convex and, for any cell c of Cd , Y ∩ c �=
∅ ⇒ c̄ ⊂ Y .

Lemma 5 If X ⊂ Z
d is fully convex and Y ⊂ R

d is stable,
then X ∩ Y is fully convex.

Proof Following Definition 1 and (3), we have to show, for
all k, 0 ≤ k ≤ d, C̄ d

k [cvxh (X ∩ Y )] = C̄ d
k [X ∩ Y ]. Pick-

ing such a k, it is enough to show the inclusion in the above
relation, since the reciprocal inclusion is obvious (the inter-
section complex is increasing).

Let c ∈ C̄ d
k [cvxh (X ∩ Y )]. Since convex hull is increas-

ing, we have c ∈ C̄ d
k [cvxh (X)∩cvxh (Y )]. Since Y is stable

hence convex, it holds immediately that c ∈ C̄ d
k [cvxh (X) ∩

Y ]. So cvxh (X) ∩ Y ∩ c̄ �= ∅. There is thus at least
one cell e included in c̄ (which may be c itself) such that
cvxh (X) ∩ Y ∩ e �= ∅.

Full convexity of X implies C̄ d
k [cvxh (X)] = C̄ d

k [X ].
Since e ∈ C̄ d

k [cvxh (X)], so there exists a point z ∈ X , such
that z belongs to ē. Besides, set Y being stable, Y ∩ e �= ∅

implies ē ⊂ Y . In particular, we have z ∈ Y .

Since z ∈ X ∩ Y , any cell of Cd that has z in its boundary
belongs to C̄ d [X ∩ Y ]. This is the case of e but also of c,
since z ∈ ē ⊂ c̄. We have just shown c ∈ C̄ d

k [X ∩ Y ]. �
Half-spaces with axis-aligned normals are stable in this

sense:

Lemma 6 Any half-space of integer intercept and axis nor-
mal vector is stable.

Proof Without losing generality, choose axis normal vector
ei . Let H := {x ∈ R

d , x · ei ≤ a}. Being a half-space, the
set H is convex.

Now if c ∈ Cd and H ∩ c �= ∅. It means that ∃x ∈
c, x · ei ≤ a. Letting xi be the i-th coordinate of x . We have
xi ≤ a.

Let y ∈ c̄. If c is closed along i-th coordinate, then yi = xi

and thus y ∈ H also. If c is open along i-th coordinate, then xi

is a non-integer number. It follows obviously that �xi� ≤ a.
But �xi� ≤ yi ≤ �xi�, which implies also yi ≤ a. Hence
y ∈ H , i.e. c̄ ⊂ H . �

It is obvious that the intersection of two stable sets is also
stable. As a consequence, we get several corollaries. Since a
slice is the intersection of two half-spaces, we get:

Corollary 1 Any axis-aligned slice of a fully convex set is fully
convex.

In fact, it is fully convex both in the d-dimensional space, and
in the d−1-dimensional space spanning the slice. Looking at
Fig. 1e, this corollary shows that the displayed 3D digital set
cannot be fully convex, since its upper slice is not fully con-
vex (we will show in Theorem 2 that full convexity implies
connectedness). Full convexity thus efficiently discards such
digitally convex sets.

Besides, for any digital point z, we can define naturally its
d-dimensional cubical k-neighbourhood, k ∈ Z, k ≥ 1, as
the set

Nk(z) := {x ∈ R
d , s.t. ∀i ∈ Z,

1 ≤ i ≤ d, zi − k ≤ yi ≤ zi + k}.
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Now any such neighbourhood is obviously the intersection
of 2D axis-aligned half-spaces with integer intercept, hence
they form stable sets.

Corollary 2 If X is fully convex, then for any z ∈ Z
d , X ∩

Nk(z) is fully convex.

This shows that the global property of full convexity
implies local full convexity everywhere. We will use this
result in Sect. 5 in order to characterize locally the geometry
of digital objects.

3 Topological Properties of Fully Convex
Digital Sets

We give below the main topological properties of fully con-
vex digital sets.

Theorem 1 If the digital set Z ⊂ Z
d is fully convex, then the

body of its intersection cubical complex is connected.

Proof Let x, x ′ be two points of
∥∥C̄ d [Z ]∥∥. Since Cd is a

partition of R
d , there are two cells c, c′ of C̄ d [Z ] such that

x ∈ c, x ′ ∈ c′. Since Z is fully convex, then C̄ d [Z ] =
C̄ d [cvxh (Z)]. Hence there exist y ∈ c̄ ∩ cvxh (Z) and y′ ∈
c̄′ ∩ cvxh (Z).

By convexity of cells, the segment [x, y[ lies entirely
in c hence in

∥∥C̄ d [Z ]∥∥. Similarly, the segment ]y′, x ′] lies
entirely in c′ hence in

∥∥C̄ d [Z ]∥∥.
Now by definition of convexity, the segment [y, y′] lies in

cvxh (Z). But cvxh (Z) ⊂ ∥
∥C̄ d [cvxh (Z)]∥∥ = ∥

∥C̄ d [Z ]∥∥ by
cell convexity.Wehave just built an arc from x to x ′ which lies
entirely in

∥∥C̄ d [Z ]∥∥. We conclude since arc-connectedness
implies connectedness. �
Theorem 2 If the digital set Z ⊂ Z

d is fully convex, then Z
is d-connected.

Proof Weshowfirst that 0-cells of C̄ d [Z ] are face-connected,
i.e. for any points z, z′ ∈ Z = C̄ d

0 [Z ], there is a path of cells
(ci )i=0...m of C̄ d [Z ], such that c0 = σ , cm = τ , and for all
i ∈ Z, 0 ≤ i < m, either ci � ci+1 or ci+1 � ci .

The straight segment [z, z′] is included in cvxh (Z), hence
any one of its points belongs to a cell of C̄ d [cvxh (Z)] so a
cell of C̄ d [Z ] by full convexity.

Let p(t) = (1 − t)z + t z′ for 0 ≤ t ≤ 1 be a parameteri-
zation of segment [z, z′]. The above remark implies that, for
any t ∈ [0, 1], the point p(t) belongs to a cell c(t) of C̄ d [Z ].
The sequence of intersected cells from t = 0 to t = 1 is
obviously finite, and we denote it by (c0, c1, . . . , cm) with
c0 = p(0) = z and cm = p(1) = z′. Since it corresponds
to an infinitesimal change of t , two consecutive cells of this
sequence are necessary in the closure of one of them, hence
ci � ci+1 or ci+1 � ci .

We use Lemma 7. We associate to each cell ci one of its
Z -corner, denoted zi . We obtain a sequence of digital points
z = z0, z1, . . . , zm = z′. Now any two incident faces (like ci
and ci+1) belong to the closure of a d-cell σ . It follows that
both corner zi and zi+1 are vertices of σ̄ , a unit hypercube.
Obviously ‖zi − zi+1‖∞ ≤ 1 and these two points are d-
adjacent. We have just built a sequence of d-adjacent points
in Z , which concludes. �
Lemma 7 Let Z ⊂ Z

d . If c is a cell of C̄ d [Z ], there exists
z ∈ C̄ d

0 [Z ] = Z such that z � c. We call such digital point
a Z-corner for c. If c is a 0-cell, its only Z-corner is itself.

