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Abstract
This paper proposes a new mathematical and computational tool for inferring the
geometry of shapes known only through approximations such as triangulated or digi-
tal surfaces. The main idea is to decouple the position of the shape boundary from its
normal vector field. To do so, we extend a classical tool of geometric measure theory,
the normal cycle, so that it takes as input not only a surface but also a normal vector
field. We formalize it as a current in the oriented Grassmann bundle R

3 × S
2. By

choosing adequate differential forms, we define geometric measures like area, mean
andGaussian curvatures.We then show the stability of thesemeasures when both posi-
tion and normal input data are approximations of the underlying continuous shape. As
a byproduct, our tool is able to correctly estimate curvatures over polyhedral approxi-
mations of shapes with explicit bounds, even when their natural normal are not correct,
as long as an external convergent normal vector field is provided. Finally, the accuracy,
convergence and stability under noise perturbation is evaluated experimentally onto
digital surfaces.
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1 Introduction

We address in this paper the problem of defining a notion of curvature on non-smooth
sets, with the goal of estimating the curvatures of a smooth surface through a non-
smooth approximation such as a triangulation or a digitization. In order to tackle this
problem, there are two main issues: (i) the first one is to define consistent notions of
curvatures; (ii) the second is to show that these newly defined curvatures are stable,
namely that one can can estimate the curvatures of a smooth object from an approx-
imation. This problem has various applications in computer science, in particular in
geometry processing, computer graphics or digital imaging where discrete surfaces
are ubiquitous.

There is a long history on the generalization of the curvatures in non-smooth geom-
etry. One important work on this topic is the seminal paper of Federer [12], who first
defined curvature measures for sets with positive reach. This generalizes the notion
of Gaussian and mean curvatures for convex and smooth objects, but it unfortunately
does not apply to triangulations. Using the notion of normal cycle introduced by
Wintgen [34], this notion was then extended to a wider class of objects including
triangulations, digitized objects and subanalytic sets [15]. The normal cycle of a gen-
eral shape in R

n is a current in the Grassmann bundle R
n × Gr(1, n) (where the

Gr(1, n) � S
n−1 factor stands for the normal cone) that encodes the geometry of the

shape and allows to define curvature measures.
The stability of curvature measures has been well investigated the last 25 years. It

is known that the curvature measures of a smooth object can be approximated by the
ones of a triangulation, provided that the points and the normals of the triangulation
are close to the ones of the smooth object [9, 14]. There exist different kinds of stabil-
ity or convergence results for curvatures or curvature measures, including anisotropic
curvature measures, which were introduced to estimate principal curvatures and direc-
tions [9, 26]. We may also quote the work of [5] which extends the normal cycle to
arbitrary cloud of points by using offset surfaces, also with stability results. However
these approaches do not provide a sound definition of curvatures when the naive nor-
mals do not converge toward smooth normals [5, 17]. This is the case for instance for
the famous counterexample of the Schwarz lantern (see Sect. 3.3) that converges to a
cylinder in the Hausdorff sense, but whose normals diverge. It also fails utterly in the
case of digital approximations of surfaces, since the naive normal vectors take only
six different possible values, parallel to the axes.

The key idea of this article is to replace the normal vector field of a surface S by
another vector field u which we assume to be geometrically more meaningful. For
instance if S is a digitization of a smooth surface X , one may take for u a local average
of the naive normals of X . The contribution of the paper is therefore the following:

– We extend the notion of normal cycle of a surface to a couple (S,u) where S
is a piecewise C1-surface of R

3 and u is a piecewise C1 unit vector field and
we call it the corrected normal current N(S,u). Our corrected normal current
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N(S,u) allows to define new curvature measures that we call corrected curvature
measures.

– We derive stability results for our corrected curvature measures with explicit
bounds. In particular, we show that the corrected curvature measures of (S,u)

approximate well Federer’s curvature measures of a smooth surface X , provided
that S is close to X in the Hausdorff sense and that u is close to the normal vector
field of X .

– We apply our results to the digital case and show that that it allows to define
convergent pointwise estimators for themean andGaussian curvature with explicit
convergence rates. We show that our estimators outperform also in practice state-
of-the-art methods like digital integral invariants [7].

1.1 Alternative Approach with Varifolds

Another notable mathematical tool for representing generic shapes is the varifold,
which has been introduced to solve shape optimization problems like Plateau’s prob-
lem [2]. A d-varifold is a Radon measure on R

n × Gr(d, n), where Gr(d, n) denotes
the Grassmannian manifold of unoriented d-planes in R

n . Its first variation is indeed
related to the mean curvature vector field [1]. Varifolds were recently proposed for
surface approximation and mean curvature estimation in [3].

Both approaches, the one with (corrected) normal cycles and the one with varifolds,
are similar in that they rely on the Grassmann bundle. They differ however since
N(S,u) is an (oriented) integral current which possesses an additional combinatorial
structure, which can be integrated against ambient invariants forms, yielding all the
geometric curvatures, whereas the varifold defined in [3] is by definition unoriented
and yields a vector valued mean curvature. Our framework is therefore less universal
(for instance it does not encompass point clouds, which are a strong focus of the
varifold approach). However, our explicit yet flexible construction allows us to use the
homotopy lemma and compute actual convergence rates, which are further refined in a
few test cases andwhich result in extremely efficient approximation rates. Furthermore,
our results concern both Gaussian and mean curvature and can be extended to deal
with principal curvatures and directions.

1.2 RelatedWorks in Geometry Processing

Since accurate geometry estimations is an important step inmany geometry processing
tasks like sharp features extraction, surface approximation, shape segmentation, shape
matching and identification, mesh denoising, the problem of having stable yet accurate
normal and curvature estimations on discrete surfaces has been widely studied. We
mention here some representative approaches.

The first methods for estimating curvatures on polyhedral meshes (generally tri-
angulated surfaces) were based on local formula using a simple neighborhood of
vertices (e.g. see [33] for a survey). However it was quickly shown that even the
classical angle defect method for Gaussian curvature estimation does not converge in
most of the cases [35]. Polynomial fitting was also popular to estimate curvatures, but,
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again, even the popular osculating jets of [4] are convergent under hypotheses that are
not met in practice (like vertices lying on the ideal continuous surface).

For triangulated meshes, it was noted that convergence of normals was essential
for getting convergence of area or other quantities [27]. Other authors then show
the equivalence of convergence of normal fields, metric tensors, area, and Laplace–
Beltrami operator [17]. This induces the weak convergence of mean curvatures, but
only if the naive normals of the mesh are convergent.

Recognizing the weaknesses of local fitting approaches, integral methods (like in
geometric measure theory) were explored also in this field. Integral invariants were
studied as a way to estimate curvatures onto a mesh, by a proper eigendecomposi-
tion of a local covariance matrix [28, 29]. Unfortunately, this method is sensitive to
errors in position. TheVoronoi covariancemeasure is another way to compute geomet-
ric information from arbitrary compacts [24], with stability results. It indeed carries
information related to curvature, but it is unclear if it induces pointwise convergence
of curvature estimates.

Our work is significantly different from all the previous approaches. Our definition
of curvatures is valid for surfaces that are union of cells homeomorphic to a disk,
equipped with a vector field that only needs to be C1 per cell. We provide stability
results for curvaturemeasureswith respect to a smooth surface.And given a convergent
correctednormal vector field,we exhibit pointwise convergence formean andGaussian
curvatures onto digital surfaces. Note that there exists convergent normal vectors
onto digital surfaces [11, 22], so our mathematical framework is effective and gives
convergent mean and Gaussian curvatures. Last but not least, our experiments show
that they are not only convergent but outperform the state-of-the-art.

1.3 Detailed Outline of the Paper

In Sect. 2, we formalize this new integral with currents in R
3 × S

2, which we view
as the set of couples (position, unit normal vector). The unit sphere S

2 stands for the
oriented Grassmannian Gr(1, 3), the set of unit vectors in R

3. Note that Gr(1, 3) can
be identified by duality to Gr(2, 3), the set of oriented planes. The advantage in using
currents is that they encompass both discrete and continuous objects. To each couple
(S,u) where S is a surface and u a unit vector field along S we associate a current
N(S,u) inR

3×S
2 (Definition 2.8). Intuitively wemay view the current as a piecewise

smooth oriented 2-surface in R
3 × S

2 ⊂ R
6. In particular, when the vector field u

is the naive normal field of S and S = ∂V is the boundary of a domain of R
3, then

N(S,u) corresponds to the normal cycle of V [26]. Then it is known that the integral
of invariant forms over the normal cycle yields the area, mean and Gaussian curvature
integrals over S. (However, the local convergence is only true when the normal cone
approximates the smooth normal, whereas using N(S,u) gives us the flexibility we
need.)

In Sect. 3, we define our geometric measures, or corrected Lipschitz–Killing cur-
vature forms as the integral on N(S,u) of the classical invariant forms on R

3 × S
2

(Definition 3.1). We further show that these measures have explicit and simple expres-
sions in the specific but crucial case of polyhedral surfaces and a corrected normal
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vector field that is constant per face (Proposition 3.8). They reduce to finite sums of
quantities attached to each discrete cell of S, i.e., face for area measure, edge for mean
curvature measure, and vertex for Gaussian curvature measure. We illustrate with the
case of the Schwarz lantern, known to be problematic even for the area, and we show
how our corrected measures give very accurate or even exact curvature measures for
several natural choices of the corrected normal field u.

We then provide in Sect. 4 a stability result for our corrected curvature measures
(Theorem 4.2). More precisely, we show that the corrected curvatures of some (S,u)

approximate well the curvature measures of a surface X = ∂V of class C2 provided
that the surface S is close to X in the Hausdorff sense and that the vector field u
approximates well the geometric normal n of X . This result relies on several notions of
Geometric Measure Theory: it uses the notion of reach [12] introduced by Federer that
allows the projection of the support of N(S,u) onto the one of the normal cycle N(V );
the affine homotopy formula [13] for currents is a key tool that allows to bound the
flat norm between the normal cycle N(V ) and the corrected normal cycle N(S,u); the
result also makes use of the Constancy Theorem [25] that allows to solve multiplicity
issues that appear when projecting the support of N(S,u) onto the one of N(V ).

As a byproduct, in the difficult case of digital surface approximations to smooth
surface, we show that our normalized definitions of mean and Gaussian curvatures
converge pointwise to the mean and Gaussian curvatures of the continuous surface S,
provided u is estimated by a multigrid convergent normal estimator (Theorem 5.4).
The theoretical convergence speed isO(h1/3) if h is the sampling step of the digitized
surface, and equals the best known bound for curvature estimationO(h1/3) for digital
integral invariant method [7].

Following this stability and convergence results, we confront theory with practice
in Sect. 6 and present an experimental evaluation of our new curvature estimator
(defined from curvature measures) in the case of digital surfaces, which is a good
testbed for our framework since naive normals of S never converge toward the normals
of the continuous surface X (a problem known as metrication in the case of the area
measure). We show that our estimators outperform also in practice state-of-the-art
methods like digital integral invariants [7] and convergence speeds in O(h2/3) are
reached in practice.

We conclude in Sect. 7 and outline several research directions, especially the exten-
sion of our work to anisotropic curvature measures.

2 Normal Cycle Corrected by a Vector Field u

We introduce in this section the notion of corrected normal current for piecewise
C1 surfaces endowed with a vector field in the three dimensional space, called the
corrected normal.
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2.1 Corrected Surface

We assume in the following that S is a closed piecewise C1 oriented surface of R
3,

namely S = ⋃n
i=1 Si where each Si is a compact surface homeomorphic to a disc.

Furthermore, we assume that we have the following combinatorial structure: (i) each
Si is called a face of S; (ii) for every i �= j , Si, j = Si ∩ S j is either empty or a point
or a non-degenerated connected C1 curve; when not empty or reduced to a point, it is
called an edge of S; (iii) the intersection of three (or more) faces of S is either empty
or equal to a point that is called a vertex in the latter case.

Note that the orientation of S is equivalent to having an abstract orientation of the
combinatorial structure. Indeed, each face Si induces naturally an orientation of its
bounding curves Si, j , where j ranges over the faces S j adjacent to Si . This orientation
turns Si, j into a directed edge, and can be represented in space by the unit vector field
ei j along Si j , which is tangent to Si, j . If we are given a normal vector field ni on Si

respecting its orientation, then ni × ei j points toward the inside of Si . Note that the
adjacent face S j induces the opposite orientation on Si, j : e j i = −ei j .

