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Geometry of digital shapes

set of voxels ⊂ Zd possibly damaged data
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Geometry of digital shapes

set of voxels ⊂ Zd possibly damaged data

Underlying Euclidean shape ⊂ Rd ⇒ infer its differential geometry !
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Digitization Curvatures with DII VCM Surface integration Conclusion

What are properties kept by digitization ?
Shape in Rd Digitized shape in h · Zd Digitized shape in Rd

h h

X
∂X Gh(X )

[Gh(X )]h
∂[Gh(X )]h

digitization : any function that maps a subset X ⊂ Rd to a subset
of h · Zd , h is the sampling gridstep.
Question: what are topological and geometric properties kept by
digitization ?

Almost nothing is “kept”, a better word is “can be infered”.
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Multigrid convergence

For a fixed sampling grid h, nothing can be said !
A digital point may be anything... a disk, a cube, etc.
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Multigrid convergence

. . .
Gh(X ) Gh/2(X ) Gh/4(X ) . . .

To get properties on digitized shapes, you need:

specific families X of shapes in Rd : compact, smooth, convex, etc

specific digitization processes D: Gauss, Jordan, etc

a fine enough gridstep h < h0

Definition (multigrid convergence [Pavlidis 1982, Serra 1982])

Let X ∈ X. If E is some geometric quantity on X , then some discrete
geometric estimator Ê converges towards E , iff

∃h0, ∀0 < h < h0, ‖E(X )− Ê(Dh(X ), h)‖ ≤ τ(h), with lim
h→0

τ(h) = 0.
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Digitizations

Gauss digitization Gh(X ) Inner Jordan J−h (X ) Outer Jordan J+h (X )

(hZ)d ∩ X
{
z ∈ (hZ)d ,Qh(z) ⊂ X

} {
z ∈ Zd ,Qh(z) ∩ X 6= ∅

}
h

Lemma

J−h (X ) ⊂ Gh(X ) ⊂ J+h (X )

∂X ⊂ [J+h (X )]h \ Int[J−h (X )]h

We know where lies ∂X
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Looking for stability: volumes
h

X ⊂ Rd Dh(X )

√
dh-offset de ∂X

For X ⊂ Rd , Vol(X ) :=
∫
· ··
∫
X 1dx1 . . . dxd

For Z ⊂ (hZ)d , V̂ol(Z , h) :=
∑

Z 1hd

Theorem

Let X be a compact domain of Rd . Let D be any digitization process such that
J−h (X ) ⊂ Dh(X ) ⊂ J+h (X ). Digital and continuous volumes are related as
follows: ∣∣∣Vol(X )− V̂ol(Dh(X ), h)

∣∣∣ ≤ Vol(∂X
√

dh). (1)

Multigrid convergence only when ∂X is rectifiable !
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Looking for stability: distance

Hausdorff perturbation outliers

distance dK to a compact set K , projection ξK onto K

distance dK is Hausdorff stable

⇒ if Bh := ∂[Dh(X )]h is close to ∂X , then dBh is close to d∂X .

Stability of distance used in computational topology and geometry
I homotopy stability of offsets [Chazal, Lieutier 2008, Niyogi et al. 2008]
I normal [Amenta et al. 1998] and covariance measure estimation

[Mérigot et al. 2011]

J.-O. Lachaud 8/44



Digitization Curvatures with DII VCM Surface integration Conclusion

Looking for stability: medial axis, reach, (par)-regularity

x

medial axis, reach

(par)-regularity

medial axis MA(∂X ) = points with more than one closest point on ∂X

reach reach(∂X ) = infimum of distance ∂X to MA(∂X ) [Federer 1959]

R-regularity [Pavlidis 1982, Serra 1982], par(R)-regularity [Latecki et al. 1998]

= inside and outside osculating balls of radius R for each x ∈ ∂X

Lemma

Let X be a d-dimensional compact domain of Rd . Then

reach(∂X ) ≥ R ⇔ ∀R ′ < R, X is par(R ′)-regular
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Multigrid convergence of V̂ol toward Vol

volume of convex sets by V̂ol [Gauss, Dirichlet]. τ(h) = O(h).

better bounds for C 3-smooth strictly convex sets [Huxley 1990]

volume under monotonic functions (see [Krätzle 1988, Krätzle, Nowak 1991]).
τ(h) = O(h).