Proof By definition of C̄ d [Z ]we have c̄∩ Z �= ∅. It follows
that ∃z ∈ Z such that z ∈ c̄. So z � c and also z ∈ Z =
C̄ d
0 [Z ]. �
We can show an even stronger result on fully convex sets:

they present no topological holes. Indeed, we have:

Theorem 3 If the digital set Z ⊂ Z
d is fully convex, then the

body of its intersection cubical complex is simply connected.

Proof Let A := {x(t), t ∈ [0, 1]} be a closed curve in∥∥C̄ d [Z ]∥∥, i.e. x(0) = x(1) and x(t) ∈ ∥∥C̄ d [Z ]∥∥. We
must show that there is a homotopy from A to a point
a ∈ ∥∥C̄ d [Z ]∥∥.

The curve x(t) visits cells of C̄ d [Z ]. Let c(t) be these
cells. By finiteness of A, c(t) defines a finite sequence of
cells c0, c1, . . . , cm from t = 0 to t = 1, with cm = c0. We
can also associate a sequence of parameters t0, t1, . . . , tm ,
such that x(ti ) ∈ ci = c(ti ). As in the proof of Theorem 2,
two consecutive cells of this sequence are necessary in the
closure of one of them. Let us set di to ci or ci+1 such that
both are in d̄i .

The path x([ti , ti+1]) lies in ci ∪ ci+1. For each cell ci we
pick one of its Z -corner zi . Clearly, zi and zi+1 belong to
d̄i . By convexity of d̄i , it is in particular simply connected
and there is a homotopy in d̄i between x([ti , ti+1]) and the
segment [zi , zi+1]. Since C̄ d [Z ] is open and both points are
in

∥
∥C̄ d [Z ]∥∥, [zi , zi+1] ⊂ ∥

∥C̄ d [Z ]∥∥ as well as the whole
homotopy. Gathering all these local homotopies for every i ,
0 ≤ i < m, we have defined a homotopy betweenA and the
polyline [zi ]i=0,...,m .

By full convexity, every zi ∈ Z is also in cvxh (Z). It
follows that the vertices of the polyline [zi ]i=0,...,m belong
to cvxh (Z). By convexity of cvxh (Z), the whole polyline
is a subset of cvxh (Z). Being a closed curve in a sim-
ply connected set, the polyline [zi ]i=0,...,m is continuously
deformable to a point of this set, say z0, by some homotopy.
Composing the two homotopies finishes the argument. �

Finally, we can determine a relation between the numbers
of k-cells of the intersection complex of a fully convex set.
For a subcomplex K , let #k(K ) be its number of k-cells.
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The Euler characteristic of a subcomplex K is χ(K ) :=∑d
k=0(−1)k#k(K ). It is a famous topological invariant of

CW complexes.

Theorem 4 The Euler characteristic of the intersection cubi-
cal complex of a fully convex set is (−1)d .

Proof Let Z ⊂ Z
d be a fully convex set. Let K = C̄ d [Z ].

According to Lemma 1, K is open. We build a dual (cubical)
complex K∗ to K in the usual way. Indeed, a natural dual Cd∗
for Cd is Cd translated by a shift vector of ( 12 , . . . ,

1
2 ). Then,

every d − k-cell c∗ of Cd∗ has the same centroid as one k-cell
c of Cd , and they are defined as dual to each other. Since K
is open, the complex K∗ is closed. The complex K∗ is thus a
CW-complex.

It is not hard to see that ‖K∗‖ is a deformation retract
of ‖K‖, simply by shrinking ‖K‖ \ ‖K∗‖ to ∂ ‖K∗‖. Since
‖K‖ is simply connected, ‖K∗‖ is also simply connected.
A simply connected CW-complex has Euler characteristic 1,
hence χ(K∗) = ∑d

k=0(−1)k#k(K∗) = 1. It follows:

χ(K ) =
d∑

j=0

(−1) j# j (K )

=
d∑

j=0

(−1) j#d− j (K∗)

(by duality, # j (K∗) = #d− j (K ))

= (−1)d
d∑

k=0

(−1)k#k(K∗)

(setting k = d − j and using (−1)−k = (−1)k)

= (−1)dχ(K∗) = (−1)d . (since χ(K∗) = 1)

�

4 Morphological Properties and Recognition
Algorithm

Weprovide first amorphological characterization of full con-
vexity that will help us to design a practical algorithm for
checking this property.

4.1 Morphological Characterization

Let I d := {1, . . . , d}. The set of subsets of cardinal k of I d is
denoted by I dk , for 0 < k ≤ d. For i ∈ I d , let Si := {tei , t ∈
[0, 1]} be the unit segments aligned with axis vectors ei . For
any point x of R

d , we write its d coordinates with super-
scripts: x1, . . . , xd . Let us also denote the Minkowski sum
of two sets A and B by A⊕ B. We further build axis-aligned

unit squares, cubes, etc., by summing up the unit segments:
for anyα ∈ I dk ,Sα := ⊕

i∈α Si . For instance, in 3D, the three
unit segments are S1,S2,S3 (or equiv. S{1},S{2},S{3}), the
three unit squares are S{1,2},S{1,3},S{2,3}, the unit cube is
S{1,2,3}. To treat the 0-dimensional case uniformly, we set
I d0 = {0} and S{0} = {0}.

We can partition the k-cells of Cdk into #
(
I dk

)
subsets such

that, for any α ∈ I dk , each subset denoted by Cdα contains all
the k-cells parallel to Sα . For instance, Cd{1} and Cd{2} partition
the set Cd1 in dimension d = 2. Now let us define themapping
Z : Cd → Z

d which associates to any cell σ , the digital
vertex of σ̄ with highest coordinates. Its restriction to Cdα is
denoted by Zα .

Lemma 8 For any α ∈ I dk , the mapping Zα is a bijection.

Proof Clearly, every digital point of Z
d forms the highest

vertex of all possible kinds of cells, so Zα is a surjection.
Now no two cells of Cdα can have the same highest vertex,
since all cells of Cdα are distinct translations of the same set.

�

The intersection subcomplex of some set Y restricted to cells
of Cdα is naturally denoted by C̄ d

α [Y ]. We relate k-cells inter-
sected by set Y to digital points included in the set Y dilated
in some directions, as illustrated in Fig. 2.

Lemma 9 For any Y ⊂ R
d , for any α ∈ I dk , Zα(C̄ d

α [Y ]) =
C̄ d
0 [Y ⊕ Sα].

Proof We proceed by equivalences (the logical “and”, sym-
bol ∧, has higher priority than “if and only if”, symbol ⇔,
but less than any other operations):

z ∈ Zα(C̄ d
α [Y ])

⇔ σ ∈ C̄ d
α [Y ] ∧ σ = Z−1

α (z)

(Zα is a bijection, Lemma 8)

⇔ ∃y ∈ Y , y ∈ σ̄ ∧ σ = Z−1
α (z)

⇔ ∃y ∈ Y , (∀i ∈ α, zi − 1 ≤ yi ≤ zi ∧ ∀ j ∈ I d

\ α, z j = yi )

⇔ ∃y ∈ Y , (∀i ∈ α, 0 ≤ xi ≤ 1 ∧ ∀ j

∈ I d \ α, x j = 0) ∧ x = z − y

⇔ ∃y ∈ Y , x ∈ Sα ∧ z = x + y ∈ Z
d

⇔ z ∈ (Y ⊕ Sα) ∩ Z
d .

