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1. Comparison between interpolated and non-interpolated

corrected normal currents

In this section we numerically compare the corrected normal cur-

rent with piecewise constant u as studied in [LRT19] (called con-

stant per face CNC) with the proposed corrected normal current

with prescribed u at vertices and interpolation on faces (called in-

terpolated CNC). We evaluate the two methods on a digitized torus

as illustrated on Figure 1 (see the “PRIMAL” surface of Sect. 3

for a formal definition). For large measure radius ρ, curvature esti-

mations are very similar, but the interpolated CNC is clearly more

accurate for small measure radius. It also remains meaningful for

zero measure radius, while the constant per face CNC is zero al-

most everywhere.

The interpolated corrected curvature measure is thus more ver-

satile than the constant per face approach, the former being as ac-

curate as the latter for regular measure radius while staying mean-

ingful for radius tending toward zero.

2. Accuracy of curvatures for different discretizations of the

same shape

Now we compare the sensitivity of mean curvature estimators to

different polygonal approximation of the same shape, here a torus

of big radius 3 and small radius 1. We evaluate mean curvature es-

timations of Ĥcnc and Ĥrz (not Ĥnc since we have already shown in

the paper that it is less accurate than our method). We consider

meshes that are sampling of the torus (meshed torus, 3-twisted

meshed torus) and meshes that are solely approximation of the

torus (noisy torus, digital torus). Figure 2 shows that Rusinkiewicz

estimator Ĥrz is slightly better than our method on clean mesh sam-

pling of the torus, but our estimator Ĥcnc outperforms it in more

difficult situations, and is always more accurate when the measure

radius is well adapted to the mesh size and the perturbation of the

data.

3. Pointwise convergence of curvature estimators on

discretized polynomial surfaces

In this section we evaluate quantitatively the pointwise conver-

gence of our curvature estimators, and we compare them with

Rusinkiewicz’s method [Rus04] and Cohen-Steiner and Morvan

Normal Cycle method [CSM03]. We have a ground-truth C∞ poly-

nomial surface S, here a “Goursat” polynomial 3(x4 + y4 + z4)−
200(x2 + y2 + z2) = 800. In order to build meshes approximating

this surface with finer and finer sampling and to vary their quality of

sampling/approximation, we consider the four kinds of polygonal

meshes illustrated in Figure 3.

For the sake of completeness, we first recap some definitions.

For an arbitrary gristep h, the h-digitized shape Zh of S is defined

as {x ∈ hZ3,S(x) ≤ 0}. The “PRIMAL” surface is the topologi-

cal boundary of the voxels of Zh, seen as a union of cubes with

side length h, generally called a digital surface. It does not sample

S and its canonic normals are bad whatever h. The “PPRIMAL”

surface is obtained by projecting “PRIMAL” vertices and cell com-

binatorics onto S and is thus a sampling of S. The “DUAL” surface

is the dual mesh to “PRIMAL”. The “PDUAL” surface is obtained

by projecting “DUAL” vertices and cell combinatorics onto S and

corresponds to the “Marching-cubes” surface of the polynomial im-

plicit function.

The “PRIMAL” surface is an interesting testbed for curvature

estimators, since it is not a sampling of S but just an Hausdorff

approximation, with extremely poor geometric normals (six possi-

ble vectors). However each edge has a length h and each face is

a square, so it is a very regular mesh. For the “PRIMAL” surface,

mean and Gaussian curvature errors are displayed on Figure 4 and

principal curvatures errors are displayed on Figure 5. Here the nor-

mal vector field u is given by digital Integral Invariant normal esti-

mator [CLL14], otherwise results with geometric normals would be

much worse and not convergent. Clearly, our estimators outperform

the others by several orders of magnitude and are convergent.

Like the “PRIMAL” surface, the “DUAL” surface is not a sam-

pling of S but just an Hausdorff approximation (although a bet-

ter one), with a limited number of possible geometric normals (but
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Figure 1: Gaussian curvature estimation with true normals (expected min = −0.125, max = 0.0625) on torus shape with gridstep h = 0.25.