Theorem

Let X be a compact domain of Rd , with reach(∂X ) ≥ ρ. Let h < ρ√
d
. Let D

be any digitization such that J−h (X ) ⊂ Dh(X ) ⊂ J+h (X ). Digital and continuous
volumes follows∣∣∣Vol(X )− V̂ol(Dh(X ), h)

∣∣∣ ≤ 2d+1
√
dArea(∂X )h . (2)

NB: the reach bounds the volume of an offset to ∂X .
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Multigrid convergence of local geometric estimators

slight difficulty to define it: must relate ∂X with ∂hX

Definition (local multigrid convergence)

Let X ∈ X. If E is some local geometric quantity on X , then some local
discrete geometric estimator Ê converges towards E , iff

∃h0, ∀0 < h < h0,∀x ∈ ∂X , ∀x̂ ∈ ∂hX , ‖x− x̂‖ ≤ Θ(h)

‖E(X , x)− Ê(Dh(X ), x̂, h)‖ ≤ τ(h), with lim
h→0

τ(h) = 0

or functional approach [Esbelin, Malgouyres, Provot, Gérard,. . . ]

or stability with measures [Chazal,Cohen-Steiner,Lieutier,Mérigot,Thibert,. . . ]
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‖E(X , x)− Ê(Dh(X ), x̂, h)‖ ≤ τ(h), with lim
h→0

τ(h) = 0

or functional approach [Esbelin, Malgouyres, Provot, Gérard,. . . ]

or stability with measures [Chazal,Cohen-Steiner,Lieutier,Mérigot,Thibert,. . . ]

J.-O. Lachaud 11/44



Digitization Curvatures with DII VCM Surface integration Conclusion

Hausdorff dist. between continuous and digitized boundary

Theorem (boundary of Gauss digitized shape)

Let X be a compact domain of Rd with reach(∂X ) ≥ R. Then
∀0 < h < 2R/

√
d, the Hausdorff distance between sets ∂X and

∂hX := ∂[Gh(X )]h is less than
√
dh/2. More precisely:

∀x ∈ ∂X , ∃y ∈ ∂hX , ‖x− y‖ ≤
√
d
2

h (with ξ∂X (y) = x), (3)

∀y ∈ ∂hX , ‖y − ξ∂X (y)‖ ≤
√
d
2

h. (4)

NB: Tight bound. Proof uses osculating balls and C 1-smoothness of ∂X .
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Objectives

multigrid convergence of curvature tensor with (digital) integral
invariants

(With D. Coeurjolly, J. Levallois)

multigrid convergence of normals with (digital) Voronoi covariance
measure even on noisy data

(With L. Cuel, Q. Mérigot, B. Thibert)

multigrid convergence of (digital) surface integrals
(With B. Thibert)
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Convergent geometric estimators with digital volume
and surface integrals

Shapes versus digitized shapes

Curvatures with Digital Integral Invariants
(With D. Coeurjolly, J. Levallois)

Digital Voronoi Covariance Measure

Digital surface integration

Conclusion
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Integral invariants

x

Br(x)

X

x xx

∂X Br(x)

Let X ⊂ R3 smooth enough, x ∈ ∂X . Let r ∈ R, r > 0, radius of ball Br (x)

Vr (X , x) :=

∫
Br (x)∩X

dp.

volume

Jr (X , x) :=

∫
Br (x)∩X

(p − p̄)⊗ (p − p̄)Tdp.

covariance matrix
e.g. see [Pottmann et al 2007]

Mean curvature H(X , x) follows:

H(X , x) =
8
3r
− 4Vr (X , x)

πr4 + O(r)

J.-O. Lachaud 15/44
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x xx
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∫
Br (x)∩X

dp.

volume

Jr (X , x) :=

∫
Br (x)∩X

(p − p̄)⊗ (p − p̄)Tdp.

covariance matrix

[Pottmann et al 2007], Theorem 2

Principal curvatures κ1(X , x), κ2(X , x) follows

κ1(X , x) =
6
πr6 (λ2 − 3λ1) +

8
5r

+ O(r)

κ2(X , x) =
6
πr6 (λ1 − 3λ2) +

8
5r

+ O(r)

with λ1 ≥ λ2 ≥ λ3 eigenvalues of Jr (X , x).
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Digital integral invariants

x

Br(x)

X

x
x

princ. curv. κ̂i
r , curv. dir. v̂i

r , normal n̂r estimators

Let Z ⊂ (hZ)3 be a digital shape, y any point of R3.