We conclude since (Y ⊕ Sα) ∩ Z
d = C̄ d

0 [Y ⊕ Sα]. �

123



Journal of Mathematical Imaging and Vision

(a) (b) (c) (d)

Fig. 2 Let P = cvxh ({(0, 0), (2, 1), (5, 3)}). a C̄ d [P]. b–d We can see that #
(
C̄ d{1}[P]

)
= #

(
C̄ d
0 [P ⊕ S{1}]

) = 7, #
(
C̄ d{2}[P]

)
=

#
(
C̄ d
0 [P ⊕ S{2}]

) = 9, and #
(
C̄ d{1,2}[P]

)
= #

(
C̄ d
0 [P ⊕ S{1,2}]

) = 14. The bijectionsZ{1},Z{2},Z{1,2} are made clear in (b), (c), (d), respectively

We arrive to our morphological characterization of full con-
vexity: full convexity can thus be checked with common
algorithms for checking digital convexity.We denote by x(Z)

the set Z translated by some lattice vector x.
We proceed in two steps. First, we provide a morpholog-

ical characterization using Minkowski sums with unit lines,
squares, cubes, etc. (Theorem 5). Second, Minkowski sums
are replaced by equivalent operations involving solely digital
points (Theorem 6). This simplifies the writing of the algo-
rithm for checking digital convexity in arbitrary dimension.

Theorem 5 A subset X ⊂ Z
d is digitally k-convex for 0 ≤

k ≤ d iff

∀α ∈ I dk , (X ⊕ Sα) ∩ Z
d = (cvxh (X) ⊕ Sα) ∩ Z

d , (4)

or (X ⊕ Sα) ∩ Z
d = (cvxh (X ⊕ Sα)) ∩ Z

d . (5)

It is thus fully convex if the previous relations hold for all
k, 0 ≤ k ≤ d.

Proof We proceed by equivalence for (4):

C̄ d
k [X ] = C̄ d

k [cvxh (X)]
⇔ ∀α ∈ I dk , C̄ d

α [X ] = C̄ d
α [cvxh (X)]

⇔ ∀α ∈ I dk ,Zα(C̄ d
α [X ]) = Zα(C̄ d

α [cvxh (X)])
(Zα is a bijection)

⇔ ∀α ∈ I dk , C̄ d
0 [X ⊕ Sα] = C̄ d

0 [cvxh (X) ⊕ Sα]
(Lemma 9)

⇔ ∀α ∈ I dk , (X ⊕ Sα) ∩ Z
d = (cvxh (X) ⊕ Sα) ∩ Z

d .

(5) follows since the convex hull operation commutes with
Minkowski sum. �

We introduce a discrete analog ofMinkowski sums of unit
axis-aligned edges, squares, cubes, etc. Let U∅(Z) := Z ,
and, for α ⊂ I d and i ∈ α, we define recursively Uα(Z) :=
Uα\i (Z)∪ei (Uα\i (Z)). The previous definition is consistent
since it does not depend on the order of the sequence i ∈ α.

First, Lemma 10 establishes that the operation Uα(·) is
indeed equivalent to specificMinkowski sums for digital sets.

Then, Lemma 11 asserts that this operation also commutes
with convex hull operation.

Lemma 10 For any X ⊂ Z
d , for any α ⊂ I d , (X ⊕ Sα) ∩

Z
d = Uα(X).

Proof Let α = {i1, . . . , ik} ⊂ I d , non-empty. Note that
Sα = ⊕k

j=1 S j and that it does not depend on the cho-
sen order. For conciseness, we write Xγ := X ⊕ Sγ for any
subset γ of I d . Let β = {i1, . . . , ik−1} and let us first show
that:

(Xα) ∩ Z
d = (Xβ ∩ Z

d) ∪ eik (X
β ∩ Z

d). (6)

⊃ (Xβ ∩ Z
d) ∪ eik (X

β ∩ Z
d) = (Xβ ∪ eik (X

β)) ∩ Z
d ⊂

(Xβ ⊕ Sik ) ∩ Z
d = (Xα) ∩ Z

d .
⊂ Let z ∈ Xα ∩Z

d . We can write z as z = x+ ti1ei1 +· · ·+
tik eik , with x ∈ X and every ti j ∈ [0, 1]. More precisely,

since z ∈ Z
d and x ∈ Z

d and ei j is a unit vector, every

ti j ∈ {0, 1}. Clearly, z′ = z+∑k−1
j=1 ti j ei j belongs to X

β∩Z
d .

If tik = 0 then z′ = z and we are done. Otherwise, tik = 1
then z′ = z + eik , which belongs to eik (X

β ∩ Z
d).

We prove the lemma by induction on the cardinal of α.
For α = ∅, (X ⊕ S∅) ∩ Z

d = X = U∅(X). Assume the
lemma is true for any β of cardinal k − 1 ≥ 0, and let us
show it for α = β ∪ {i}.

(Xα) ∩ Z
d = (Xβ ∩ Z

d) ∪ ei (Xβ ∩ Z
d) (Using (6))

= Uβ(X) ∪ ei (Uβ(X)) (Induction)

= Uα(X) (Definition).

�
Lemma 11 For any X ⊂ Z

d , for any α ⊂ I d , cvxh (X) ⊕
Sα = cvxh (Uα(X)).

Proof Weprove it by induction on the cardinal k ofα. It holds
obviously for k = 0. Otherwise let α = β ∪ {i} of cardinal
k.
⊃ We have Uα(X) = Uβ(X) ∪ ei (Uβ(X)) ⊂ Uβ(X) ⊕
Si . Since convex hull is increasing, cvxh (Uα(X)) ⊂
cvxh

(
Uβ(X) ⊕ Si

)
holds. But convex hull commutes with

Minkowski sum, so cvxh
(
Uβ(X) ⊕ Si

) = cvxh
(
Uβ(X)

)⊕
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Si = cvxh (X)⊕Sβ ⊕Si by induction hypothesis. We con-
clude with Sβ ⊕ Si = Sα .
⊂ Let y ∈ cvxh (X) ⊕ Sα = cvxh (X) ⊕ Sβ ⊕ Si =
cvxh

(
Uβ(X)

) ⊕ Si . Denoting by z j , j ∈ B the points
of Uβ(X), it follows that y can be written as a convex
linear combination of these points plus a point of Si , i.e.
y = (

∑
j∈B μ j z j ) + tei ,

∑
j∈B μ j = 1, ∀ j ∈ B, μ j ≥ 0

and t ∈ [0, 1]. All following sums are taken over j ∈ B.
Since

∑
μ j = 1, we rewrite y as

y =
(∑

μ j z j
)

+ t
(∑

μ j

)
ei

=
∑

(1 − t)μ j z j + tμ j z j + tμ jei

=
(∑

(1 − t)μ j z j
)

+
(∑

tμ j (z j + ei )
)

∈ cvxh
(
Uβ(X) ∪ ei (Uβ(X))

)
,

which shows that y ∈ cvxh (Uα(X)). �
Theorem 6 A subset X ⊂ Z

d is digitally k-convex for 0 ≤
k ≤ d iff

Uα(X) = cvxh (Uα(X)) ∩ Z
d . (7)

It is thus fully convex if the previous relation holds for all
k, 0 ≤ k ≤ d.