We say that u : S \ {Si, j : i �= j} → S
2 is a corrected normal vector field on S if:

(i) its restriction ui to the relative interior of the face Si is of class C1, and extends
continuously to Si ; (ii) along any curve Si, j = Si ∩ S j , ui and u j are not antipodal;
(iii) at any vertex p = Si1 ∩ . . . ∩ Sik , the corrected normals ui1 , . . . ,uik lie in the
same hemisphere. Note that, in this definition, we do not require u to be continuous
or even defined on the edges.

Definition 2.1 (corrected surface) We say that the couple (S,u) is a corrected surface
if S ⊂ R

3 is a surface that satisfies the above assumptions and u is a corrected normal
vector field on S.

Example 2.2 When S consists of a single C1 face, we can choose the vector u to be
the usual normal vector n. This generalizes easily to a piecewise C1 surface. The
non-degeneracy across vertices or edges prohibits cusps or cuspidal edges.

Example 2.3 When S is an oriented polyhedral surface, we may choose u to be the
(unit) normal vector on each face. Here again, non-degeneracy across edges (resp.
vertices) means that the dihedral angles are between−π and+π (resp. is a graph over
the plane bounding the hemisphere).

Example 2.4 We can also consider any C1 unit vector field u along S, even when S is a
polyhedral surface, e.g. S can be a digital surface and u can be a bilinear interpolation
at the normals given at the vertices (in which case u usually ceases to have unit length
throughout, hence should be normalized).

2.2 Combinatorial Structure

Starting with the combinatorial structure of the surface S, i.e., the set of its vertices V ,
edges E and oriented faces F , together with their incidence relations, we define a new
(abstract) combinatorial surface S∗ over which the corrected normal current will be
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constructed. A similar construction exists for convex polyhedra, and is known under
various names: expansion, cantellation, or complete truncation.1

The idea behind the construction is that each inner edge is blown up into a strip
(i.e., a combinatorial quadrilateral), while each inner vertex of degree d is blown up
into a face with d edges, see Fig. 1. More precisely,

– the vertices of V ∗ are the flags {(p, f ) ∈ V × F : p ∈ f },
– the edges of E∗ are the flags {(e, f ) ∈ E × F : e ∈ f },
– the set F∗ is the set V̊ ∪ E̊ ∪ F , where V̊ (resp. E̊) denotes the set of inner vertices
(resp. edges).

The incidence relations are completely determined by describing the faces as an
ordered list of vertices. Since a face f ∗ ∈ F∗ is either a vertex p, an edge e of a
face f of S, we consider separately all three cases.

– Whenever the face corresponds to an inner vertex p ∈ V , we denote it S∗
p and let

S1, . . . , Sn be an ordered list of the faces incident to p (the order is induced from
the orientation and is unique, up to circular permutation). Then S∗

p is described by
its vertices p∗

1, . . . , p∗
n where p∗

i = (p, Si ).
– Whenever the face corresponds to an inner edge Si, j = Si ∩ S j ∈ E , and Si, j

joins the vertices p, q, with the convention that Si induces the orientation p → q
on Si, j , and S j the opposite orientation. Then S∗

i, j is the quadrilateral face joining
(p∗

i , p∗
j , q∗

j , q∗
i ) where p∗

k = (p, Sk) and q∗
k = (q, Sk).

– Whenever the face S∗
i corresponds to Si ∈ F , and the vertices of Si (in order) are

p1, . . . , pn , then S∗
i is given by its vertices p∗

1, . . . , p∗
n where p∗

k = (pk, Si ).

We slightly modify this definition by dividing all the faces S∗
p into triangles. More

precisely, let S∗
p be a face of S∗ corresponding to a vertex p of S. The boundary of

this face is composed of � = d(p) edges that are common with faces S∗
i, j and denoted

by s1, . . . , s�,: (i) we add a vertex p∗ at the interior of the face S∗
p; (ii) for every

1 ≤ i ≤ �, we add the triangle with vertex p∗ and opposite edge si ; (iii) we add the
edges corresponding to these triangles, see Fig. 1.

2.3 Corrected Normal Cone

We need to define the notion of corrected normal cone which is the image by a
continuous map of the combinatorial surface S∗ into R

3 × S
2. Its construction uses

the corrected normal u and is done so that the corrected normal cone inherits the
orientation of S∗.

Definition 2.5 Let (S,u) be a corrected surface and S∗ be the combinatorial surface
of S whose orientation is inherited from S. The corrected normal cone NC( f ∗,u) of
a face f ∗ of S∗ is defined by:

– if f ∗ = S∗
i corresponds to a face Si in S, then NC( f ∗,u) = NC(Si ,u) is the

image of Si by the map p �→ (p,u(p));

1 See http://mathoverflow.net/questions/263452.
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S 1

S 2 S 3

S 1, 2

S2, 3

S 3, 1

p

S *
1

S *
2 S *

3

S *
1, 2 S *

3, 1

S *
2, 3

S *
p

S *
1

S *
2 S *

3

S *
1, 2 S *

3, 1

S *
2, 3

Fig. 1 Expansion/cantellation at a degree three vertex, followed by subdivision of the face S∗
p corresponding

to an original vertex p. The vertex p gives rise to a new face S∗
p (further subdivided); edges Si, j = Si ∩ S j

give rise to new quadrilateral faces S∗
i, j ; faces Si yield new faces S∗

i

– if f ∗ = S∗
i, j corresponds to an edge Si, j of S, then

NC(Si, j ,u) = {(p, n) : p ∈ Si, j and n ∈ Arc(ui (p),u j (p))},

where Arc(ui (p),u j (p)) denotes the unique geodesic arc (on the sphere) between
ui (p) and u j (p);

– if f ∗ is a triangle of S∗
p, thenNC( f ∗,u) denotes the spherical trianglewith vertices

u(p), ui (p), and ui+1(p) of area strictly less than 2π , where u(p) ∈ S
2 is the

normalized average of the ui (p).

Remark that for each oriented face f ∗ of S∗, the corrected normal cone NC( f ∗,u)

inherits from the orientation of f ∗.

Definition 2.6 (corrected normal cone) The corrected normal cone NC(S,u) is the
polygonal chain built as the sum of the NC( f ∗,u), where f ∗ ranges over the faces
of S∗.
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Remark that for every face f ∗, NC( f ∗,u) is a surface of class at least C1 in R
3 × S

2.
The corrected normal cone NC(S,u) can be seen globally as the image by a contin-
uous map of the combinatorial surface S∗ into R

3 × S
2. However it may not be an

embedding nor even an immersion over edges and vertices; indeed, the image may
have multiplicity above the vertices, and singularities above the edges.

Remark 2.7 The corrected normal cone NC(S∗
p,u) above a vertex p of S is made of

d(p) spherical triangles, each of them having u(p) as a vertex. Note that the algebraic
sumof these oriented triangles donot dependon this arbitrary pointu(p). The corrected
normal cone NC(S∗

p,u) can be seen as a set of point n ∈ {p} × S
2 with an integer

multiplicity μ(p).

2.4 Corrected Normal Current

Wemay now define our variant of normal cycle, defined as a current with support given
by the corrected normal cone. For the reader unfamiliar with the notion of currents,
we recall briefly the main notions in Sect. 4.3.

Definition 2.8 (corrected normal current) Let (S,u) be a corrected surface. The cor-
rected normal current N(S,u) of (S,u) associates to every differential 2-form ω of
R
3 × S

2 the real number

N(S,u)(ω) =
∑

f ∗

∫

NC( f ∗,u)

ω,

where f ∗ ranges over all the faces of S∗.

The following proposition is an obvious consequence of the construction but is the
heart of the notion introduced in this paper. Thanks to this property, the corrected
normal current is globally coherent. In particular, this property will be central in the
proof of stability results.

Proposition 2.9 If S has no boundary, then the corrected normal current N(S,u) has
no boundary.

Proof ByconstructionNC(S,u) is the continuous imageof a combinatorial surface S∗.
This comes from the coincidence of incident faces along their boundaries. Now, if S
has no boundary, neither does S∗, nor N(S,u). �
Remark 2.10 Whenever S = ∂V is a piecewise smooth or planar surface, which is
the boundary of a domain in R

3, and u is chosen as the unit normal on faces pointing
toward the outside, then N(S,u) coincides with the normal cycle N(V ) of S [15, 36].
The corrected normal current thus generalizes the normal cycle.

Remark 2.11 For the sake of consistency and subsequent proofs, we have assumed
that the vector field u has unit length. Note that it is sometimes useful to relax that
requirement to nonzero vector fields, for example when using linear interpolation to
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θ

Fig. 2 The corrected normal current of a planar curve, seen as a discrete curve in R
3. The Grassmann

bundle R
2 × Gr(1, R

2) = R
2 × S

1 is represented as R
3 where the third coordinates is the angle θ . The

smooth planar curve is a circular arc lifting to a piece of a helix. Its approximation by a digital curve can
be lifted as the normal cycle (in purple), in which case the normal on each edge follows the axes (hence
lies at height kπ/2 for some integer k); therefore the extra circular arcs at the vertices are vertical edges of
length ±π/2. On the contrary, corrected normals on the digital curve are closer to the smooth normals; as
a result, the corresponding lift (in blue) is also closer to the helix in R

3, and the vertical edges are shorter.
Obviously, the corrected current is closer to the smooth lift. Note that the combinatorial structure of the
current is extremely simple: each vertex is blown up into an edge

construct a smooth vector field from few samples. Indeed unit length is not required
to define the corrected normal cone over a face of Si . However over an edge Si, j or
a vertex, it asks for different interpolation formulas, which we will not delve into in
this article. Nevertheless, if u is continuous, edge and vertex contributions have zero
Lebesgue measure, and the integral formulas below can be defined. Moreover they
will converge to the same limit as u tends to the smooth normal n, even if u is not of
unit length. This case will be illustrated in a forthcoming article.

3 Corrected Curvature Measures

Our goal is to obtain geometric information on the surface S, namely its area and
curvatures, which are independent of the position of S in space. It is classically known
in the smooth case that the area and curvaturemeasures can be computed by integrating
the invariant forms on the normal cycle; it also extends to discrete surfaces (see [15]).
These invariant forms [34, 36] form a basis of the 2-forms inR

3×S
2 that are invariant

by the action of the rigid motions of R
3. They yield the area, the mean curvature and

the Gaussian curvature.

123



Discrete & Computational Geometry

3.1 Invariant Forms, Curvature Measures, Curvature Estimators

Let us now recall the expression of the invariant differential 2-formsofR3×S
2 (see [26]

for more details). Let (p,w) be any point in the oriented Grassmann bundle R
3 × S

2.
Clearly the tangent plane of R

3 × S
2 at the point (p,w) is a space of dimension 5

spanned by the following vectors:

ε1 =
(
e1
0

)

, ε2 =
(
e2
0

)

, ε3 =
(
w
0

)

, ε̃1 =
(
0

e1

)

, ε̃2 =
(
0

e2

)

,

where e1 and e2 are any vectors such that (e1, e2,w) form a direct orthonormal frame
of R

3. The set of differential 2-forms of R
3 × S

2 that are invariant under the action of
rigid motions is a vector space of dimension four spanned by the following forms:

ω0 = ε
�
1 ∧ ε

�
2, ω1 = ε

�
1 ∧ ε̃

�
2 − ε

�
2 ∧ ε̃

�
1,

ω2 = ε̃
�
1 ∧ ε̃

�
2, ω� = ε

�
1 ∧ ε̃

�
1 + ε

�
2 ∧ ε̃

�
2,

where ε�(ξ) denotes the scalar product of ε and ξ .

Definition 3.1 Let k ∈ {0, 1, 2,�}. The kth Lipschitz–Killing corrected curvature
measure of S with respect to u associates to every Borel set B the real number

μk(B) :=
∫

NC(S,u)∩π−1(B)

ωk,

where π : R
3 × S

2 → R
3 denotes the projection on the position space.