κ̂1
r (Z , y, h) =

6
πr6 (λ̂2 − 3λ̂1) +

8
5r
, v̂1

r (Z , y, h) = ν̂1, n̂r (Z , y, h) = ν̂3,

κ̂2
r (Z , y, h) =

6
πr6 (λ̂1 − 3λ̂2) +

8
5r
, v̂2

r (Z , y, h) = ν̂2,

with λ̂1, λ̂2 two first eigenvalues of Ĵr (Z , y, h) (dig. cov. matrix of Z ∩ Br (y)),
and ν̂1, ν̂2, ν̂3 corresp. eigenvectors.

1. Convergence of covariance matrix: X ∩ Br (x) has not positive reach,

2. Positionning error: x̂ ∈ ∂hX is known, not x ∈ ∂X
3. Stability of eigenvalues of covariance matrix,

4. Approximation error in previous equations: r must be small.
J.-O. Lachaud 16/44
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Digital covariance matrix from digital moments

(p,q,s)-moments of Y ⊂ R3

for non negative integers p, q and s

mp,q,s(Y ) :=

∫∫∫
Y
xpyqzsdxdydz

x

Br(x)

X

x

Covariance matrix of A := Br (x) ∩ X

Jr (X , x) =

 m2,0,0(A) m1,1,0(A) m1,0,1(A)
m1,1,0(A) m0,2,0(A) m0,1,1(A)
m1,0,1(A) m0,1,1(A) m0,0,2(A)


− 1

m0,0,0(A)

 m1,0,0(A)
m0,1,0(A)
m0,0,1(A)

⊗
 m1,0,0(A)

m0,1,0(A)
m0,0,1(A)

T

J.-O. Lachaud 17/44



Digitization Curvatures with DII VCM Surface integration Conclusion

Digital covariance matrix from digital moments

digital (p,q,s)-moments of Z ⊂ (hZ)3

for non negative integers p, q and s

m̂p,q,s(Z , h) := h3
∑

(i,j,k)∈Z

ip jqks
∂X

x
x

h

digital covariance matrix of A′ := Br (y) ∩ Z

Ĵr (Z , y, h) =

 m̂2,0,0(A′, h) m̂1,1,0(A′, h) m̂1,0,1(A′, h)
m̂1,1,0(A′, h) m̂0,2,0(A′, h) m̂0,1,1(A′, h)
m̂1,0,1(A′, h) m̂0,1,1(A′, h) m̂0,0,2(A′, h)


− 1

m̂0,0,0(A′, h)

 m̂1,0,0(A′, h)
m̂0,1,0(A′, h)
m̂0,0,1(A′, h)

⊗
 m̂1,0,0(A′, h)

m̂0,1,0(A′, h)
m̂0,0,1(A′, h)

T

J.-O. Lachaud 17/44



Digitization Curvatures with DII VCM Surface integration Conclusion

1. Convergence of covariance matrix
Theorem

Let X be a compact domain of Rd , with reach(∂X ) ≥ ρ. Let D be any
digitization process such that J−h (X ) ⊂ Dh(X ) ⊂ J+h (X ). Let x ∈ Rd . Let
radius r and gridstep h be such that 0 < h ≤ r√

2d
and 0 < 2r ≤ ρ. Then

digital moments within a ball Br (x) are multigrid convergent toward continuous
moments as follows

|mp,q,s(X ∩ Br (x))− m̂p,q,s (Dh(X ∩ Br (x)), h)|

≤ K1r2(‖x‖∞ + 2r)p+q+s h +
π

9
r3 h4. (5)

NB: Proof uses convergence of digital volumes, and

A

B

=
∂A

B

∪
A

∂B

J.-O. Lachaud 18/44
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|mp,q,s(X ∩ Br (x))− m̂p,q,s (Dh(X ∩ Br (x)), h)|

≤ K1r2(‖x‖∞ + 2r)p+q+s h +
π

9
r3 h4. (5)

Convergence of digital covariance matrix (r ≥ h) for Gauss G·

∀x ∈ R3,‖Jr (X ∩ Br (x), x)− Ĵr (Gh(X ) ∩ Br (x), x, h)‖ = O(r4 h).

I invariance by translation of (dig. or cont.) covariance matrix
I translation to origin by −h[ x

h ], [ x
h ] integer vector closer to x

h .