Proof Recalling full convexity characterization (5) of Theo-
rem 5, we have:

(X ⊕ Sα) ∩ Z
d = (cvxh (X ⊕ Sα)) ∩ Z

d .

Now Lemma 10 states that (X ⊕ Sα) ∩ Z
d = Uα(X),

which we apply on the left-hand side of the previous char-
acterization. And Lemma 11 states that cvxh (X) ⊕ Sα =
cvxh (Uα(X)), which we apply on the right-hand side of the
same characterization, while intersecting it with Z

d . This
gives (7). �

Finally, we can remark that, if X ⊂ Z
d is d-connected,

then necessarily allUα(X) are by construction d-connected.

4.2 Recognition Algorithm

Algorithm1 checks the full convexity of a digital set Z ⊂ Z
d .

Due to the bijections Zα , all the processed sets are subsets
of Z

d .

Theorem 7 Algorithm 1 correctly checks if a digital set Z is
fully convex.

Proof First of all, IsConvex checks the classical digital con-
vexity of any digital set S by counting lattice points within
cvxh (S) (Lemma 3).

Algorithm 1: IsFullyConvex: given the dimension d
of the space and a subset Z of the digital spaceZ

d , returns
true iff Z is fully convex. IsConvex: given a subset Z of
the digital spaceZ

d , returns true iff Z is digitally convex
(0-convexity).

Function IsConvex( In Z : subset of Z
d ) : Boolean;

begin
1 Polytope P ← ConvexHull(Z);
2 return Cardinal(Z) = CountLatticePoint(P);

Function IsFullyConvex( In d : integer, In Z : subset of Z
d ) :

Boolean;
Var C : array[0 …d-1] of lists of subsets of I d ;
Var X : map associating subsets of I d → sets of digital points ;
begin

3 if Cardinal(Z) = 0 or ¬IsDConnected(Z , d) then
return false; C[0] ← ({0}) ; X [0] ← Z ;

4 if ¬IsConvex(Z) then return false;
5 for k ← 1 to d − 1 do

C[k] ← ∅;
foreach β ∈ C[k − 1] do

for j ← 1 to d do
α ← Append(β, j) ;

6 if IsStrictlyIncreasing(α) then
C[k] ← Append(C[k], α);

7 X [α] ← Union(X [β], e j (X [β])) ;
8 if ¬IsConvex(X [α]) then return false;

return true

Looking now at IsFullyConvex, line 3 checks the d-
connectedness of Z and outputs false if Z is not connected
(valid since Lemma 2).

Line 4 checks for digital 0-convexity (i.e. usual digital con-
vexity). The loop starting at line 5 builds, for each dimension
k from 1 to d − 1 the possible α ∈ I dk , and stores them in
C[k]. Line 6 guarantees that each possible subsets of I dk is
used exactly once.

Line 7 builds X [α] = Uα(Z). Indeed, by induction
assume X [β] = Uβ(Z). Then, X [α] = X [β] ∪ e j (X [β])
which is exactly the definition of Uα(Z).

Finally, line 8 verifiesUα(Z) = cvxh (Uα(Z))∩Z
d . Since

it does this check for every α ∈ I dk , it checks digital k-
convexity according to Theorem 6, (7). Now Lemma 4 tells
that it is not necessary to check digital d-convexity if all
other digital k-convexities are satisfied. This establishes the
correctness. �

Then, the complexity of the algorithm can be determined
as follows. First, letting n = # (Z), function IsDConnected
takes O(n) operations by depth first algorithm and bounded
number of adjacent neighbours. There are less than d2d calls
to IsStrictlyIncreasing, which takes O(d) time complex-
ity.However, the total number of calls to IsConvex is exactly
2d − 1, and its time complexity dominates (by far) the pre-
vious d22d in practical uses. The overall complexity T (n) of
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this algorithm is thus governed by (1) the complexity T1(n)

for computing the convex hull and (2) the complexity T2(n)

for counting the lattice pointswithin. For T1(n), it is:O(n) for
d = 2 (since we know S is d-connected, it can be done in lin-
ear time [27] or [6] for a fast practical algorithm), O(n log n)

in 3D [8] and n�d/2�/�d/2�! in dD [1,11]. For T2(n), it is
O(n) in 2D using Pick’s formula, and in general dimension
it is related to Ehrhart’s theory [22], where best algorithms
run in O(nO(d)) [2].

In practice, when the number of facets of the convex hull is
low, counting lattice points within the hull is done efficiently
by visiting all lattice points within the bounding box, which
is not too big since all digital sets are connected.

5 Digital Planarity and Local Shape Analysis

We explore the link of full convexity with digital planarity,
and we show that thick enough arithmetic planes are indeed
fully convex (Theorem 8). Combined with our results about
stable sets, this leads us to propose new geometric tools for
digital shape local analysis.

5.1 Arithmetic Planes are Fully Convex

An arithmetic plane of intercept μ ∈ Z, positive thickness
ω ∈ Z, ω > 0, and irreducible normal vector N ∈ Z

d is
defined as the digital set P(μ, N , ω) := {x ∈ Z

d , μ ≤
x · N < μ + ω}.
Theorem 8 Arithmetic planes are digitally 0-convex for arbi-
trary thickness, and fully convex for thickness ω ≥ ‖N‖∞.

Proof Let Q := P(μ, N , ω) be some arithmetic plane. Let
Y− := {x ∈ R

d , μ ≤ x ·N }, Y+ := {x ∈ R
d , x ·N < μ+ω},

and Y := Y− ∩Y+. We have Q = Y ∩Z
d , with Y convex, so

Q is digitally 0-convex (non-emptiness comes from ω > 0).
Now let c be any k-cell of C̄ d [cvxh (Q)], 1 ≤ k ≤ d. Let

us show that at least one vertex of c is in C̄ d [Q]. There exists
x ∈ c with x ∈ cvxh (Q) = cvxh

(
Y ∩ Z

d) ⊂ cvxh (Y ) =
Y . It follows that μ ≤ x · N < μ + ω.

Let (zi )i=1...2k be the vertices of c̄ ordered from lowest to
highest scalar product with N . There exists j ∈ {1, 2k} such
that ∀i ∈ {1, j}, zi · N ≤ x · N and ∀i ∈ { j +1, 2k}, x · N <

zi · N . Should no zi belong to Y , since x belongs to Y , we
have :

∀i ∈ {1, j}, zi · N < μ, and

∀i ∈ { j + 1, 2k}, μ + ω ≤ zi .

It follows that (z j+1 − z j ) · N > ω. Now the (zi ) are ver-
tices of a hypercube of side one, and ordered according to
their projection along vector N . It is easy to see that any

(zi+1−zi ) ·N ≤ maxi=1...d(|Ni |) (for instance by construct-
ing a subsequence moving along axes in order, it achieves the
bound, and then the actual sequence (zi ) is much finer than
this one), so it holds in particular for i = j . To sum up,
should no zi belong to Y , then ω < maxi=1...d(|Ni |).

Otherwise, for ω ≥ maxi=1...d(|Ni |), either z j or z j+1 or
both belong to Y , and thus to Q. It follows that c ∈ C̄ d

k [Q],
which concludes. �

The classic 2D and 3D machinery of digital straight lines
and planes, very rich in results and applications, thus belongs
to the fully convex framework.