Remark 3.2 When S is smooth and u = n the standard normal, μ0 is the area density
dA, while μ1 and μ2 are respectively the mean curvature and Gaussian curvature
densities, −2H dH2 and K dH2 (up to a scalar factor). This result is reproven below.

Remark 3.3 The measure μ� induced by the symplectic form ω� plays a different
role. Instead of measuring metric data, it tests whether a surface in the R

3 × S
2 is

indeed the normal bundle of a surface in R
3. Quite logically, it vanishes identically on

smooth surfaces as soon as u = n. For an approximated surface, it measures how far
the corrected normal u is from being normal to the faces. While pointwise never true,
its averaged value yields a measure of the quality of the choice of corrected normal.

In order to recover classical geometric invariants, we further define:

Definition 3.4 For any Borel set B such that μ0(B) �= 0, the normalized corrected
mean curvature Ĥu of S with respect to u is defined as Ĥu(B) := −μ1(B)/(2μ0(B)),
and the normalized corrected Gaussian curvature Ĝu of S with respect to u is defined
as Ĝu(B) := μ2(B)/μ0(B).
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3.2 Calculation of the Corrected Curvature Measures

Let (S,u) be a corrected surface. We recall that S = ⋃n
i=1 Si is a union of faces of

class C1, that the edges Si, j are of class C1 and the set E(S) of edges of S is finite.
The surface S is oriented. In order to state the proposition we need to introduce the
following notations.

3.2.1 Notations

At every point p of the interior of a face Si , we denote by n(p) the unit oriented
normal vector, by Tp S the plane tangent to S, by e1(p) a vector of Tp S given by
e1 = (n × u)/‖n × u‖ if n and u are not collinear, and given by one of the principal
directions otherwise. We also introduce e2 = u×e1 and e′

2 = n×e1 ∈ Tp S. Note that
(e1, e2,u) is a moving frame of R

3 associated with u, while (e1, e ′
2,n) is a Darboux

frame associated to the surface Si .
At every point p on an edge Si, j , we denote by e(p) = ei j (p) the unit vector

along the edge Si, j oriented2 as the boundary of Si , by Ψ (p) = ∠(ui (p),u j (p)) the
corrected dihedral angle between the faces Si and S j , and e1(p) = (ui ×u j )/‖ui ×u j‖.
(The last vector is only defined when ui (p) and u j (p) are not collinear; however,
whenever that happens, Ψ (p) vanishes and NC(p,u) drops in dimension, hence does
not contribute to the integrals. Without loss of generality, we will assume that e1 is
always well defined.)

In order to integrate differential forms over manifolds (more details are provided in
Sect. 4.3), we will use the notion of Hausdorff measure. In the following, we denote
byHm the m-dimensional Hausdorff measure.

Proposition 3.5 The corrected Lipschitz–Killing curvature measures of S with respect
to u associates to every Borel set B the quantities

μ0(B) =
∫

B∩S

〈u |n〉 dH2,

μ1(B) =
∫

B∩S

(〈du · e ′
2 | e2〉 + 〈u |n〉〈du · e1 | e1〉

)
dH2 +

∑

i �= j

∫

Si, j ∩B

Ψ 〈e | e1〉 dH1,

μ2(B) =
∫

B∩S

(〈du · e1 | e1〉〈du · e ′
2 | e2〉 − 〈du · e1 | e2〉〈du · e ′

2 | e1〉
)
dH2

+
∑

i �= j

∫

B∩Si, j

〈
(ui − u j ) × e1 | de1 · e〉 dH1 +

∑

p∈B∩E(S)

Area (NC(p,u)),

μ�(B) =
∫

B∩S

(〈du · e ′
2 | e1〉 − 〈u |n〉〈du · e1 | e2〉

)
dH2 +

∫

Si, j

〈e |ui − u j 〉 dH1,

2 So that e j i (p) = −ei j (p).
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where Area (NC(p,u)) is the sum of the algebraic areas of each spherical triangle
where the sign is induced by its orientation.

Proof We recall that u is of class C1. The measures have absolutely continuous and
atomic parts; by additivity of the integral, wemay consider separately the contributions
of faces, edges and vertices.

Above the Faces. Remark that for any face Si of S the map Γu : p ∈ Si �→ (p,u(p)) is
a diffeomorphism between Si and the corrected normal cone NC(Si ,u). The change
of variable formula implies that

μk(B ∩ Si ) =
∫

NC(Si ,u)∩π−1(B)

ωk =
∫

Γu(B∩Si )

ωk =
∫

B∩Si

Γ ∗
u ωk .

Hence, the computation of the curvature measures amounts to computing the pull-
back by Γu of the corresponding curvature forms. In order to do that, we consider
the orthonormal frame (e1, e′

2) of the tangent plane Tp S at p. Using the fact that
dΓu(p) = (Id, du(p)), one gets

Γ ∗
u ω0(e1, e ′

2) = ω0(dΓu(p) · e1, dΓu(p) · e′
2) = ε

�
1 ∧ ε

�
2((e1, du · e1), (e′

2, du · e′
2))

=
∣
∣
∣
∣
〈e1 | e1〉 〈e1 | e2〉
〈e′

2 | e1〉 〈e′
2 | e2〉

∣
∣
∣
∣ = 〈e′

2 | e2〉 = 〈u |n〉.

Similarly, we evaluate Γ ∗
u ω1 and Γ ∗

u ω2 in the same basis:

Γ ∗
u ω1(e1, e ′

2) = (ε
�
1 ∧ ε̃

�
2 − ε

�
2 ∧ ε̃

�
1)((e1, du · e1), (e′

2, du · e′
2))

=
∣
∣
∣
∣
〈e1 | e1〉 〈du · e1 | e2〉
〈e ′

2 | e1〉 〈du · e ′
2 | e2〉

∣
∣
∣
∣ −

∣
∣
∣
∣
〈e1 | e2〉 〈du · e1 | e1〉
〈e ′

2 | e2〉 〈du · e ′
2 | e1〉

∣
∣
∣
∣

=
∣
∣
∣
∣
1 〈du · e1 | e2〉
0 〈du · e ′

2 | e2〉
∣
∣
∣
∣ −

∣
∣
∣
∣

0 〈du · e1 | e1〉
〈u |n〉 〈du · e ′

2 | e1〉
∣
∣
∣
∣

= 〈du · e ′
2 | e2〉 + 〈u |n〉〈du · e1 | e1〉,

Γ ∗
u ω2(e1, e ′

2) =
∣
∣
∣
∣
〈du · e1 | e1〉 〈du · e1 | e2〉
〈du · e ′

2 | e1〉 〈du · e ′
2 | e2〉

∣
∣
∣
∣

= 〈du · e1 | e1〉〈du · e ′
2 | e2〉 − 〈du · e1 | e2〉〈du · e ′

2 | e1〉.

Finally,

Γ ∗
u �(e1, e ′

2) = (ε
�
1 ∧ ε̃

�
1 + ε

�
2 ∧ ε̃

�
2) ((e1, du · e1), (e′

2, du · e′
2))

=
∣
∣
∣
∣
〈e1 | e1〉 〈du · e1 | e1〉
〈e ′

2 | e1〉 〈du · e ′
2 | e1〉

∣
∣
∣
∣ +

∣
∣
∣
∣
〈e1 | e2〉 〈du · e1 | e2〉
〈e ′

2 | e2〉 〈du · e ′
2 | e2〉

∣
∣
∣
∣

=
∣
∣
∣
∣
1 〈du · e1 | e1〉
0 〈du · e ′

2 | e1〉
∣
∣
∣
∣ +

∣
∣
∣
∣

0 〈du · e1 | e2〉
〈u |n〉 〈du · e ′

2 | e2〉
∣
∣
∣
∣
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= 〈du · e ′
2 | e1〉 − 〈u |n〉〈du · e1 | e2〉.

Above the Edges. Let p : [0, L] → Si, j be the arc length parameterization of Si, j that
satisfies ṗ(t) = e(p(t)) (the dot denoting the derivative w.r.t. t). Then the corrected
normal cone NC(S,u) ∩ π−1(Si, j ) above the edge Si, j can be parameterized by

φ : [0, 1] × [0, L] → NC(S,u) ∩ π−1(Si, j ),

(s, t) �→ (p(t), v(s, t)),

with

v(s, t) = cos(sΨ (p(t)))ui (p(t)) + sin(sΨ (p(t)))e1(p(t)) × ui (p(t)).

Note that the map φ preserves the orientation. In order to shorten the equations below,
we often (but not always) omit to specify that the quantities are considered at the point
p or p(t). Note also that the reference frame at (p, v) is (e1, e2, v), where e2 = v×e1.
Finally,

v̇ = ∂v
∂t

= cos(sΨ ) dui · e + sin(sΨ ) d(e1×ui ) · e − sλe2,

where λ = ∂(Ψ ◦ p)/∂t , while ∂v/∂s = −Ψ e2. We then get

μ1(Si, j ) =
∫

NC(S,u)∩π−1(Si, j )

ε
�
1 ∧ ε̃

�
2 − ε

�
2 ∧ ε̃

�
1

=
∫ L

0

∫ 1

0
(ε

�
1 ∧ ε̃

�
2 − ε

�
2 ∧ ε̃

�
1)

(
∂φ

∂s
(s, t),

∂φ

∂t
(s, t)

)

ds dt

=
∫ L

0

∫ 1

0
(ε

�
1 ∧ ε̃

�
2 − ε

�
2 ∧ ε̃

�
1)((0,−Ψ e2), (e, v̇)) dsdt

=
∫ L

0

∫ 1

0

(∣
∣
∣
∣

0 −Ψ 〈e2 | e2〉
〈e | e1〉 〈v̇ | e2〉

∣
∣
∣
∣ −

∣
∣
∣
∣

0 −Ψ 〈e2 | e1〉
〈e | e2〉 〈v̇ | e1〉

∣
∣
∣
∣

)

dsdt

=
∫ L

0
Ψ (p(t))〈e(p(t)) | e1(p(t))〉 dt =

∫

Si, j

Ψ (p)〈e(p) | e1(p)〉 dH1(p).

Wemay note thatμ0 vanishes identically above the edges, since Span (∂φ/∂ψ, ∂φ/∂t)
projects to a line on the position component. Note that this calculation can be easily
localized over a Borel set B: if we calculate μ1(B ∩ Si, j ), it amounts to add the
indicator function of B in the integrand. Similarly, one gets

μ2(Si, j ) =
∫

NC(S,u)∩π−1(Si, j )

ε̃
�
1 ∧ ε̃

�
2 =

∫ L

0

∫ 1

0
ε̃

�
1 ∧ ε̃

�
2((0,−Ψ e2), (e, v̇)) ds dt
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=
∫ L

0

∫ 1

0

∣
∣
∣
∣
−Ψ 〈e2 | e1〉 −Ψ 〈e2 | e2〉

〈v̇ | e1〉 〈v̇ | e2〉
∣
∣
∣
∣ ds dt =

∫ L

0

∫ 1

0
Ψ 〈v̇ | e1〉 ds dt

=
∫ L

0

∫ 1

0
Ψ 〈cos(sΨ ) dui · e + sin(sΨ ) d(e1 × ui ) · e | e1〉 ds dt

=
∫ L

0

〈
sinΨ dui · e + (1 − cosΨ ) d(e1 ×ui ) · e | e1

〉
dt

=
∫ L

0

(
sinΨ 〈dui · e | e1〉 + (1 − cosΨ 〈d(e1 ×ui ) · e | e1〉

)
dt .

Bydifferentiating the expression 〈ui | e1〉 = 0,wewrite 〈dui · e | e1〉 = −〈ui | de1 · e〉.
Similarly, one has 〈d(e1 × ui ) · e | e1〉 = −〈e1 × ui | de1 · e〉 and thus

μ2(Si, j ) = −
∫ L

0
sinΨ 〈ui | de1 · e〉 + (1 − cosΨ )〈e1 × uide1 · e〉 dt

= −
∫ L

0
〈sinΨ ui + (1 − cosΨ )(e1 ×ui ) | de1 · e〉 dt

= −
∫ L

0

〈
(sinΨ e1 ×ui + (cosΨ − 1)ui )× e1 | de1 · e〉 dt .