Top two rows is the proposed interpolated corrected normal current Ĝcnc, with u prescribed at vertices as digital Integral Invariant [CLL14],

and interpolated on faces. Bottom two rows is the corrected normal current with a constant u per face prescribed as digital Integral Invariant,

and using the formula of [LRT19] to compute curvatures accross edges and vertices. Curvature displayed in colormap: blue −0.125, white

0, red 0.125 except black zone in interval ]−0.01,0.01[. Absolute error displayed in colormap: white 0, red 0.02, black 0.04.
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Figure 2: Mean curvature estimation and estimation errors on a torus shape approximated by different meshes. Left and middle left, u is given

by geometric normals. Middle right, u is given by averaging 4 times the geometric normals. Right, u is given by digital Integral Invariants.

Curvature displayed in colormap: blue −0.3, white 0, red 0.3 except black zone in interval ]− 0.01,0.01[. Absolute error displayed in

colormap: white 0, red 0.05, black 0.1.
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(a) Goursat surface (b) “PRIMAL” Goursat (c) “PPRIMAL” Goursat (d) “DUAL” Goursat (e) “PDUAL” Goursat

Figure 3: Possible input shapes for convergence tests, given input polynomial Goursat surface 3(x4 + y4 + z4)− 200(x2 + y2 + z2) = 800

digitized at gridstep h = 1: (a) continuous polynomial surface, (b) digital surface bordering interior voxels, (c) projection of “PRIMAL”

vertices onto continuous surface, (e) dual surface to “PRIMAL” surface, (e) projection of “DUAL” vertices onto continuous surface.
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Figure 4: Pointwise convergence for mean curvature H (top row) and Gaussian curvature G (bottom row) on “PRIMAL” Goursat: in

abscissa, parameter h giving the sampling grid step (left: finest scale, right: coarsest scale). Normals u given by Integral Invariant. Left:

`∞-error, Right: `2-error.

much more than “PRIMAL”. Edges are also quite regular (four pos-

sible edge lengths), so it is quite a regular mesh. For the “DUAL”

surface, mean and Gaussian curvature errors are displayed on Fig-

ure 6 and principal curvatures errors are displayed on Figure 7.

Here the normal vector field u is given by digital Integral Invari-

ant normal estimator [CLL14], otherwise results with geometric

normals would be much worse and not convergent. Clearly, our

estimators outperforms the others and are convergent. The normal

cycle mean curvature estimator also looks convergent (the version

using u, not the orginal normal cycle), but less accurate than our

estimator.

The “PPRIMAL” is a sampling of the continuous surface S, with

vertices lying on S and quite good normals. However some edges

can be small and some faces can be very thin, which pose a lot

of problems to Rusinkiewicz method. For the “PPRIMAL” surface,

mean and Gaussian curvature errors are displayed on Figure 8 and

principal curvatures errors are displayed on Figure 9. Here the nor-

mal vector field u is given by the geometric normals. Clearly, our

estimators outperforms almost always the others and are conver-

gent.

The “PDUAL” is a sampling of the continuous surface S, with

vertices lying on S, with the combinatorics of “DUAL”, and bet-

ter normals than “PPRIMAL”. It is very close to the classical

Marching-Cubes surface, with corrected topology, and it is the

nicest mesh to process. For the “PDUAL” surface, mean and Gaus-

sian curvature errors are displayed on Figure 10 and principal cur-
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Figure 5: Pointwise convergence for first principal curvature κ1 (top row) and second principal curvature κ2 (bottom row) on “PRIMAL”

Goursat: in abscissa, parameter h giving the sampling grid step (left: finest scale, right: coarsest scale). Normals u given by Integral

Invariant. Left: `∞-error, Right: `2-error.
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Figure 6: Pointwise convergence for mean curvature H (top row) and Gaussian curvature G (bottom row) on “DUAL” Goursat: in abscissa,

parameter h giving the sampling grid step (left: finest scale, right: coarsest scale). Normals u given by Integral Invariant. Left: `∞-error,

Right: `2-error.
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Figure 7: Pointwise convergence for first principal curvature κ1 (top row) and second principal curvature κ2 (bottom row) on “DUAL”

Goursat: in abscissa, parameter h giving the sampling grid step (left: finest scale, right: coarsest scale). Normals u given by Integral

Invariant. Left: `∞-error, Right: `2-error.
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‖Ĥnc −H‖∞, u=Geom, ρ = 3h
1
2

Θ(h
2
3 )