5.2 Local Analysis of Digital Shapes

Corollary 2 tells that the intersection of a fully convex setwith
an axis-aligned parallelepiped is also fully convex. Recipro-
cally of course, non-locally fully convex subsets tell the set
is not fully convex. Furthermore, the full convexity of the
local complement of the set is also an indicator of the local
geometry.

For any digital set X , the predicate “X is fully convex” is
denoted by F(X). We define the following local sets, for any
positive integer k and any z ∈ X ⊂ Z

d :

Xk(z) := Nk(z) ∩ X X∗
k (z) := Xk(z) \ {z}

X̄k(z) := Nk(z) ∩ (Zd \ X)

These sets allow us to study the local shape geometry at fixed
k.

Definition 3 Let j ∈ Z, j ≥ 0. X is j-convex at z iff
F(X j (z)). X is j-concave at z iff F(X̄ j (z)). X is j-planar at
z iff it is j-convex and j-concave at z. Last, X is j-atypical
at z if it is neither j-convex nor j-concave.

Figure 3 illustrates the relevance of these definitions for
capturing the shape geometry at a given scale. Planarity,
convexity and concavity are correctly identified at their
respective scale.

Note that arithmetic half-spaces (whose borders are arith-
metic planes) are k-convex and k-concave for arbitrary k,
hence k-planar.

This study of shape geometry can also be carried out in a
multiscale fashion. Indeed, we have the following relations:

Lemma 12 Let j ∈ Z, j ≥ 0, z ∈ X. If X is ( j + 1)-convex
at z, then X is j-convex at z. If X is ( j + 1)-concave at z,
then X is j-concave at z. If X is j-atypical at z, then X is
( j + 1)-atypical at z.

Proof Assuming X ( j + 1)-convex means X j+1(z) is fully
convex. But X j (z) := X ∩ N j (z) = X j+1(z)∩ N j (z). Now,
N j (z) is the intersection of 2d axis-aligned half-spaces with
integer intercept, hence it is stable (Lemma 6). Applying
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Fig. 3 Local shape geometry
analysis at fixed scale (green:
k-convex, blue: k-concave, red:
k-atypical, white: k-planar). One
easily see that k-atypical implies
(k + 1)-atypical, while k-convex
implies (k − 1)-convex and
k-concave implies
(k − 1)-concave (Color figure
online) k = 1 k = 2 k = 3 k = 4

Lemma5 concludes that X j (z) is fully convex. The reasoning
is similar for concavity. The result for atypicality is simply
the contraposition of the two previous properties. �

Denoting by aX (z), resp. by bX (z), the maximum j for
which X is j-convex at z, resp. j-concave at z, we can classify
each point z of X as:

– atypical if aX (z) = bX (z) = 0,
– planar if aX (z) = bX (z) > 0,
– convex if aX (z) > bX (z),
– concave if aX (z) < bX (z).

Therefore, local convexity, concavity, planarity or neither are
definable in an unambiguous way. Figure 4 illustrates this
approach to digital shape local geometric classification. If
one needs a more progressive classification, values aX (z)
and bX (z) are of course useful. Figure 5 shows a smooth
classificationof convex, concave, andplanar parts of the same
shapes.

It is worth noting that loci of noisy digitizations are
detected by atypical configurations, often surrounded by
small and varying convex and concave zones. Finally, if we
consider a finer digitization of the same shape, we observe a
consistency between the two classifications, with of course
more details in the finest digitization.

6 Tangent Subsets to a Digital Shape

This section proposes the new concept of tangency to a digital
set X , which are subsets whose convex hull stays close to X ,
and which are related to full convexity. In 2D, this notion
provides another definition of the maximal digital straight
segments along digital contours and induces the classical
tangential cover. However, it is a much more generic and
powerful tool since it induces tangentmaximal digital planes
in arbitrary dimension.

This approach to tangency appears thus to be very fruitful,
and we show after two direct applications of this concept of
tangency: the first one is an algorithm to build a reversible
piecewise linear reconstruction of digital shapes, the second
one is the computation of shortest paths onto digital shapes.

Definition 4 Adigital set A ⊂ X ⊂ Z
d is said to be k-tangent

to X for 0 ≤ k ≤ d whenever C̄ d
k [cvxh (A)] ⊂ C̄ d

k [X ]. It is
tangent to X if the relation holds for all such k. Elements of
A are called cotangent (in X ).

It is immediate that any subset of a tangent set to X is also
a tangent set to X . We prove first that tangent sets to X are
indeed close to X .

Lemma 13 Let A be digital points and τ = cvxh (A) be the
convex hull of A. If A is tangent to X, then A ⊂ X and the
L∞-distance of τ to X is upper-bounded by 1.

Proof Assume A tangent to X . Then, in particular
C̄ d
0 [cvxh (A)] ⊂ C̄ d

0 [X ], otherwise said cvxh (A)∩Z
d ⊂ X

which implies A ⊂ X . Now, let y ∈ τ . By tangency, for any
k, 0 ≤ k ≤ d, C̄ d

k [τ ] = C̄ d
k [cvxh (A)] ⊂ C̄ d

k [X ]. Hence the
point y belongs to some cell σ of C̄ d

k [X ] and is at most at
L∞-distance 1 of any one of its X -corner. �

As immediate examples of tangency, in arbitrary dimen-
sion, two cotangent points of a digital surface X delineates a
straight segment that stays close to the surface, i.e. a tangent
vector. A simplex made of d cotangent points to X lies close
to the surface, and so defines a (local) tangent plane. The link
with full convexity is established by the following lemma:

Lemma 14 If X is fully convex, any subset A ⊂ X is tangent
to X.

Proof We have cvxh (A) ⊂ cvxh (X) since convex hull is
increasing, so:

C̄ d [cvxh (A)]
⊂ C̄ d [cvxh (X)] (Intersection complex is increasing)

= C̄ d [X ] (by full convexity).

This shows that A is tangent to X . �

6.1 Maximal Tangent Subsets

As often in digital geometry, small objects are not precise
enough.We are thusmore interested in “big” tangent subsets:
a set A, tangent to X , that is not included in any other tangent
set to X is said maximal in X . In 2D, they give rise to the
classical tangential cover of a contour [24]:
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Fig. 4 Raw multiscale local
shape geometry analysis (green:
convex, blue: concave, red:
atypical, cyan: planar), with a
maximal scale of 5 (Color figure
online)

Fig. 5 Smooth multiscale local
shape geometry analysis (green:
convex, blue: concave, red:
atypical, white: planar), with a
maximal scale of 5. For a convex
zone, the saturation of green is
the ratio (aX (z) − bX (z))/5. For
a concave zone, the saturation of
blue is the ratio
(bX (z) − aX (z))/5 (Color figure
online)

Theorem 9 When d = 2, if C is a simple 2-connected digital
contour (i.e. 8-connected in Rosenfeld’s terminology), then
the fully convex subsets of C that are maximal and tangent
are the classical maximal naive digital straight segments.

Proof Let M be a fully convex subset of C , both maximal
and tangent. Full convexity implies that M is 2-connected
(Theorem 2). Full convexity implies H -convexity, and con-
nected convex subsets of simple 2-connected contours are
digital straight segments. Maximality implies that they are
inextensible. The converse is obvious from Theorem 8. �

Maximal fully convex tangent subsets to X seem a good
candidate for a sound definition of maximal digital plane
segments. Our definition avoids the classical problem of 3D
planes that are not tangent to the surface (as noted in [10]) as
well as the many heuristics to cope with this issue [42,47].