We note that the angle ψ between the two vectors ui and u j belongs to [0, π ] so
that sinψ ≥ 0. Since (ui ,u j , e1) is a direct frame, we have det (ui ,u j , e1) = sinψ .
Therefore ui , u j , and e1 ×ui are all orthogonal to e1, so they belong to the same plane
and we have

u j = 〈u j |ui 〉ui + 〈u j | e1 × ui 〉e1 × ui = cosψ ui + sinψ e1 × ui .

This leads to

μ2(Si, j ) = −
∫ L

0

〈
(u j − ui ) × e1 | de1 · e〉 dt = −

∫

Si, j

〈(u j − ui ) × e1 | de1 · e〉 dH1.

Finally,

μ�(Si , j) =
∫

NC(S,u)∩π−1(Si, j )

ε
�
1 ∧ ε̃

�
1 + ε

�
2 ∧ ε̃

�
2

=
∫ L

0

∫ 1

0
(ε

�
1 ∧ ε̃

�
1 + ε

�
2 ∧ ε̃

�
2)((0,−Ψ e2), (e, v̇)) ds dt

=
∫ L

0

∫ 1

0

(∣
∣
∣
∣

0 −Ψ 〈e2 | e1〉
〈e | e1〉 〈v̇ | e1〉

∣
∣
∣
∣ +

∣
∣
∣
∣

0 −Ψ 〈e2 | e2〉
〈e | e2〉 〈v̇ | e2〉

∣
∣
∣
∣

)

ds dt

=
∫ L

0

∫ 1

0
〈e | Ψ e2〉 ds dt = −

∫ L

0

∫ 1

0

〈

e
∣
∣
∣
∂v
∂s

〉

ds dt

=
∫

Si, j

〈e |ui − u j 〉 dH1.
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Above the Vertices. When p is a vertex, its contribution is restricted to μ2, since the
position is constant in NC(p). Since ω2 measures the area in the velocity component,
the vertex adds a Dirac mass at p to μ2, with coefficient equal to the (signed) area of
NC(p). �
Remark 3.6 In the smooth case, there are no edges nor vertices, and taking u = n (and
hence e′

2 = e2), the formulas simplify. We recover

μ0 = dH2, μ1 = Trace(dn) dH2 = −2H dH2, μ2 = det(dn) dH2 = K dH2,

while

μ� = (〈dn · e2 | e1〉 − 〈dn · e1 | e2)〉 dH2 = 0,

since dn is symmetric on Tp S.

Remark 3.7 Similarly to [9], we can consider a vector-valued equivariant two-form on
the Grassmann bundle defined for each fixed pair of vectors X,Y ∈ R

3. This leads to
an anisotropic curvature measure μX,Y which converges to the second fundamental
form by the same theorems in Sect. 4. Study of this measure allows to compute and
approximate principal curvatures and principal directions. This will be the topic of a
forthcoming article.

In the case of polyhedral surfaces with a normal constant per face, we have the fol-
lowing simplifications, which we will use in our experiments (Sect. 6).

Proposition 3.8 Let S be a polyhedral surface and u a vector field constant on each
planar face of S. Then the corrected Lipschitz–Killing curvature measures are

μ1 =
∑

Si, j

Ψ 〈e | e1〉 dH1 =
∑

Si, j

Ψ

sinΨ
det (e,ui ,u j ) dH1,

μ0 =
∑

f

cosα( f ) dH2, μ2 =
∑

p

area (NC(p)) δp, μ� =
∑

Si, j

〈e |ui − u j 〉 dH1,

where α( f ) is the angle between the corrected normal u and the naive normal n, Ψ is
the oriented angle between the corrected normal ui and u j incident to the edge Si, j

and e1 = (ui × u j )/‖ui × u j‖, while e is the oriented unit tangent to the edge.

3.3 The Schwarz Lantern

To illustrate the remarkably fast rate of convergence of our approach, let us apply it to
the Schwarz lantern L , a C0 approximation by triangles of a cylinder C of radius r and
height h, known for its failure to converge in curvature and even area (see Fig. 3.3).
The failure occurs because the normals do not converge to the cylinder’s (see [26] for
the definition of the Schwarz lantern and an analysis of the problem). We will use two
different choices of corrected normals on the Schwarz lantern.
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Fig. 3 The Schwarz lantern. The vertical cylinder of height h and radius r is cut horizontally along m + 1
evenly spaced circles; each circle is replaced by a regular n-gon (here m = 6 and n = 7). However,
consecutive polygons are not parallel but rather obtained one from another by a screw motion of vertical
translation h/m and angle π/n. Any vertex is connected to the two nearby vertices above and the two nearby
vertices below (except for the top and bottom levels)

We first consider the corrected normals to be constant on each triangle T and equal
to the cylinder’s at the top (or bottom) of the triangle. Then the angle α between the
corrected normal and the face’s normal satisfies tan α = (2mr/h) sin2(π/(2n)), so
that the corrected area of the lantern is

∫

T
μ0 = cosα · area(T ) = cosα · 1

2
· 2r sin

π

n
· h

m

√
1 + tan2α = rh

m
sin

π

n
,

∫

L
μ0 =

m∑

i=1

2n∑

j=1

rh

m
sin

π

n
−→
n→∞ 2πrh = area(C) independently ofm.

Edges are either horizontal, in which case the corrected normal is identical on the
faces above and below, or slanted, in which case the two normals ui ,u j are horizontal
(so that e1 = ui × u j is vertical) and at angular distance Ψ = π/n. For an edge e,
the scalar product 〈e | e1〉�(e) is then h/m, thus μ1(e) = πh/(nm). Since there are
exactly 2nm such edges,

∫
L μ1 = 2πh = 2

∫
C (2r)−1dA. Finally, at a vertex p, the

corrected normals are all horizontal, so that NC(p) has measure zero, as expected. We
have thus an exact result for the mean and Gaussian corrected curvature measures and
a O(1/n2) convergent one for the area.

Now consider the same triangulation with a different corrected normal u, defined
as follows: at every vertex, it is the same (horizontal) normal as the one to the cylinder;
along edges and faces, it is defined by linear interpolation followed by normalization
to one. It is easy to see that these normals coincide with the normal to the cylinder
of the horizontal projection π on C : u(p) = r−1π(p). On a face, e1 = u × n and
e′
2 = n × e1. Since dπ is the projection to the tangent plane to the cylinder, we have
that du · e1 = r−1e1 and du · e′

2 = r−1〈u |n〉e2.
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The fieldu being continuous on the edges and at the vertices, the curvaturemeasures
are carried only by the faces. Using Proposition 3.5, we get:

– the corrected area measure μ0 = 〈u |n〉 dH2 is no other than the pullback of the
area form on the cylinder by the horizontal projection, i.e., π∗dAC ; hence μ0
measures the area of the projected lantern L onto the cylinder C , and globally
gives exactly the area of the cylinder;

– for μ1, we have that

μ1 = 〈du · e ′
2 | e2〉 + 〈u |n〉〈du · e1 | e1〉 dH2 = 2

r
〈u |n〉 dH2 = 2

r
μ0,

hence we obtain exactly twice the mean curvature density of the cylinder;
– the corrected Gaussian curvature measure is also a pullback; but we may directly
notice that the corrected normal is horizontal, hence stays on the equator of S

2;
therefore μ2 vanishes identically as in the previous example.

4 Stability of the Corrected Curvature Measures

We show in this section that the corrected curvatures of (S,u) approximate well the
curvature measures of a surface X of class C2 provided that the surface S is close to
X in the Hausdorff sense and that the vector field u approximates well the normal nX

of X . In order to be able to compare the two surfaces S and X , one first need to recall
the notion of reach introduced by Federer [12]. Remark that this notion was originally
introduced in order to define the notion of curvature measures.

4.1 Background on Sets with Positive Reach

The distance function dK of a compact set K of R
d associates to any point x of R

d its
distance to K , namely dK (x) := miny∈K d(x, y), where d is the Euclidean distance
on R

d . For a given real number ε > 0, we denote by K ε := {x ∈ R
d : dK (x) ≤ ε} the

ε-offset of K . The Hausdorff distance dH(K , K ′) between two compact sets K and
K ′ is the minimum number ε such that K ⊂ K ′ε and K ′ ⊂ K ε.

The medial axis of K is the set of points of x ∈ R
d such that the distance d(x, K )

is realized by at least two points y and y′ in K . The reach of K , denoted by reach(K ),
is the infimum distance between K and its medial axis. As a consequence, whenever
the reach is positive and ε < reach(K ), the projection map

πK : K ε → K

is well defined. It is well know that smooth compact submanifolds have positive
reach [12, 26]. The following proposition will be useful for stating our main theorem.

Proposition 4.1 Let X be a compact submanifold of class C2 of R
d . Then

0 < reach(X) ≤ 1

ρX
,
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where ρX is the largest absolute value of the principal curvatures of X. Furthermore
πX is differentiable on Xε for any ε < reach(X) and

∀ x ∈ Xε ‖DπX (x)‖ ≤ 1

1 − ρX (πX (x))ε
,

where ρX (x) is the largest absolute value of the principal curvatures of X at the
point x.

4.2 Stability Result

Weprovide in this section a stability result on the curvaturemeasures, namelywe show
that the corrected curvature measures of (S,u) approximate the curvature measures
of X provided that S and X are close in the Hausdorff sense and that u is close
to the unit normal vector of X . In order to state the result, we denote by μ

S,u
k the

corrected curvature measures of (S,u) and byμX
k the curvature measures of X , where

k ∈ {0, 1, 2,�}. Note that the curvature measures of X coincide with the corrected
curvature measures of (X ,n) where n is the geometric oriented unit normal of X .

Theorem 4.2 Let X be a compact surface of R
3 of class C2, of normal vector n, bound-

ing a volume V , and S = ⋃
i Si be a piecewise C1,1 surface bounding a volume W ,

u a corrected normal vector field on S. We assume the following two conditions:

– there exists an open set U of the form U = π−1
X (V ) such that U ∩ S �= ∅ and

πX : U ∩ S → X is injective;
– ε := dH(S, X) < reach(X) is the position error.

Then the corrected curvature measures of (S,u) are close to the curvature measures
of X in the following way: for any connected union B = ⋃

i∈I Si of faces Si of S, one
has

|μS,u
k (B) − μX

k (πX (B))| ≤ 4(η + ε)

(
1 + ρB

1 − ρBε

)2

×
⎧
⎨

⎩
(1 + L2

u) (H2(B) + H1(∂ B)) + δ2ud3
max

2π
N S

v (B)

+ 2 arcsin
δu

2

⎛

⎝
∑

Si, j ⊂B

H1(Si, j ) + dmaxN S
v (∂ B)

⎞

⎠

⎫
⎬

⎭
,

where δu = supi∼ j supp∈Si, j
‖ui (p) − u j (p)‖ (i ∼ j whenever Si is adjacent to S j ),

η := supp∈S ‖u(p) − n(πX (p))‖ is the normal error, ρB is the maximum absolute
value of the principal curvatures of X ∩ πX (B), Lu is the maximum of the Lipschitz
constants of u over each face Si , dmax is the maximum vertex degree, N S

v (B) and
N S

v (∂ B) are the number of vertices of S that respectively belong to B and ∂ B.
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Remark 4.3 It may seem quite restrictive to evaluate the measures μ
S,u
k and μX

k on
union of faces instead of generic Borel sets. In particular, these faces may be large,
which contradicts the idea behind the normalized corrected curvature Ĥu(B) and
Ĝu(B) of Definition 3.4. However, the faces can be subdivided at measure in order
to give neighborhoods as small as necessary (extra edges and vertices will carry no
curvature). Working on faces ensures a minimum of regularity in our theorem, without
loss of generality.

Theorem 4.2 allows us to estimate the rate of convergence of curvature measures for
a sequence of approximations (Sk,uk) together with their corrected normals vector
fields. However, some termsmay prove difficult, especially N S

v (B) and N S
v (∂ B)which

will tend to infinity very fast. We give below two corollaries of the previous stability
result. The first one is specific to the case where the corrected normal field u is contin-
uous. The second case concerns digital surface approximations, where u is constant
per face.

Corollary 4.4 Under the same assumptions as in Theorem 4.2, if u is continuous over
the whole surface S, one has

|μS,u
k (B) − μX

k (πX (B))| ≤ 4(η + ε)

(
1 + ρB

1 − ρBε

)2
(1 + L2

u) (H2(B) + H1(∂ B)).