J.-O. Lachaud 18/44
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2. Influence of position error (x̂ ∈ ∂hX known)

x

∂hX

x

∂X
x̂

π(x̂)
x x

x + t

Br (x + t)

Br (x)

(Br (x) \ Br (x + t)) ∩ X

(Br (x + t) \ Br (x)) ∩ X

(a)

x

x + t

Br (x + t)

Br (x)

(b)

Positioning error of moments with vector t

|mp,q,s(Br (x + t) ∩ X )−mp,q,s(Br (x) ∩ X )| =
∑p+q+s

i=0 O(‖x‖i‖t‖r2+p+q+s−i ).

Corollary, note that ‖x̂− x‖∞ ≤ h thanks to shift to origin

‖Ĵr (Gh(X ) ∩ Br (x), x̂, h)− Jr (X ∩ Br (x), x)‖ = O(r4 h) + O(‖x− x̂‖r4).
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3. Stability of eigenvalues and eigenvectors

if B and B ′ are two symmetric matrices, then errors on eigenvalues
do not exceed errors on ‖B − B ′‖ (Lidskii-Weyl inequality)
errors on eigenvectors do not exceed ‖B − B ′‖ divided by eigengap
(Davis-Kahan sin θ theorem)

Corollary

Eigenvalues of Ĵr and Jr are as close as matrix terms. Eigenvectors of Ĵr
and Jr are as close as matrix terms, except around umbilic points.

J.-O. Lachaud 20/44
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Multigrid convergence of curvature tensor

x̂ x̂

Theorem (Multigrid convergence of curvatures for Gauss digit.)

Let X be a compact domain of R3 with reach(∂X ) ≥ ρ and C 3-continuity.

∃h0,∀0 < h < h0, ∀x ∈ ∂X , ∀x̂ ∈ ∂[Gh(X )]h with ‖x̂− x‖∞
|κ̂i

r (Gh(X ), x̂, h)− κi (X , x)| ≤ O(r)︸ ︷︷ ︸
Taylor expansion

+ O(h/r2)︸ ︷︷ ︸
dig. cov. mat.

+O(h/r2)︸ ︷︷ ︸
positioning

balancing error terms give r = kh
1
3 with k some constant

convergence of κ̂i
r toward princ. curv. κi at speed O(h

1
3 )

convergence of v̂i
r toward princ. dir. vi at speed 1

|κ1−κ2|O(h
1
3 )

convergence of n̂r toward normal n at speed O(h
2
3 )

J.-O. Lachaud 21/44
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∃h0,∀0 < h < h0, ∀x ∈ ∂X , ∀x̂ ∈ ∂[Gh(X )]h with ‖x̂− x‖∞
|κ̂i

r (Gh(X ), x̂, h)− κi (X , x)| ≤ O(r)︸ ︷︷ ︸
Taylor expansion

+ O(h/r2)︸ ︷︷ ︸
dig. cov. mat.

+O(h/r2)︸ ︷︷ ︸
positioning

balancing error terms give r = kh
1
3 with k some constant

convergence of κ̂i
r toward princ. curv. κi at speed O(h

1
3 )

convergence of v̂i
r toward princ. dir. vi at speed 1

|κ1−κ2|O(h
1
3 )

convergence of n̂r toward normal n at speed O(h
2
3 )
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Experimental results
mean curvature (κ̂1r + κ̂2r )/2

first princ. dir. v̂1r second princ. dir. v̂2r
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Experimental results
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II

mean curvature l∞-error timings

comprehensive experimental evaluation wrt existing estimators
expected accuracy
computationally efficient (in O(N

10
3 ) for digital image of size N3)

robust to noise in practice
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Convergent geometric estimators with digital volume
and surface integrals

Shapes versus digitized shapes

Curvatures with Digital Integral Invariants

Digital Voronoi Covariance Measure
(With L. Cuel, Q. Mérigot, B. Thibert)

Digital surface integration

Conclusion
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Origin of Voronoi Covariance Measure

input: arbitrary cloud of points K
idea: detect normal vector using geometry of Voronoi cells

origin: poles [Amenta, Bern 1999], PCA per Voronoi cells [Alliez, Cohen-Steiner,

Desbrun, Tong 2007]

vcm: integrate this information as a measure [Mérigot et al. 2011]
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Voronoi Covariance Measure

χ is included in some ball

Definition (Voronoi Covariance Measure)

Let K a compact. Given any non-negative
probe function χ, i.e. an integrable function
on Rd , we associate a positive semi-definite
matrix defined by

VR
K (χ) :=

∫
KR

NK (x)⊗NK (x)︸ ︷︷ ︸
PCA of each Vor. cell

·χ (x−NK (x)) dx

where NK (x) := x− ξK (x)