0.001

0.01

0.1

0.1 1

`2-errors for H on ”PPRIMAL” Goursat
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‖Ĝrz −G‖∞, u=Geom
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Figure 8: Pointwise convergence for mean curvature H (top row) and Gaussian curvature G (bottom row) on “PPRIMAL” Goursat: in

abscissa, parameter h giving the sampling grid step (left: finest scale, right: coarsest scale). Normals u given by geometry of faces. Left:

`∞-error, Right: `2-error.
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Figure 9: Pointwise convergence for first principal curvature κ1 (top row) and second principal curvature κ2 (bottom row) on “PPRIMAL”

Goursat: in abscissa, parameter h giving the sampling grid step (left: finest scale, right: coarsest scale). Normals u given by geometry of

faces. Left: `∞-error, Right: `2-error.

vatures errors are displayed on Figure 11. Here the normal vec-

tor field u is given by the geometric normals. When the mesh is

very coarse, Rusinkiewicz gives better result (essentially because

the measure radius is too big at this scale). However, our estimators

are convergent and outperforms it for fine enough resolution.

4. Comparisons of curvature estimations on digital surfaces

In this section, we evaluate at a given resolution how the accu-

racy of curvature estimators is influenced by the prescribed normal

vector field u and by the radius of the measuring ball. Results are

summed up on Figure 12. Clearly, all methods benefit from a more

accurate normal vector field (u set to digital Integral Invariant in-

stead of geometric normals), but our method is the most accurate

when the measuring ball is set to an appropriate size. In fact, our

method is already more accurate than the others for a very small

measuring radius r = h (for a voxel edge length of h), but conver-

gence requires a bigger radius (see Section 3).

We also evaluate visually the accuracy of principal curvatures

and principal directions on digital surfaces (only for Normal Cycle

and our method since Rusinkiewicz method is too unstable for this

kind of mesh). As illustrated on Figure 13, Normal Cycle first prin-

cipal curvature is often overestimated while the second principal

curvature is unstable (sometimes wrongly negative, and vary a lot

along the sharp features of the “octaflower”). Directions are also

incorrect, for instance at the tip of the “octaflower”, where one can

see weird alignments with axes.

We can also compare the accuracy of principal curvatures and

principal directions when a ground truth polynomial surface is

known, both on a nice sampling mesh and on an approximating

digital surface. As illustrated on Figure 14, our estimators κ̂cnc
1 and

κ̂cnc
2 are more accurate on a polygonal surface that is a sampling of

the continuous surface, but competitive results can be obtained on

a coarse digital surface, provided a good prescribed normal vector

field is given as input. As one can see, taking a three-times smaller

integration radius for digital Integral Invariant made principal cur-

vatures estimator much more accurate.

5. Robustness to perturbations of positions and normals

We evaluate in this section how the accuracy of estimators is de-

graded by perturbations in the position of vertices and how the

prescribed normal vector field u counterbalances this perturba-

tion. As explained in the paper, we perturb the vertices of a given

mesh (here “Skull” dataset) with a uniform noise of size 0.9ē(v),
where ē(v) is the average length of edges incident to the vertex

v (local 90% noise). We tested several prescribed normals at ver-

tices (for n being the geometric normals): u is the geometrical

normals n, u is four times averaged the geometric normals, u is

given by Ambrosio-Tortorelli piecewise smooth normal approxi-

mation [CFGL16] with parameter λ = 0.01 and α = 0.05, u is

given by Ambrosio-Tortorelli piecewise smooth normal approx-

imation [CFGL16] with parameter λ = 0.01 and α = 0.01, and

last u is the geometric normals of the non-perturbed “Skull” mesh

(“perfect” u). We analyze the stability of principal curvatures es-

timates by extracting convex/concave/saddle zones. (See explana-

tion of colors on Figure 12 of the companion paper.) Results are

submitted to Eurographics Symposium on Geometry Processing (2020)
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‖Ĥrz −H‖2, u=Geom
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Figure 10: Pointwise convergence for mean curvature H (top row) and Gaussian curvature G (bottom row) on “PDUAL” Goursat: in

abscissa, parameter h giving the sampling grid step (left: finest scale, right: coarsest scale). Normals u given by geometry of faces. Left:

`∞-error, Right: `2-error.
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Figure 11: Pointwise convergence for first principal curvature κ1 (top row) and second principal curvature κ2 (bottom row) on “PDUAL”

Goursat: in abscissa, parameter h giving the sampling grid step (left: finest scale, right: coarsest scale). Normals u given by geometry of

faces. Left: `∞-error, Right: `2-error.
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Ĥrz [Rus04] Ĥcnc Ĥnc [CSM03]

n=Trivial n=II u=Trivial, ρ = 0 u=II, ρ = 0 u=II, ρ = 3h n=Trivial, ρ = 3h n=II, ρ = 3h
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Figure 12: Influence of prescribed normal vector field u and measuring ball ρ on the accuracy of mean and Gaussian curvature estimators

on digital surfaces. Curvature displayed in colormap: blue −0.3, white 0, red 0.3 except black zone in interval ]−0.01,0.01[. Absolute error

displayed in colormap: white 0, red 0.1, black 0.2.
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Figure 13: Principal curvatures and principal directions on digital surface “Octaflower-128” dataset.

submitted to Eurographics Symposium on Geometry Processing (2020)



10 J.-O. Lachaud & P. Romon & B. Thibert & D. Coeurjolly / Corrected curvature measures

u =Geom u =II, r = h
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Figure 14: Principal curvatures and principal directions estimations on different discretization of a surface “Goursat with holes” of implicit

equation x4 + y4 + z4 −8(x2 + y2 + z2)+30 = 0. Curvatures range from −1.7589 to 3.6865.

summed up on Figure 15 and Figure 16. Clearly, Rusinkiewicz es-

timators are too local when the mesh is too noisy. Normal cycle is

less stable than our method and has a hard time detecting saddle

zones (green). Our approach is the most stable and benefits from a

more accurate prescribed vector field.

6. Tests on LIDAR data

To conclude this supplementary material, we provide two sets of

experiments on LIDAR data, which present a lot of topological

inconsistencies. Mean curvature estimations for different radii of

measures are displayed on Figure 17. As expected, a too small ra-

dius (or zero) is too detailed and generally corresponds to noise in

data. Estimator Ĥcnc and Ĥnc are visually very similar. Principal

curvature estimation is illustrated on Figure 18, where we use these

estimations to delineate convex, concave and saddle parts. Again, a

too small radius of measure does not provide interesting insight on

the shape geometry. For bigger radii, our method is generally more

stable and sometimes more accurate. This is shown for instance

on the upper edge of the gun, where our method hesitates between

convex and cylindric parts, while Normal Cycle method sees this

edge only as convex.

However both methods show their limit on such data, where

manifold inconsistencies lead to the detection of weird concave

zone (in blue on gun with ρ = 0.2). These zones are related to bad

cavities in the data.
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u is n u is 4× averaged n u is AT,α = 0.05 u is AT α = 0.01 u is perfect reference

Figure 15: Stability of convex (red), concave (blue), hyperbolic (green), concave/convex cylindric (cyan/yellow) and flat parts (white) on

“Skull” dataset with increasing measure radius ρ ∈ (0,0.05,0.1,0.2) using corrected normal current κ̂cnc
1 and κ̂cnc

2 . (See explanation of

colors on Figure 12 of the companion paper.)
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u is n u is 4× averaged n u is AT,α = 0.05 u is AT α = 0.01 u is perfect reference

Figure 16: Stability of convex (red), concave (blue), hyperbolic (green), concave/convex cylindric (cyan/yellow) and flat parts (white) on

“Skull” dataset with increasing measure radius ρ ∈ (0,0.05,0.1,0.2) using Rusinkiewicz κ̂rz
1 and κ̂rz

2 (top) and otherwise Normal cycle κ̂nc
1

and κ̂nc
2 . (See explanation of colors on Figure 12 of the companion paper.)
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Figure 17: Mean curvature estimation on LIDAR data according to measure radius ρ. Prescribed vector field u is the geometric normal

vector field n.
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Figure 18: Convex (red), concave (blue), hyperbolic (green), concave/convex cylindric (cyan/yellow) and flat parts (white) estimation on

LIDAR data according to measure radius ρ. (See explanation of colors on Figure 12 of the companion paper.) Prescribed vector field u is the

geometric normal vector field n.
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