Corollary 4.5 When S is a digital surface approximation with an estimated normal
vector field u constant per face, we have the following simplified estimate:

|μS,u
k (B) − μX

k (πX (B))|

≤ 4(η + ε)

(
1 + ρB

1 − ρBε

)2(

Nsh2 + Nbh + 140δ2uNs + 2 arcsin
δu

2
· (4Nsh + 6Nb)

)

,

where B is an union of Ns surfels of edge size h, with Nb boundary edges.

Proof In the digital case, a vertex has at most six neighbors so dmax ≤ 6. (We then
major 63/(2π) by 35.) Since u is constant per-face, we have Lu = 0. Furthermore, the
length of each edge is h, the area of each face is h2, N S

v (B) ≤ 4Ns and the number of
edges is less than 4Ns . The formula follows. �
Estimation of curvatures on digital surfaces is studied in more details in Sect. 5. The
remaining of this section is devoted to the proof of Theorem 4.2.

4.3 Notions of Geometric Measure Theory

4.3.1 Currents

We denote by Dm the set of m-differential forms on R
d . This set can be endowed

with the C∞-topology [31] and the set of m-currents on R
d is then by definition its

topological dual. Therefore a current T : Dm → R is a continuous linear map. The
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support of a current T : Dm → R is the smallest closed set K such that spt(ω)∩ K =
∅ ⇒ T (ω) = 0. The boundary ∂T of a m-current T is the (m − 1)-current defined
by ∂T (ω) = T (dω), where d is the exterior derivative.

When U and V are open sets in Euclidean spaces, f : U → V is of class C∞, T is
a m-current on U and f|spt(T ) is proper, one define the m-current f�T by f�T (ω) =
T ( f ∗ω) (see [13, 4.1.9]). This notion is extended when f is a locally Lipschitz map
(see [13, 4.1.14]).

Note that if a subset S of R
d is m-rectifiable, then it is of class C1 Hm-almost

everywhere and it is possible to integrate differential forms over it, and thus to define
currents of the form

ω �→
∫

S
ω =

∫

S
ω(e1, . . . , em) dHm(x),

where (e1, . . . , em) is any direct orthonormal basis of the tangent space at x .

4.3.2 Integral Currents

There exist several categories of currents, but we are mainly mentioning the one we
use in this paper. An m-current T is said to be rectifiable if its support S = spt(T ) is
m-rectifiable, compact and oriented and if for every ω ∈ Dm(Rd), one has

T (ω) =
∫

S
μω,

whereμ(x) ∈ Z is the multiplicity and satisfies
∫

S μ(x) dHm(x) < ∞. Whenμ(x) =
k is constant, we denote T = k · S. Note that a current can be rectifiable without
having its boundary rectifiable. A current T is said to be integral if both T and ∂T are
rectifiable.

4.3.3 Flat Norm andMass

We can also define semi-norms over the set of currents. Themass M(T ) of am-current
T is given by

M(T ) = sup {T (ω) : ω ∈ Dm(Rd) and ∀ x ∈ R
d ‖ω(x)‖∗ ≤ 1},

where ‖ω(x)‖∗ = sup {ω(x)(ξ1, . . . , ξm) : ξi ∈ R
d , ‖ξi‖ ≤ 1}. The flat norm F(T )

of T is given by

F(T ) = inf

{

M(A) + M(B), T = A + ∂ B : A is m-rectifiable
B is (m + 1)-rectifiable

}

.

123



Discrete & Computational Geometry

4.3.4 Constancy Theorem

A key tool in the proof is the Constancy Theorem (see [13, 4.1.14] or [25, 3.13]). This
theorem is important since it implies that the multiplicity of a current supported on a
C1 submanifold is constant. We state it for integral currents in the case where there is
no boundary, even though it is true in a much more general setting.

Theorem 4.6 (Constancy Theorem) Let X be an m-dimensional oriented submanifold
of R

d of class C1 with no boundary. If T is an integral current supported in X with
no boundary, then there exists an integer λ such that

T (ω) = λ

∫

X
ω.

4.4 Proof of Theorem 4.2

The proof is based on the homotopy formula for currents and is in the same spirit as
the proof of [9]. We recall that the projection map πX : Xε → X is well defined and
differentiable since ε < reach(K ). We first build the Lipschitz map

f : Xε × R
3 → spt(N(X)),

(p, u) �→ (πX (p),nX (πX (p)).

Lemma 4.7 f� N(S,u) = N(X).

Proof By definition, f� N(S,u) is a 2-current supported in the set spt (N(X)). Since
N(S,u) has no boundary, f� N(S,u) also has no boundary. Furthermore, spt (N(X))

is of class C1, so by the Constancy Theorem (Theorem 4.6), one has f� N(S,u) =
λ · N(X), where λ is an integer. We know by assumption that there exists an open set
U such that πX : U ∩ S → X is injective. This implies that the restriction of f to
spt (N(S,u)) is one-to-one onto its image, so the constant λ = 1. �
Wedenote by D = N(S,u) � (B×R

3) the restriction of the current N(S,u) to B×R
3.

By Lemma 4.7, one has

f� D = f�
(
N(S,u) � (B × R

3)
) = N(X) � (πX (B) × R

3).

Let h be the affine homotopy between f and the identity:

h : [0, 1] × Xε × R
3 → R

3 × R
3,

(t, x) �→ (1 − t)x + t f (x).

In the remainder of the proof, in order to shorten equations, we put x = (p,u). Using
the affine homotopy formula for locally Lipschitzmap (see [23, p. 187] or [13, 4.1.14]),
one has

N(S,u) � (B × R
3) − N(X) � (πX (B) × R

3) = D − f� D = ∂ E − F,

123



Discrete & Computational Geometry

where E = h�(D × [0, 1]) and F = h�(∂ D × [0, 1]) are respectively 3-current and
2-current that satisfy

M(E) ≤ sup
x∈spt(D)

‖x − f (x)‖ · sup
x∈spt(D)

(1, ‖D f (x)‖2) · M(D),

M(F) ≤ sup
x∈spt(D)

‖x − f (x)‖ · sup
x∈spt(D)

(1, ‖D f (x)‖) · M(∂ D),

where the norm of the linear map D f (x) is ‖D f (x)‖ = sup‖h‖=1 D f (x) · h. By
definition of the flat norm one has

F(N(S,u) � (B × R
3) − N(X) � (πX (B) × R

3)) ≤ M(E) + M(F)

≤ sup
x∈spt(D)

‖x − f (x)‖ · sup
x∈spt(D)

(1, ‖D f (x)‖2) · (M(D) + M(∂ D)).

(1)
The following lemmas bound the terms involved in the right hand side term of the
previous equation.

Lemma 4.8 For every x ∈ spt(D), one has

‖x − f (x)‖ ≤
√

η2 + ε2 ≤ η + ε and max (1, ‖D f (x)‖2) ≤
(

1 + ρB

1 − ρBε

)2
.

Proof Clearly, by definition of the Euclidean norm, one has

‖x − f (x)‖ ≤
√

η2 + ε2 ≤ η + ε.

We can write f = g ◦ πX ◦ p1, where p1 : Xε × R
3 → Xε is the projection and

g : X → spt(N(X)) is given by g(p) = (p,nX (p)). Since for any p ∈ X , one has

‖DnX (p)‖ ≤ ρX (p), one gets ‖Dg(p)‖ ≤
√
1 + ρ2

B ≤ 1 + ρB . Using the fact that
‖DπX (x)‖ ≤ 1/(1 − ρX (πX (x))ε) for every x in Xε, one has by composition:

‖D f (x)‖ ≤ 1 + ρB

1 − ρBε
.

The conclusion follows from the fact that the upper bound is greater than 1. �

Lemma 4.9

M(D) ≤ (1 + L2
u)H2(B) + 2 arcsin

δu

2

∑

Si, j ⊂B

H1(Si, j ) + δ2ud3
max

2π
N S

v (B).
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Proof We can decompose the mass of D into three terms: the mass M f above the
relative interior of the faces Si of S, the mass Me above the relative interior of the
edges of Si, j , and the mass Mv above the vertices of S.

Above the Faces of S. We recall that the corrected normal cone NC(S0
i ,u) above the

interior S0
i of the face Si is parameterized by Γu : p ∈ S0

i �→ (p,u(p)). Since u is
Lu-Lipschitz on each face Si , the map Γu is

√
1 + L2

u-Lipschitz. The mass above S0
i

is given by the General Area-Coarea Formula [25, 3.13]

∫

NC(S0i ,u)

dH2 =
∫

S0i

J2(Γu) dH2 ≤
∫

S0i

√
1 + L2

u

2
dH2 = (1 + L2

u)H2(Si ),

where J2(Γu) denotes the 2-Jacobian. Summing over all the faces S0
i of S, one has

M f ≤ (1 + L2
u)H2(S).

Above the Edges of S. We recall that π : spt(N(s,u)) → R
3, defined by π(p, n) = p,

denotes the restriction to the support of N(S,u) of the projection onto the posi-
tion component. Note that the support of N(S,u) above an edge Si, j is given by
spt(N(S,u) � (Si, j × R

3)) = π−1(Si, j ). The Coarea Formula thus gives:

M
(
N(S,u) � (Si, j × R

3)
) =

∫

π−1(Si, j )

dH2

=
∫

Si, j

(∫

π−1(p)

1

J1(π)
dH1

)

dH1(p) =
∫

Si, j

H1(π−1(p)) dH1(p)

=
∫

Si, j

2 arcsin
‖ui (p) − u j (p)‖

2
dH1(p) ≤ 2 arcsin

δu

2
H1(Si, j ).

The third line follows from the fact that the 1-Jacobian of π satisfies J1(π) = 1 and
that π−1(p) is an arc of circle of length 2 arcsin (‖ui (p) − u j (p)‖/2). Summing over
all the edges Si, j one has

Me ≤ 2 arcsin
δu

2

∑

Si, j ⊂B

H1(Si, j ).

Above the Vertices of S. Let p ∈ B be a vertex of S. The support of the corrected cycle
N(S,u) � ({p} × R

3) above p obviously lies in the set {p} × S
2. By construction,

the multiplicity μ(n) of a point (p,n) lying in this support is an integer that satisfies
|μ(n)| ≤ deg(p), where deg(p) is the degree of p, namely the number of edges Si, j

incident to p.
By definition, one has ‖ui (p)−u j (p)‖ ≤ δu for every pair of adjacent faces i and j

containing p, which implies that the length of the boundary of the normal component
of the support of N(S,u) � ({p}×R

3) is at most L = δu deg(p). By the isoperimetric
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inequality on the sphere, since the support of the normal component above the point
p lies in half a sphere, its area is at most L2/(2π) ≤ δ2u deg(p)2/(2π). Therefore, one
has

M
(
N(S,u) � ({p} × R

3)
) =

∫

S2
|μ(n)| dH2(n) ≤ δ2u deg(p)2

2π
deg(p).

Summing over all the vertices of S ∩ ∂ B, one has

Mv ≤ δ2u

2π

∑

vertices p

deg(p)3 ≤ δ2ud3
max

2π
N S

v (B). �
Lemma 4.10

M(∂ D) ≤
√
1 + L2

u H1(∂ B) + 2dmaxN S
v (∂ B) arcsin

δu

2
.

Proof Since B = ⋃
i∈I Si is a connected union of faces Si , its boundary is a union

of edges Si, j where i ∈ I and j /∈ I . The boundary ∂ D of the restricted current
D = N(S,u) � (B × R

3) is supported on curves of two different kinds.
Above the relative interior of each Si, j ⊂ ∂ B, the support D is parameterized by

Γu j : S0
i, j → R

3 × R
3. One then has

M ((∂ D) � (S0
i, j × R

3)) =
∫

Γu j (S0i, j )

dH1 =
∫

S0i, j

J1(Γu j ) dH1

≤
∫

S0i, j

√
1 + L2

u dH1 ≤
√
1 + L2

u H1(Si, j ).

Above a vertex p of S ∩ ∂ B, the support of the D is the union of at most deg(p)

arcs of circles. Each such arc of circle is a geodesic between two vectors u j1(p) and
u j2(p), and is of length less than 2 arcsin (‖u j1(p) − u j2(p)‖/2) ≤ 2 arcsin(δu/2).
Therefore

M ((∂ D) � ({p} × R
3)) ≤ 2 deg(p) arcsin

δu

2
.