We leave the exploration of maximal tangent planes for
future works and we present here two quite straightforward
applications of tangency: one related to surface reconstruc-
tion, the other related to shortest paths and visibility.

6.2 Elementary Polyhedrization Algorithm

Let X be a finite subset ofZ
d . Let Vor (X) be its Voronoi dia-

gram: it is the cellular complex made of convex cells, where
each maximal d-cell σp, p ∈ X , is the open region of the
space that gathers all points of the space closer to p than any
other point of X ; its low-dimensional cells are defined natu-
rally as their boundaries with incidence relations. Then, the
Delaunay complex of X , denoted by Del (X), is the cellular
complex dual toVor (X) (combinatorially and orthogonally).
It is well known that the vertices of every d-cell of Del (X)

form hyper-cospherical subsets of X . Note that, when X are
points in general position, the Delaunay complex is a simpli-
cial complex called the Delaunay triangulation. We prefer to
use Delaunay complexes here since the elements of digital
sets are usually not in general position, with many cospheric-
ities.

Definition 5 The tangent Delaunay complex DelT (X) to X
is the complex made of the cells τ of the Delaunay complex
Del (X), such that the vertices of τ are tangent to X .
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The boundary of a tangent Delaunay complex is a piecewise
linear reconstruction of voxel shapes, and it is the boundary
of the convex hull for fully convex shapes:

Lemma 15 If X is fully convex, then DelT (X) = Del (X).
Hence theboundaryofDelT (X) is the boundaryof the convex
hull of X, i.e. ∂ ‖DelT (X)‖ = ∂cvxh (X).

Proof Let τ ∈ Del (X). Let A ⊂ X be the vertices of cell τ

(i.e. τ = cvxh (A)). Since X is fully convex, Lemma 14
implies that A is tangent to X , hence τ ∈ DelT (X).
So DelT (X) = Del (X). It follows that ∂ ‖DelT (X)‖ =
∂ ‖Del (X)‖ = ∂cvxh (X), since the boundary of the Delau-
nay complex of a set of points is the boundary of its convex
hull. �

From Theorem 8, the tangent Delaunay complex of an arith-
metic plane is the boundary of its convex hull, hence its facets
have exactly the same normal as the arithmetic plane. Fur-
thermore, since the tangent Delaunay complex is built with
local geometric considerations, it is able to capture the geom-
etry of local pieces of planes on digital objects, and nicely
reconstructs convex and concave parts (see Fig. 6). We prove
now that it is also a tight and reversible reconstruction of X :

Theorem 10 The Hausdorff L∞-distance between the set X
and the body ofDelT (X) is at most 1. FurthermoreDelT (X)

is a reversible polyhedrization, i.e. ‖DelT (X)‖ ∩ Z
d = X.

Proof First, the distance of any point of X to ‖DelT (X)‖ is
zero, since any point of X is tangent to X and is also a 0-
cell of Del (X). Second, any point y of ‖DelT (X)‖ belongs
to a simplex τ ∈ DelT (X). Let A be the vertices of τ . By
definition, τ is tangent to X , so by Lemma 13, τ is at L∞-
distance at most 1 to X . This proves the first assertion of the
theorem.

Finally, for the reversibility property, by tangency,
‖DelT (X)‖ ⊂ C̄ d [X ], so ‖DelT (X)‖∩Z

d ⊂ C̄ d [X ]∩Z
d =

X . The statement X ⊂ ‖DelT (X)‖ ∩ Z
d is obvious. �

Although very simple to define and compute, our approach
improves the existing greedy reversible polyhedrization
methods of [25,47].

6.3 Shortest Paths onto Digital Sets

The concept of tangency to a digital shape X allows us to
define unambiguously shortest paths between pairs of points
of X , such that the path stays “in” X . Our approach is similar
to the visibility method of [15]. However, our method does
not assume a particular model of digital straight lines, and
is valid in arbitrary dimension. For instance, if you pick any
two points along a digital straight line or plane, their shortest
path is indeed the Euclidean straight line joining them.

Definition 6 (path) Let γ = (xi )i=0,...,n , n ≥ 0, be a
sequence of points in some digital set X . The sequence
γ is a path from point a to point b in X , if and only if,
x0 = a, xn = b, and every two consecutive points of γ are
co-tangent in X . The embedding of γ into R

n is the embed-
ding of the straight segments joining consecutive points, i.e.
γ := ⋃n−1

i=0 cvxh ({xi , xi+1}). When a sequence (xi )i=0,...,n

is a path, we will denote it by [[x0, . . . , xn]] or [[xi ]]i=0,...,n .

It is straightforward to check that any d-connected sequence
of points in X is a path in X . Therefore, there is at least
one path between a and b in X if and only if a and b are
d-connected in X . The set of all paths between a and b in X
is denoted byPX (a, b) (which is empty when a and b are not
in the same d-connected component of X ). The set of every
path between a and b in X such that its points are pairwise
distinct is denoted byP∗

X (a, b), and their elements are called
simple paths from a to b.

Any path in the digital set X stays in the vicinity of X :

Lemma 16 If γ is a path in X, then γ ⊂ ∥∥C̄ d [γ ]∥∥ ⊂∥∥C̄ d [X ]∥∥. Hence the L∞-distance of any point of γ to X
is at most 1.

Proof Since any consecutive points xi , xi+1 of γ are co-
tangent in X , then C̄ d

k [cvxh ({xi , xi+1})] ⊂ C̄ d
k [X ] for all

0 ≤ k ≤ d. It follows that
⋃n−1

i=0 cvxh ({xi , xi+1}) ⊂
⋃d

k=0C̄
d
k [γ ] ⊂ ⋃d

k=0C̄
d
k [X ] = ∥∥C̄ d [X ]∥∥. Finally,Lemma13

concludes for the distance by tangency of consecutive points.
�

Definition 7 (path length; shortest path) The length of γ is
length(γ ) := ∑n−1

i=0 ‖xi+1 − xi‖. The path γ from a to b is
a shortest path from a to b if there exists no other path from
a to b with a smaller length. The set of shortest paths from a
to b is denoted by 
X (a, b).

A first observation is that, if [[xi ]]i=0,...,n is a shortest path
from a to b, then

[[
xn−i

]]
i=0,...,n is a shortest path from b

to a. Then, we can speak of a shortest path between a and
b. A second observation is that if a and b are cotangent in
X , then the path [[a, b]] is a shortest path between a and b.
This is because the triangle inequality holds for the Euclidean
distance. Last, the length of γ is the same as the Euclidean
length of γ .

Definition 8 (digital distance) The digital distance dX in
X ⊂ Z

d is
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Fig. 6 The tangent Delaunay complexDelT (X) (middle) is a piecewise
linear reconstruction of the input digital surface X (left). On (right), we
display in red simplices of Del (X) which avoid lattice points ofZ3 \ X
but are not tangent to X . Tangency thus eliminates the “sliver” sim-

plices ofDel (X) that are not geometrically informative. (# (X) = 6013,
Del (X) has 36,361 tetrahedra, DelT (X) has 25,745 tetrahedra, com-
puting Del (X) takes 70 ms, computing DelT (X) takes 773 ms.) (Color
figure online)

∀x, y ∈ X , dX (x, y)

:=
{+∞ if PX (x, y) is empty,
infγ∈PX (x,y) length(γ ) otherwise.