The result follows by summing over all the vertices and edges of ∂ B. �
End of proof of Theorem 4.2 Plugging the results of Lemmas 4.8, 4.9, and 4.10
with (1), one gets:

F (N(S,u) � (B × R
3) − N(X) � (πX (B) × R

3))

≤ (η + ε)

(
1 + ρB

1 − ρBε

)2

·
(

(1 + L2
u)(H2(B) + H1(∂ B)) + δ2ud3

max

2π
N S

v (B)
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+ 2 arcsin
δu

2

( ∑

Si, j ⊂B

H1(Si, j ) + dmaxN S
v (∂ B)

))

,

For every formω ∈ {ω0, ω1, ω2,�}, one has ‖ω‖ ≤ 2 and ‖dω‖ ≤ 4. Let i ∈ {0, 1, 2}.
One has

|μS
k (B) − μX

k (πX (B))|
= ∣

∣N(S,u) � (B × R
3)ωk − N(X) � (πX (B) × R

3)ωk
∣
∣

≤ sup (‖ωk‖, ‖dωk‖) · F (
N(S,u) � (B × R

3) − N(X) � (πX (B) × R
3)

)

≤ 4F (
N(S,u) � (B × R

3) − N(X) � (πX (B) × R
3)

)
,

which implies the result. �

5 Convergence of Curvatures on Digital Surfaces

Digital surfaces come from the sampling of Euclidean shapes in a regular grid. They
appear naturally when analyzing 3D images (coming from tomography or MRI). But
for estimating curvatures, the digital surfaces are the most challenging among all
discrete surfaces. As boundaries of union of cubes, their geometric normals can take
only six possible directions. We show in this section how our normalized corrected
curvatures provide accurate pointwise approximations of the curvatures of the original
Euclidean shape. More precisely, we show their multigrid convergence and give an
explicit speed of convergence.

We begin by recalling useful notions of digital geometry and establishing a few
lemmas linking the local geometry of the digitized surface and the local geometry of
the continuous surface. We will then use the stability result of the previous section to
establish multigrid convergence results.

In this section, let V be a compact domain of R
3 whose boundary X := ∂V is of

class C3. We assume that the reach of X is greater than ρ > 0. Let h > 0 be the
sampling gridstep of the regular grid hZ

3. The Gauss digitization of V is defined as
Gh(V ) := V ∩hZ

3. Digital sets are subsets of hZ
3. Let us denote Qh

z the axes-aligned
cube of edge length h centered on a point z ∈ hZ

3. Digital sets can thus be seen as a
union of such cubes in R

3. We can now defined the digitized surface Xh of X := ∂V
at step h as the topological boundary of the Gauss digitization of V , seen as a union
of cubes:

Xh := ∂

⎛

⎝
⋃

z∈Gh(V )

Qh
z

⎞

⎠ .

We call surfel any square of edge length h that is the face of some Qh
z , with z ∈ Gh(V )

and that is included in Xh . We call linel any edge of a surfel.
In order to apply the stability result presented in the previous section, a few require-

ments are necessary: (i) the object S := Xh should be a surface (i.e., a 2-manifold),
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and (ii) there exists an open set U of the form U = π−1
X (V ) such that U ∩ S �= ∅ and

πX : U ∩ S → X is injective.
Concerning point (i), unfortunately, Xh is not a 2-manifold in general, even for

smooth and convex shapes V [32]. However Xh is almost a 2-manifold since the
places where it is not a 2-manifold tends to zero quickly as h tends to zero. We recall
[19, Thm. 2]:

Theorem 5.1 Let h < 0.198ρ, letting y ∈ Xh, then the digital surface Xh is locally
homeomorphic to a 2-disk around y if either (i) y does not belong to a linel of Xh,
or (ii) y belongs to a linel s of Xh and s ∩ X = ∅, or (iii) y belongs to a linel s of
Xh and there exists p ∈ s ∩ X but the angle αy between s and the normal to X at p
satisfies αy ≥ 1.260h/ρ.

So Xh may not be a manifold only when the normal of X is very close to one of the
axes. It is possible to fix locally the manifoldness of digital surfaces by making it
well-composed, either by subsampling the grid and doing majority interpolation [32],
or repairing the digital surface by adding voxels [30] or by splitting vertices and
edges [16]). All these transformations affect a very small part of the digital surface
according to the previous theorem. Therefore from now on we shall assume that Xh

is a 2-manifold.
As for point (ii), [19, Thm. 3] gives a positive answer to the existence of an open

set U where the projection is injective. Indeed the area on X , where the projection
πX : U ∩ Xh → X is not injective is proportional to Area(S)h and tends to zero.

The following results relate combinatorial properties of Xh to geometric properties.
In all the sections, we denote by B

R
p the ball centered at p and of radius R.

Lemma 5.2 Let p be an arbitrary point of Xh. Let B be the surfels of Xh that lie in
Xh ∩ B

R
p . Then the numbers Ns of surfels and Nb of boundary linels of B (the ones

bordering only one surfel of B) follow these bounds for radius R = K hα:

Ns = O(
h4α−3 + h2α−2), Nb = O(

hα−1 + h7α−3).

The proof of Lemma 5.2 relies on the following intermediary lemma.

Lemma 5.3 Under the same assumptions as in Lemma 5.2, one has

Xh ∩ ∂B
R
p ⊂ (

X ∩ ∂B
R
p

)O(h+h3α)
.

Proof of Lemma 5.3 Let x ∈ Xh∩∂B
R
p .We denote by ε theHausdorff distance between

X and its Gauss digitization Xh . It is known that ε = O(h). We put p′ = π(p) and
x ′ = π(x). We denote by C the geodesic starting at the point p′ and passing through x ′.
We first assume that x ′ ∈ B

R
p . In that case, the geodesic curve C is extended until it

reaches a point x̃ ∈ ∂B
R
p . Note that such a curve always exist if R is small enough. In

the following of the proof, we denote by Ca,b the shortest path on X between any two
points a and b and by �(Ca,b) its length. Since the length of a curve is greater than its
chord, we have

�(Cp′,x ′) ≥ ‖p′ − x ′‖ ≥ ‖p − x‖ − ‖x − x ′‖ − ‖p′ − p‖ ≥ R − 2ε.
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If R is small enough, then the line segment [p′, x̃] belongs to the offset Xr of X , where
r = reach(X) is the reach of X . By using the Lipschitz property of the projection map
π onto X (see Proposition 4.1), one gets

�(Cp′,x̃ ) ≤ �(π([p′, x̃])) ≤ ‖p′ − x̃‖
1 − ε̃/r

,

where ε̃ = maxw∈[p′,x̃] ‖w−π(w)‖ = O(R2). Since ‖p′−x̃‖ ≤ ‖p−x̃‖+‖p′−p‖ ≤
R + ε, one gets

�(Cx ′,x̃ ) = �(Cp′,x̃ ) − �(Cp′,x ′) ≤ (1 + O(R2))(R + ε) − R + 2ε

= O(R3 + R2ε + ε).

Since the curve is longer than its chord, R = O(hα), ε = O(h), we have

‖x ′ − x̃‖ = O(h3α + h2α+1 + h) = O(h3α + h).

If x ′ /∈ B
R
p , the same result holds with a similar proof. In that case the geodesic curve C

does not have to be extended and x̃ = C∩B
R
p . We deduce that ‖x − x̃‖ = O(h3α +h),

which ends the proof. �
Proof of Lemma 5.2 Let us first bound Ni . Since X is of class C2, the intersection of
X with a ball of radius R = K hα is contained in a box of dimensions (2R) × (2R) ×
O(R2). It is known that the digitized surface Xh is at a Hausdorff distance less than
h
√
3/2 from X [19, Thm. 1]. Hence the set B is included in a set of dimensions

(2R + 2h) × (2R + 2h) × (O(R2) + 2h). Since α ∈ (0, 1), we have h in O(hα).
Furthermore, since R = K hα , the set B is thus included in a domain of volume
O(hαhαhmin(2α,1)). This implies that the number of voxels intersecting B is less than
O(hmin(4α,2α+1)−3). This also implies that Ns = O(hmin(4α,2α+1)−3).

Let us now bound Nb. Every point x ∈ ∂ B belongs to a surfel that intersects
Xh ∩ ∂B

R
p , so is at a distance less than h

√
2/2 from X ∩ ∂B

R
p . By Lemma 5.3, one

has

∂ B ⊂ (
X ∩ ∂B

R
p

)O(h+h3α)
.

Since the length of X ∩ ∂B
R
p is in O(R), the volume of (X ∩ ∂B

R
p )O(h+h3α)

is O(R(h + h3α)2). The number of boundary edges Nb is of the same order than
the number of cubes of size h intersecting this volume so

Nb = O(R(h + h3α)2)

h3 = O(
hα−1 + h7α−3). �

Wemay now state our convergence result for the normalized corrected curvatures onto
digitized surfaces.
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Theorem 5.4 Let V be a compact domain of R
3 whose boundary X := ∂V is of

class C2,1. Let Xh be the boundary of the Gauss digitization of V with step h. Suppose
that the normal estimator satisfies δu = O(hβ) with β ≤ 1 and η = O(h2/3). Let
p ∈ Xh and B be the set of surfels of Xh contained in the ball centered at p and of
radius K hα (for arbitrary K > 0 and α ∈ (0, 1)). Then

|Ĥu(B) − H(πX (p))| = O(hγ ′
), |Ĝu(B) − G(πX (p))| = O(hγ ′

),

where γ ′ = min (α, 2β − 4/3, β − α − 1/3, 2α + 2β − 7/3, 5α + β − 7/3).

Remark 5.5 Note that for any β ∈ ]3/4, 1[, there exists α ∈ ]7/6 − β, β − 1/3[ such
that γ ′ > 0, which implies that we have the convergence of the pointwise mean and
Gaussian curvature measures.

Proof This proof relies on Corollary 4.5.We know that the Hausdorff ε between X and
the boundary of its Gauss discretization Xh is no greater than h

√
3/2, so ε = O(h).

By plugging ε = O(h), δu = O(hβ), η = O(h2/3) with β ≤ 1 in Corollary 4.5, one
gets

Δ := μ
S,u
0 (B) − μX

0 (πX (B)) = O(
h2/3(Nsh2β + Nbhβ)

)
.

Furthermore, since we are in the hypotheses of Lemma 5.2, we have bounds for
Ns = O(h4α−3 + h2α−2) and Nb = O(

hα−1 + h7α−3
)
. This leads to

Δ = h2αO(
h2α+2β−7/3 + h2β−4/3 + hβ−α−1/3 + h5α+β−7/3) = h2αO(hγ ),

where

γ = min

(

2α + 2β − 7

3
, 2β − 4

3
, β − α − 1

3
, 5α + β − 7

3

)

.

Using the fact that there exists a constant C such that μX
0 (πX (B)) ≥ Ch2α , one gets

μ
S,u
0 (B) = μX

0 (πX (B))(1 + O(hγ )).

Similarly, for k = 1, 2,

μ
S,u
k (B) = μX

k (πX (B)) + O(h2α+γ ).

Finally, we can relate our normalized mean curvature with the ratio of the mean
curvature measure and the area measure:

Ĥu(B) = − μ
S,u
1 (B)

2μS,u
0 (B)

= −μX
1 (πX (B)) + O(h2α+γ ))

2μX
0 (πX (B))(1 + O(hγ ))

= − μX
1 (πX (B))

2μX
0 (πX (B))

+ O(hγ ).

(2)
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It remains to relate this ratio of measures to the mean curvature at p′ := πX (p). Recall
that the surface is of class C2,1. From the proof of the preceding lemma, we know
that there are two real numbers R1 and R2 with DR1(p′) ⊂ πX (B) ⊂ DR2(p′), where
Dr (p′) is the geodesic disk centered at p′ of radius r , with R1, R2 = O(hα) and
R2 − R1 = O(h + h3α). Then we can write in geodesic polar coordinates

∫

DR1 (p′)
H dA =

∫ R1

0

∫ 2π

0
H(r , θ)r (1 + O(r)) dr dθ.

Since H is K -Lipschitz on DR1(p′) for some K > 0 one has

∣
∣
∣
∣
∣

∫

DR1 (p′)
(H(p) − H(p′)) dA(p)

∣
∣
∣
∣
∣
≤ K

∫

DR1 (p′)
‖p − p′‖ dA(p)

≤ K
∫ R1

0

∫ 2π

0
r (1 + O(r))r dr dθ

= O(R3
1) = O(h3α).