Lemma 17 If X is d-connected then ∀a, b ∈ X, 
X (a, b) is
non-empty and finite, so the infimum above is a minimum, i.e.
dX (a, b) = length(γ ) with γ any shortest path of 
X (a, b).

Proof Since X is d-connected, there exists a sequence P =
(xi )i=0,...,n of points in X , x0 = a, xn = b, such that xi
and xi+1 are d-adjacent. Clearly, xi and xi+1 are co-tangent
in X since they lie on the boundary of some cell. So P is
a path and PX (a, b) is not empty and let α := length(P).
Since the length of a path is the sum of the lengths of its
subsegments, any path of length no greater than α is included
in the Euclidean ball B of centre a and radius α. So every
path from a to b in X of length no greater than α belong to
B ∩ X . Hence it holds that

inf
γ∈PX (x,y)

length(γ ) = inf
γ∈PB∩X (x,y)

length(γ ).

But B ∩ X has a finite number of elements since X ⊂ Z
d .

Furthermore if γ = [[yi ]]i=0,...,m ∈ PB∩X (x, y) traverses a
point several times, for instance yi = y j , i < j , then the path
γ̄ = [[yi ]]i=0,...,i, j+1,...m also belongs to PB∩X (x, y) and is
shorter. It follows that

inf
γ∈PB∩X (x,y)

length(γ ). = inf
γ∈P∗

B∩X (x,y)
length(γ ).

But P∗
B∩X (x, y) is a finite set, so the infimum above is an

element of P∗
B∩X (x, y), and 
X (a, b) is not empty. �

Theorem 11 If X ⊂ Z
d is d-connected and non-empty, then

(X , dX ) is a metric space.

Proof Let x, y, z ∈ X . First, it is obvious that dX (x, x) = 0.
If dX (x, y) = 0, then there exists a path γ ∈ PX (x, y)
between x and y with a length 0. Since γ is a sequence
[[xi ]]i=0,...,n , n ≥ 0, its length is the sum of the length of
its straight subsegments, which is zero only if all its straight
segments are of length zero. This implies that xi = xi+1,
hence x = y. The symmetry of dX comes from the fact that
a shortest path from a to b is also a shortest path from b to a.

Finally, let us show the triangle inequality. Let γ ∈

X (x, y), γ ′ ∈ 
X (y, z), γ2 ∈ 
X (x, z) be shortest
paths (they exist since X is d-connected). Then, if α :=
length(γ ) + length(γ ′) < length(γ2), the path γ ′′ obtained
by concatenating the paths γ and γ ′ has also a length
α < length(γ2). Hence γ2 cannot be a shortest path between
x and y. So

length(γ ) + length(γ ′) ≥ length(γ2) ⇔ dX (x, y)

+ dX (y, z) ≥ dX (x, z),

since these paths are shortest paths. �
Consequently, tangency induces a sound notion of dis-

tance and shortest paths between elements of a digital set.
Furthermore, shortest paths in fully convex sets are the usual
straight lines as shown below.

Theorem 12 If X is a non-empty fully convex set, then for any
pair of points x, y ∈ X, [[x, y]] is a shortest path between x
and y and dX = ‖x − y‖.
Proof ByTheorem2, the set X isd-connected.ByLemma17,
the set of shortest paths 
X (x, y) is non-empty. Now x and
y are co-tangent in X . Indeed cvxh ({x, y}) ⊂ cvxh (X). So
C̄ d [cvxh ({x, y})] ⊂ C̄ d [cvxh (X)]. But X being fully con-
vex, C̄ d [cvxh (X)] = C̄ d [X ]. We have just shown that x
and y are co-tangent in X , so [[x, y]] is a valid path in X . Its
length is exactly ‖y−x‖, which is the length of the Euclidean
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Algorithm 2: ShortestPaths: given a digital set X
and a point a ∈ X , computes the shortest paths from any
point of X to a.

Procedure ShortestPaths( In X , In a, Out A, Out D );

In X : subset of Z
d ; // any non-empty subset of Z

d

In a : Point ; // source point in X
Out A : map<Point,Point> ; // ancestor in the
shortest path
Out D : map<Point,Real> ; // distance to a
Type Node = tuple<Point,Point,Real>;
Var V : set<Point> ; // visited points
Var Q : priority_queue<Node> ; // top is
smallest distance
begin

foreach p ∈ X do D[p] ← +∞
Q.push((a, a, 0.0)) ; // starting point
while ¬Q.empty() do

(q, r , d) ← Q.pop(); ; // pop top node
(point, ancestor,distance)

1 if d > D[q] then continue; // Not best route
for q
A[q] ← r ; // set ancestor, distance is
already updated
V .insert(q) ; // point is now visited
N ← CotangentPoints(X , q, V , D) ;
foreach p ∈ N do

d ′ ← D[q] + ‖p − q‖ ;
2 if d ′ < D[p] then

D[p] ← d ′ ;
Q.push((p, q, d ′)) ;

shortest path between x and y. So no path can be shorter and
[[x, y]] ∈ 
X (x, y). �

We thus recover the fact that shortest paths on any arith-
metic plane are straight segments, and their distance is simply
the Euclidean distance.

Algorithm 2 computes all the shortest paths to a given
point a ∈ X (and hence all the distances dX (a, ·)). It is a
Dijkstra shortest path algorithm [19], where neighbours are
computed on the fly, with a few specific optimizations.

Theorem 13 Let X ⊂ Z
d such that X is d-connected. Then,

ShortestPaths(X , a, A, D) (Algorithm 2) correctly com-
putes all the shortest paths from x ∈ X to a (as the sequence
[[x, A[x], A[A[x]], . . .]]), and with distance D[x].
Proof First, assume that CotangentPoints(X , b, V , D)

computes all the cotangent points to b in X (whatever V and
D). Then, Algorithm 2 is a Dijkstra shortest path algorithm
[19], where the weighted graph has vertices X , edges that are
all the cotangent pairs of points in X , and edge weights that
are the Euclidean distance between cotangent points. The
slight differences with a classical shortest path algorithm at
lines 1 and 2 are just optimizations related to the priority
queue: since the binary heap underneath authorizes dupli-
cates, we only push into the queue routes that improve the

Algorithm 3: CotangentPoints: given a digital set X
and a point b ∈ X , computes the cotangent point to x that
are not in set V ; uses distance D to prune the traversal.
Function CotangentPoints( In X , In b, In V , In D ) :
vector<Point>;

In X : subset of Z
d ; // any non-empty subset of Z

d

In b : Point ; // a point in X
In V : set<Point> ; // the set of points to
discard
In D : map<Point,Real> ; // a map giving its
distance to b
Var R : vector<Point> ; // the non-visited
cotangent points to b
Var Q : queue<Point> ; // the queue for
breadth-first traversal from b
Var M : set<Point> ; // the set of visited
points or in the queue
begin

Q.push(b) ; M .insert(b) ; // starting point
while ¬Q.empty() do

p ← Q.pop() ; // pop top of queue
if {b, p} are cotangent in X then

if b �= p then R.push_back(p)
foreach q ∈ X∗

1(p) do // for each neighbor
of p

1 if (b − p) · (q − p) < 0 then continue ;
2 if q ∈ V or q ∈ M then continue ;
3 if D[b] + ‖p − b‖ > D[q] + ‖p − q‖ then

continue ; // do not visit closest
points

Q.push(q) ; M .insert(q) ; // add point to
queue

distance (line 2) and popped routes are considered only if
they correspond to the best route (line 1).