Similarly, the difference between the integrals over the two geodesic disks satisfies

∫

DR2 (p′)\DR1 (p′)
(H(p) − H(p′)) dA(p) = O(

R3
2 − R3

1

) = O(
h2α+1 + h5α)

so that

− 1

2
μX
1 (πX (B)) − H(p′)μX

0 (πX (B))

=
∫

DR1 (p′)
(H(p) − H(p′)) dA(p) + O(

h2α+1 + h5α)

= O(
h3α + h2α+1 + h5α) = O(

h3α + h2α+1)

and

μX
1 (πX (B)) = −2H(p′)μX

0 (πX (B)) + O(
h3α + h2α+1)

= −2H(p′)μX
0 (πX (B))(1 + O(hα + h)).

Finally,

− μX
1 (πX (B))

2μX
0 (πX (B))

= H(p′) + O(hmin(1,α)). (3)

Combining (2) and (3) yields

Ĥu(B) = H(p′) + O(
hmin(1,α,2β−4/3,β−α−1/3,2α+2β−7/3,5α+β−7/3))
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0. 11

II δu

VCM δu

(h )

Fig. 4 Experimental evaluation of the Lipschitz property of VCM and II normal vector estimators as a
function of the gridstep h. Asymptotic behavior is observed when reading the graph from right to left. It is
observed that δu ≤ O(h) for both estimators

= H(p′) + O(
hmin(α,2β−4/3,β−α−1/3,2α+2β−7/3,5α+β−7/3)

)
.

The same holds for the Gaussian curvature. �

Remark 5.6 The above bound η = O(h2/3) has been established in [22] for the normal
vector estimator based on digital integral invariants. Note that β = 1 is the optimal
convergence rate, since it is the one obtained by taking the ground truth normal,
i.e., taking the normal at the projection on X . There is yet no formal proof that any
digital normal vector estimator is Lipschitz (which implies β = 1). However, we have
run simulations and both Voronoi Covariance measure [11, 24] and digital Integral
Invariant [22] appear to be Lipschitz normal estimator (see Fig. 4).

Remark 5.7 If we choose u as the normals estimated by digital integral invariant nor-
mal estimator and we assume β = 1, then the previous theorem implies that, when
the set B of surfels is taken in a ball of center p and radius K h1/3, then the mean
corrected curvature Ĥu(B) (resp. the Gaussian corrected curvature Ĝu(B)) tends to
the mean curvature H(πX (p)) (resp. to the Gaussian curvature G(πX (p))) with a
speed O(h1/3). In the terminology of [18], Ĥu (resp. Ĝu) is a multigrid convergent
mean (resp. Gaussian) curvature estimator.

In the following section, we perform a comparative evaluation of our curvature esti-
mators. Although we have checked that they are indeed convergent for a radius K h1/3

with a speed at leastO(h1/3), we will run our experiments with a much smaller radius
K h1/2 (see Figs. 5 and 6). Indeed it provides not only faster estimators but also a
slightly better error bound in practice, closer to O(h2/3). The reason is still investi-
gated.
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Fig. 5 Experimental evaluation of the asymptotic error of mean curvature along a digitized polynomial
shape (“Goursat”, see the next section) as a function of the gridstep h. Convergence behavior is observed
when reading the graph from right to left, where smaller values of h are located. We check two different
exponents α of the computation radius K hα : α = 1/3 and α = 1/2. Thick lines represent �∞-error,
thin lines represent �2-error. Theoretically α = 1/3 should be the best choice and implies a �∞-error of
O(h1/3). In practice, the error is smaller and seems below O(h1/2). Furthermore, even better results are
achieved when choosing α = 1/2

6 Experimental Evaluation on Digital Surfaces

We present here a series of experiments which demonstrates that the corrected
measures provide accurate and stable curvature information.We do not evaluate exper-
imentally the accuracy of measures themselves (which are already established through
our main theorem), but the much more difficult problem of pointwise mean and cur-
vature inference. As a stressful testbed that maximizes the difficulty of estimating
curvatures, we evaluate the accuracy of the normalized corrected mean curvature Ĥ
and the normalized Gaussian curvature Ĝ on digital surfaces (see Definition 3.4).
Indeed, their canonical normal vectors can only take six different values. Last, we
compare our new approach with the state-of-the-art method of [7, 22], which is based
on digital integral invariants. We also show that the normal cycle approach [8, 9, 34,
36] is neither accurate nor convergent for digital surfaces.

6.1 Methodology of Evaluation on Digitizations of Polynomial Surfaces

We evaluate the accuracy of our geometric estimators on the digitization of implicitly
defined polynomial shapes X , in order to have ground-truth curvatures. Let us detail
our methodology for evaluating our new curvature estimators.
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Fig. 6 Experimental evaluation of the asymptotic error of Gaussian curvature along a digitized polynomial
shape (“Goursat”, see next section) as a function of the gridstep h. Convergence behavior is observed when
reading the graph from right to left, where smaller values of h are located.We check two different exponents
α of the computation radius K hα :α = 1/3 andα = 1/2. Thick lines represent �∞-error, thin lines represent
�2-error. Theoretically α = 1/3 should be the best choice and implies an �∞-error ofO(h1/3). In practice,
the error is smaller and seems belowO(h1/2). Furthermore, even better results are achieved when choosing
α = 1/2

6.1.1 Ground-Truth Surfaces

We shall test shapes whose boundary is at least twice differentiable. As a rep-
resentative example, we choose the “Goursat” implicit polynomial shape X :=
{(x, y, z) ∈ R

3 : P(x, y, z) ≥ 0}, with P(x, y, z) := 4−0.015(x4 + y4 + z4)+ x2 +
y2 + z2.

Its minimal, mean and maximal mean curvatures are respectively approximately
−0.1070, 0.0956, 0.3448. Its minimal, mean and maximal Gaussian curvatures are
respectively approximately −0.0337, 0.0080, 0.1189. Its reach is greater than 2.9.

6.1.2 Input Digitized Surfaces

We digitize a shape X using Gauss digitization Gh(X) := X ∩ hZ
3 at several grid-

steps h. If we see the discrete setGh(X) as a union of axis-aligned cubes of edge-length
h centered on those points, its topological boundary is then a union of axis-aligned
squares of edge-length h that forms a digital surface (e.g. see [19]). We denote it by
∂h X . As illustrated in Fig. 7, digitized surfaces ∂h X tends toward the smooth surface
∂ X in Hausdorff distance. In fact they are a Hausdorff approximation of ∂ X at distance
less than h

√
3/2 [19]. However their natural normal vectors n do not tend toward the

normal vectors of the smooth surface, since they can take only six different values
whatever is h.
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Fig. 7 Illustration of “Goursat” polynomial surface, from left to right: smooth surface, its corresponding
digitized surfaces at h = 0.5, h = 0.25, h = 0.125

6.1.3 Input Corrected Normal Vector Field u

We must estimate the field u solely from the input digitized surface ∂h X . We will use
several normal vector estimators in the experiments, in order to show the importance
of having a convergent estimator but also to show that our method gives stable results
for any convergent u:

– Trivial normal estimator (TN): this estimator just replicates n (i.e., u = n). We use
it in experiments since our measures become then equivalent to the normal cycle
[8, 9, 34, 36].

– Digital Integral Invariant normal estimator (II): this estimator provides a conver-
gent normal vector field u for a certain family of parameters [22]. It depends on
a radius of integration parameter r := khα . As shown by our experiments, the
values α = 0.5 and r = 3 provide both good and stable results.

– Voronoi Covariance Measure normal estimator (VCM): this estimator provides a
convergent normal vector field u for a certain family of parameters [10, 11]. It
depends on a radius of integration parameter r := khα , which we set exactly as
parameter r of II, and on a distance of computation R := K hα , where K = 10
gives good results.

6.1.4 Estimated Curvatures

We will estimate the accuracy and stability of the following curvatures estimators:

– Normalized corrected mean curvature (Ĥu) and Gaussian curvature (Ĝu): since
they are ratios of measures, we must choose a Borel set on which measures are
computed. For any point p ∈ ∂h X , we simply compute Ĥu(p) := Ĥ(Bρ(p)) =
μ1(Bρ(p))/μ0(Bρ(p)) and Ĝu(p) := Ĝ(Bρ(p)) = μ2(Bρ(p))/μ0(Bρ(p)),
where ρ := mhβ . As shown by our experiments, the values β = 1/2 and m = 3
provide both good and stable results. We use the corrected normal field u given
either by II or VCM normal estimators (in both cases, r = 3h1/2 is used).

– Digital integral invariant mean and Gaussian curvature estimators (Ĥ II) and (ĜII):
both are parameterized by the radius r ′ of integration. Experiments show that for
r ′ = k′hα′

, we must set α′ = 1/3 (and no greater value) to get convergence and
set k′ = 6 to minimize estimation errors.
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– Normal Cycle mean and Gaussian curvatures (ĤNC) and (ĜNC): they are defined
similarly with Ĥu and Ĝu except that we use the Trivial Normal estimator to
compute u, i.e., ĤNC := Ĥn and ĜNC := Ĝn.

6.1.5 Measuring �2- and �∞-Errors

Curvatures are estimated at the centroid p of each surfel element (the squares that
form the digitized shape boundary), and are compared to the curvatures of the point
q ∈ ∂ X that is closest to p. Note that q = π(p) since p is in the reach of ∂ X . For
instance, letting σ be the set of centroids of the surfel of ∂h X , we define the errors
between Ĥ and H as:

�2(Ĥu) :=
√

1

|σ |
∑

p∈σ

(Ĥu(p) − H(π(p)))2,

�∞(Ĥu) := max
p∈σ

|Ĥu(p) − H(π(p))|.

Note that when �∞-error tends to zero as h tends to zero implies the classical multigrid
convergence. It also implies that �2-error tends to zero.

6.1.6 Robustness to Noise

In practical application, input data are rarely perfect digitizations and may be cor-
rupted by noise. We have used a noise model parameterized by a probability p, which
perturbates the input voxels according to their distance to the exact digitized bound-
ary. More precisely, if δ is the discrete distance of the voxel to its nearest boundary
point (minimum distance is 1), then this voxel has a probability of pδ to be flipped
inside/out.

6.2 Evaluation of Mean Curvature Estimator Ĥu

6.2.1 Asymptotic Behavior of Ĥu and Normal Cycle ĤNC

First wemeasure both the �∞- and �2-errors of our proposed mean curvature estimator
Ĥu. We further test several normal estimators for u: II, VCM, and TN. Results are
displayed in Fig. 8. Graphs show an experimental convergence speed of O(h2/3), II
and VCM normals. It shows also that the normal cycle method is not convergent, since
Ĥu with TN corresponds to the normal cycle mean curvature ĤNC.

6.2.2 Comparative Evaluation of Ĥu and ĤII

We now compare the �∞- and �2-errors of Ĥu with the ones of Ĥ II, which is the
state-of-the-art method for digital surface curvature estimation. We use the II normal
estimator for Ĥu with r = 3h1/2. Results are shown in Fig. 8. First it confirms that
Ĥ II is not convergent if its parameter r follows some �(h1/2). Secondly we do obtain
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2/3)
0.001

0.01

0.1

0. 11

Respective ∞ - and 2 -errors of Ĥ u and Ĥ II
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Fig. 8 (Left) Asymptotic errors of mean curvature estimations by Ĥu along the “Goursat” shape, when
changing the digital normal vector estimator: II and VCM are convergent normal estimators (see text), TN
is the canonical normal vector, and it corresponds to the Normal Cycle mean curvature estimator (ĤNC).
(Right) Respective asymptotic errors of mean curvature estimations by Ĥu and Ĥ II along the “Goursat”
shape. In both figures, �∞-errors are drawn with thick lines, �2-errors are drawn with thin lines

a convergence speed of �(h1/3) for bigger radii r = �(h1/3). Last our new estimator
Ĥu has a much faster convergence, approximately �(h2/3), despite the fact that both
the integration radius r for u and the integration radius ρ for Ĥu are much smaller,
i.e., 3h1/2.

We further illustrate the differences of the two estimators Ĥu and Ĥ II by displaying
the estimated mean curvatures and the localization of errors on several digitizations of
“Goursat” on Fig. 9. It is clear that errors are mostly localized on places of extremal
curvatures, but our estimator converges much faster everywhere visibly and does not
oscillate around the correct value.

Last,wemeasure the stability of both estimatorswith respect to their parameters. For
Ĥu, we measure the �∞-error when changing k in the radius r := kh1/2 and changing
m in the radius ρ := mh1/2. For Ĥ II we simply change k in the radius r := kh1/3. See
Fig. 10. First, the results show that the exponents chosen for the gridstep are consistent
(best results are achieved for the same constant at a finer scale). It confirms that integral
invariant methods require a radius of integration that is much larger asymptotically.
Secondly it shows that our method is more stable with respect to parameter settings.
We have almost the same errors in the range (k, m) ∈ [2.5, 4] × [2.5, 6].

6.2.3 Evaluation of Ĥu on Digital Shapes

We also run our method on digitizations of classical shapes (“dragon” and
“octaflower”), trying several parameters (here we checked several initial gridsteps)
such that Integral Invariant and Normal Cycle methods give the best possible results.
Outputs are displayed in Figs. 11 and 12. It is clear that both ĤNC and Ĥ II oscil-
late around the correct solution (see black random or moiré patterns on both figures,
whichever the resolution). On the contrary, Ĥu is stable in zero-curvature regions (like
on the octaflower) while accurately delineating the small scales of the Chinese dragon.
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Ĥ

u
E

rr
o

r
|H

−
Ĥ
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Fig. 9 Illustration of the accuracy of mean curvature estimators Ĥu and Ĥ II at different resolutions: 1st
row is ground-truth H , 2nd row is our approach Ĥu, 3rd row is its local estimation error |Ĥu − H |, 4th row
is integral invariant approach Ĥ II, 5th row is its local estimation error |Ĥ II − H |. Curvatures are displayed
with colors from dark blue (−0.3) to white to red (0.3), except a black band at [−0.01; 0.01]. Errors are
displayed with colors from white (0) to red (0.025) to black (0.05)
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Fig. 10 Stability of Ĥu and Ĥ II with respect to parameters and gridstep. Estimator Ĥu is parameterized
by the integration radius r := kh1/2 of its normal estimator u = II and by the measure radius ρ := mh1/2.
We plot �2- and �∞-errors of Ĥu − H as a function of k and m. Estimator Ĥ II is parameterized by the
integration radius r ′ := k′h1/3. We plot �2- and �∞-errors of Ĥ II − H as a function of k′ (displayed as 2d
plot to make easier the comparison)

6.2.4 Robustness to Noise of Ĥu

Last we have checked the robustness to noise of our mean curvature estimator Ĥu.
Experiments show that our method is mostly sensitive to the quality of the input
corrected normal vector field u. On the one hand VCM normal estimator is relatively
accurate but more unstable than II normal estimator. On the other hand, II normal
estimator is inaccurate at places with sharp features (as one can see on the outer
parts of the screw of “octaflower”). We should certainly in this case use smarter
normal estimators, like the AT normal vector method of [6], which is able to compute
piecewise smooth normal vector field, or a normal estimator which takes into account
the digital nature of the input shape, like the plane-probe algorithms of [20, 21].
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Fig. 11 Comparison of mean curvature estimators Ĥu, ĤNC, and Ĥ II on classical digital shapes at two
different resolutions. We choose parameters according to Sect. 6.1, setting h = 1 for “dragon 2563” and
naturally h = 0.5 for “dragon 5123”. Curvatures are displayed with colors from dark blue (−0.3) to white
to red (0.3), except a black band at [−0.01; 0.01]

6.3 Evaluation of Gaussian Curvature Estimator Ĝu

6.3.1 Asymptotic Behavior of Ĝu and Normal Cycle ĜNC

Then we measure both the �∞- and �2-errors of our proposed Gaussian curvature
estimator Ĝu. We further test several normal estimators for u: II, VCM, and TN.
Results are displayed on Fig. 14. Graphs show again an experimental convergence
speed ofO(h2/3) for II and VCM normals. It shows also that the normal cycle method
is not convergent, since Ĝu with TN corresponds to the normal cycle Gaussian curva-
ture ĜNC.

6.3.2 Comparative Evaluation of Ĝu and ĜII

We compare the �∞- and �2-errors of Ĝu with the ones of ĜII, which is also the
state-of-the-art method for digital surface curvature estimation. We pick the same
parameterization as in the previous paragraph for all estimators. We observe the same
behaviour of Ĝu with respect to ĜII: much faster convergence speed with small inte-
gration radii.

We further illustrate the differences of the two estimators Ĝu and ĜII by displaying
the estimated Gauss curvatures and the localization of errors on several digitizations
of “Goursat” in Fig. 15. It is clear that errors are mostly localized on places of extremal

123



Discrete & Computational Geometry
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Fig. 12 Comparison of mean curvature estimators Ĥu, ĤNC, and Ĥ II on classical digital shapes at two
different resolutions. We choose parameters according to Sect. 6.1, setting h = 0.5 for “octaflower 2563”
and naturally h = 0.25 for “octaflower 5123”. Curvatures are displayed with colors from dark blue (−0.2)
to white to red (0.2), except a black band at [−0.005; 0.005]

curvatures, but our estimator converges much faster everywhere visibly and does not
oscillate around the correct value.

6.3.3 Evaluation of Ĝu on Digital Shapes

We also check Gaussian curvature estimators Ĝu, ĜNC, and ĜII on the same classical
shapes as in the previous subsection. Results are displayed in Figs. 16 and 17; keeping
the same parameters as above. We also observe the oscillations and moiré patterns
in Ĥ II estimations. Furthermore the Normal Cycle estimator ĜNC is clearly incorrect
and gives only extremal results. This is because ĜNC takes into account solely six
possible normals.

6.3.4 Robustness to Noise of Ĝu

Last we have checked the robustness to noise of our Gaussian curvature estimator Ĝu.
Experiments show that our method is mostly sensitive to the quality of the input
corrected normal vector field u. On the one hand VCM normal estimator is relatively
accurate but more unstable than II normal estimator. On the other hand, II normal
estimator may be inaccurate at places with sharp features (as one can see on the outer
parts of the screw of “octaflower”). As already said in the previous section, we should
certainly in this case use smarter normal estimators [6, 20, 21].
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Ĥ

u ,
u

=
V

C
M

,
r

=
6
h1

/2
,

R
=

2
0
h1

/2
Ĥ
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Fig. 13 Robustness to noise of our mean curvature estimator Ĥu. Noise with parameter p (see text) was
added to the digital shape“octaflower 2563”. The gridstep was set to h = 0.5 for parameterizing the
estimators. Curvatures are displayed with colors from dark blue (−0.2) to white to red (0.2), except a black
band at [−0.005; 0.005]
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Ĝu with u = II
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Fig. 14 (Left) Asymptotic errors of Gaussian curvature estimations by Ĝu along the “Goursat” shape, when
changing the digital normal vector estimator: II and VCM are convergent normal estimators (see text), TN is
the canonical normal vector, and it corresponds to the Normal Cycle Gaussian curvature estimator (ĜNC).
(Right) Respective asymptotic errors of Gaussian curvature estimations by Ĝu and ĜII along the “Goursat”
shape. In both figures, �∞-errors are drawn with thick lines, �2-errors are drawn with thin lines
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Fig. 15 Illustration of the accuracy of Gaussian curvature estimators Ĝu and ĜII at different resolutions:
1st row is ground-truth G, 2nd row is our approach Ĝu, 3rd row is its local estimation error |Ĝu − G|,
4th row is integral invariant approach ĜII, 5th row is its local estimation error |ĜII − G|. Curvatures are
displayed with colors from dark blue (−0.1) to white to red (0.1), except a black band at [−0.002; 0.002].
Errors are displayed with colors from white (0) to red (0.0125) to black (0.025)
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Fig. 16 Comparison of Gaussian curvature estimators Ĝu, ĜNC, and ĜII on classical digital shapes at two
different resolutions. We choose parameters according to Sect. 6.1, setting h = 1 for “dragon 2563” and
naturally h = 0.5 for “dragon 5123”. Curvatures are displayed with colors from dark blue (−0.05) to white
to red (0.05), except a black band at [−0.0005; 0.0005]

6.4 Practical Computation Times of Our Curvature Estimators

We note first that the computation times of the measures μ0, μ1, μ2, μ�, and μX,Y
per cell are linear with the number of cells and are extremely fast. Their running times
are negligible with respect to the estimation of corrected normal vector field or their
integration in a ball a radius ρ (2% when N ≈ 1e3, 0.01% when N ≈ 4e6). Secondly,
computation times for Gaussian curvature estimator Ĝu or principal directions is
almost the same as the one of Ĥu and ĜII, and are thus not displayed.

We have plotted the measured computation times of our mean curvature estimator
Ĥu, first as a function of the number of surfels of the digitized boundary, and after
as a function of the accuracy (see Fig. 19). Running times for all estimators were
measuredwith amono-threadedCPU implementation on an average server (Intel Xeon
Gold 6128 processor, 3.4GHz, cache memory 19.25Mb, each thread is evaluated
at 6785.92 bogomips). In both cases, our approach clearly outperforms the digital
Integral Invariant approach of [7, 22]. We have not compared with the execution times
of Normal Cycle method, since ĤNC is not accurate. Note that using VCM normal
estimator instead of II normal estimator to compute u is faster for large digital shapes,
but requires more memory.

To sum up, our method has an experimental complexity in �(n3/2) compared to
Integral Invariant method that has an experimental complexity in �(n2). Our code
could be further optimized in the integration step of the measures μk by reusing the
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Fig. 17 Comparison of Gaussian curvature estimators Ĝu, ĜNC, and ĜII on classical digital shapes at two
different resolutions. We choose parameters according to Sect. 6.1, setting h = 0.5 for “octaflower 2563”
and naturally h = 0.25 for “octaflower 5123”. Curvatures are displayed with colors from dark blue (−0.05)
to white to red (0.05), except a black band at [−0.0005; 0.0005]

results of a neighboring point, as it is already done in Integral Invariant method. Last,
for a given accuracy, our method is even much faster (5000 times faster than II to
achieve 0.0065 �2-accuracy).

7 Conclusion

We have proposed a sound mathematical framework for defining area and curvature
measures over rather general surfaces. We have also shown that these measures are
stable with an error proportional to the sum of the position error and the normal error.
This framework induce sound definitions of curvatures on polyhedral surfaces, which
are easy and fast to compute. We have evaluated extensively the numerical accuracy
of our approach on digital surfaces, which are polyhedral surfaces with bad naive
normals. It shows that our method is also effective and accurate in practice.

We are currently adapting the anisotropic curvature measures introduced in [8, 9]
(see also textbook [26]) to our framework. These new measures give estimates of
principal curvatures and principal directions, which are also stable and convergent by
the same principles stated in Sect. 4. These works will be the focus of a forthcoming
paper. Preliminary results are displayed in Fig. 20. We are also currently investigating
smooth corrected normal vector field obtained by interpolation, which may reveal to
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Fig. 18 Robustness to noise of our Gaussian curvature estimator Ĝu. Noise with parameter p (see the text)
was added to the digital shape“octaflower 2563”. The gridstep was set to h = 0.5 for parameterizing the
estimators. Curvatures are displayed with colors from dark blue (−0.05) to white to red (0.05), except a
black band at [−0.0005; 0.0005]
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Fig. 19 Computation times of curvature estimators Ĥu and Ĥ II as a function of the number of surfels of
the input digitized boundary (left) or as a function of the �2-error (right)
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Fig. 20 Computation of principal directions (represented as sticks) and principal curvatures (same colormap
as in “Goursat” figures) with a corrected anisotropic curvature measure. Top row: first (left) and second
(right) principal directions with u = VCM. Second row: expected first (left) and second (right) principal
directions

be even more accurate than piecewise constant corrected normal vector field, both
theoretically and practically.
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