NowCotangentPoints(X , b, V , D) (Algorithm3) com-
putes in general only a subset of the cotangent points to b in
X . Let us show that it returns the ones that may improve the
best route. First, CotangentPoints finds cotangent points
to b by breadth-first traversal of the d-adjacency graph of X .
Lemma 18 shows that any path (b, x) has a d-connected path
in its vicinity, so traversing the d-adjacency graph of X from
b will indeed reach all the possible cotangent points to b.

However, the function does not visit all neighbours. Line 1
discards all neighbours in the direction of the local start point
b. This is legitimate since they have already been visited.
Line 2 discards the points that belong to V and that belong to
M . Points belonging to M have already been visited by the
breadth-first traversal in CotangentPoints and are already
in the output. Points belonging to V have already been visited
in Dijkstra’s shortest path loop, so all shortest routes passing
through them have already been considered and no new route
may originate from them.

Last line 3 considers if the point q neighbour of p offers
a better direct route to a than the current point p could offer
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Fig. 7 Illustration of geodesics
onto digital sets (source in deep
blue)

Table 1 Computation times of
shortest paths to a given source
and maximal error onto a 3D
sphere digitized with gridstep h

Gridstep h # (X) Chosen K : time in s (error in %)
‖p − q‖ √

3/4
√
3/16 0

0.25 296 0.13 0.05 (0.000%) 0.02 (0.000%) 0.01 (0.000%)

0.125 1184 1.08 0.33 (0.000%) 0.11 (0.000%) 0.04 (0.226%)

0.0625 4784 8.40 2.84 (0.000%) 0.74 (0.000%) 0.23 (0.538%)

0.03125 19,256 69.67 28.83 (0.000%) 6.40 (0.005%) 1.27 (0.205%)

0.015625 77,120 579.49 258.48 (0.000%) 52.82 (0.037%) 6.70 (0.292%)

The chosen K indicates the value used to replace ‖p−q‖ in the expression D[b]+‖p−b‖ > D[q]+‖p−q‖,
at line 3 ofAlgorithm3.Choosing K = ‖p−q‖ or K = √

3 guarantees the correctness of the output. However,
decreasing K to 0 speeds up the algorithm, while the maximal relative error in the distance estimation stays
very low

by going through point b. It is equivalent to the expression:

D[q] + ‖r − q‖ ≤ D[b] + ‖p − b‖ + ‖r − p‖
⇐ D[q] + ‖p − q‖ ≤ D[b] + ‖p − b‖
(since ‖r − q‖ ≤ ‖p − q‖ + ‖r − p‖).

If this test is true, then a route going through bwill always be
longer so the point may safely be discarded. This concludes
the correctness of the algorithm. �

Figure 7 illustrates some results of geodesic computations.
To give an idea of computation times, geodesics onto bunny
datasets (15,028 points) takes about 38s on a MacBook Pro
(2.7 GHz, Intel Core i7, 16 Gb).

The algorithm is thus quite slow as it is written. This is
because it computes almost for each point all its cotangent
points. It could certainly be optimized. For instance, the test
at line 3 in Algorithm 3 is very conservative. Replacing the
expression D[b]+‖p−b‖ > D[q]+‖p−q‖ by the expres-
sion D[b]+‖p−b‖ > D[q]+K , where K is a user-chosen
constant less than

√
d considerably improves the speed of
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the algorithm, with almost no change in the output. Note
that choosing K = √

d guarantees the correct output (since
‖p − q‖ ≤ √

d), but smaller values speed up the algorithm
(up to a factor 86) with almost the same result, as shown
by computations summed up in Table 1, which computes
the shortest paths onto a 3D sphere of radius 1, digitized at
gridstep h.

To conclude the section, we give below the lemma and
corollary that tells us that any path can be approximated by a
digital d-connected path, properties that are used for estab-
lishing the correctness of our shortest path algorithm.

Lemma 18 If [[a, b]] is a path in X, then there exists a d-
connected path of pixels P = [[yi ]]i=0,...,m in X, y0 = a,
ym = b, such that it stays close to the straight segment [a, b],
i.e. P ⊂ Cl

(∥∥C̄ d [cvxh ({a, b})]∥∥)
.

Proof [[a, b]] being a path in X , a and b are thus cotan-
gent in X , and C̄ d [cvxh ({a, b})] ⊂ C̄ d [X ] (Definition 4).
Now the straight segment [a, b] := cvxh ({a, b}) traverses in
sequence m cells of C̄ d [cvxh ({a, b})], which are thus also
in C̄ d [X ]. We denote these cells by (ci )i=0,...,m , and we have
c0 = a and cm = b. Each cell ci has at least an X -corner yi
(Lemma7),with y0 = a and ym = b. Since each yi ∈ Cl (ci ),
we have P ⊂ Cl

(∥∥C̄ d [cvxh ({a, b})]∥∥)
. �

Corollary 3 If γ is a path in X between a and b, then there
exists a d-connected path P of points in X between a and
b such that P ⊂ Cl

(∥∥C̄ d [γ ]∥∥)
(it stays close to γ ), and P

visits the digital points of γ in the same order.

Among all d-connected path that stays close to γ , the
shortest ones are said to be d-approximating γ . It is straight-
forward to see that a d-approximating path (yi ) to a geodesic
cannot have three consecutive points such that yi−1 is d-
adjacent to yi+1. This could be used to optimize slightly the
preceding algorithm, at the price of memorizing the direct
ancestor.

7 Conclusion and Perspectives

We have proposed an original definition for digital con-
vexity in arbitrary dimension, called full convexity, which
possesses topological and geometric properties that are more
akin to continuous convexity. We exhibited an algorithm to
check full convexity, which relies on standard algorithms.
We illustrated the potential of full convexity for addressing
classical discrete geometry problems like building a tangen-
tial cover, analysing the local shape geometry, reconstructing
a reversible first-order polygonal surface approximation, or
computing geodesics on digital sets. We believe that full
convexity opens the path to d-dimensional digital shape
geometry analysis. Note that full convexity is available in

the open-source library DGtal [49], module digital convex-
ity.

This work opens many perspectives. On a fundamental
level, we work on a variant of full convexity that keeps
the intersection property of continuous convexity. Advances
along this path would induce natural definitions of digital
convex hulls.

Another fundamental question is the number of cells
intersected by dilations t of a polytope. Our morphological
characterization implies that it is a degree d polynomial in t
like the number of lattice points intersected by dilations of a
polytope (see Ehrhart theory [22]). We can wonder if fully
convex polytopes induce specific polynomials, and what are
the relations between polynomials for different cell dimen-
sions.

On a more algorithmic level, we also wish to improve
the convexity check algorithm, especially in 3D, for instance
when cvxh (X) has few facets. Dedicated enumerating lattice
points algorithms could also be explored.

We alsowish to explore the properties of a tangential cover
made of the maximal fully convex tangent subsets that are
included in some arithmetic plane. In order to restrict their
number, plane probing algorithms [37–39,44] could provide
significant points (like local upper or lower leaning points).

Finally, tangency also opens up a theory of digital tan-
gent vector fields and shortest paths, being geodesics, might
provide parallel transport of vector fields. This would give
another approach to defining covariant derivatives, and per-
haps a digital calculus.
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