Theorem (Stability of VCM [Mérigot et al. 2011])

Let K ,K ′ be two compacts, χ a probe function of support ⊂ Br (p)

‖VR
K (χ)− VR

K ′(χ)‖ ≤ O(dH(K ,K ′)),

where constant O depends on χ and r.
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χ is included in some ball

Definition (Voronoi Covariance Measure)

Let K a compact. Given any non-negative
probe function χ, i.e. an integrable function
on Rd , we associate a positive semi-definite
matrix defined by

VR
δ (χ) :=

∫
δR

Nδ(x)⊗Nδ(x)︸ ︷︷ ︸
PCA of each Vor. cell

·χ (x−Nδ(x)) dx

where δ is distance to K and Nδ(x) := 1
2∇δ

2

Theorem (Stability of VCM [Mérigot et al. 2011])

Let K ,K ′ be two compacts, χ a probe function of support ⊂ Br (p)
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Generalized Voronoi Covariance Measure
Hausdorff pert. H + outliers H + outliers

δ is distance to K δ is distance to K δ is k-distance to K

Definition (Generalized Voronoi Covariance Measure)

Let K a compact and χ a probe function

VR
δ (χ) :=

∫
δR

Nδ(x)⊗Nδ(x) · χ (x−Nδ(x)) dx

where δ is distance-like, Nδ(x) := 1
2∇δ

2, δR := δ−1(]−∞,R]).

NB: robust to Hausdorff perturbations + outliers [Cuel, L., Mé́rigot, Thibert 2015].
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Digital Voronoi Covariance Measure

R R

r

Definition

Let Z ⊂ (hZ)d and h > 0. The digital Voronoi Covariance Measure of Z at
step h and radius R associates to a probe function χ the matrix:

V̂R
Z ,h(χ) :=

∑
z∈ZR

hdNdZ (z)⊗NdZ (z)χ(z−NdZ (z)), (6)

where dZ is the distance to Z function, NdZ = 1
2∇d

2
Z .
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Stability of Digital Voronoi Covariance Measure
Theorem

Let X compact domain of Z3 with C 2-smooth boundary and reach ≥ ρ. Let
R < ρ/2 and probe function χ with finite support diameter r . Let
Z = ∂[Gh(X )]h ∩ h(Z + 1

2 )3. For h small enough, we have:

‖VR
∂X (χ)− V̂R

Z ,h(χ)‖op ≤ O
(
Lipχ(r3R

5
2 + r2R3 + rR

9
2 )h

1
2

+ ‖χ‖∞[(r3R
3
2 + r2R2 + rR

7
2 )h

1
2 + r2Rh]

)
.

localization error digitization error
(stability) (digital volumes)
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Stability of Digital Voronoi Covariance Measure

Theorem

Let X compact domain of Z3 with C 2-smooth boundary and reach ≥ ρ. Let
R < ρ/2 and probe function χ with finite support diameter r . Let
Z = ∂[Gh(X )]h ∩ h(Z + 1

2 )3. For h small enough, we have:

‖VR
∂X (χ)− V̂R

Z ,h(χ)‖op ≤ O
(
Lipχ(r3R

5
2 + r2R3 + rR

9
2 )h

1
2

+ ‖χ‖∞[(r3R
3
2 + r2R2 + rR

7
2 )h

1
2 + r2Rh]

)
.

Corollary

Let n̂R,r (Z , y, h) be first eigenvector of V̂R
Z ,h(χ)

with χ hat function of radius r centered on y.
For R = Θ(h

1
4 ) and r = Θ(h

1
4 ), then n̂R,r is

multigrid convergent toward the true normal at
speed O(h

1
8 ).
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Experimental evaluation of DVCM: normals

Much better in practice: speed in O(h)
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Experimental evaluation of DVCM: features

R = r = 3h
1
2

Definition (Feature selection [Mérigot et al. 2011])

Let Z ⊂ (hZ)3. Let T some angle threshold (here 0.1). Let
λ1 ≥ λ2 ≥ λ3 the three eigenvalues of V̂R

Z ,h(χ) with χ hat function of
radius r centered on y.

y is a feature⇔ λ2
λ1 + λ2 + λ3

≥ T .

J.-O. Lachaud 31/44



Digitization Curvatures with DII VCM Surface integration Conclusion

Convergent geometric estimators with digital volume
and surface integrals

Shapes versus digitized shapes

Curvatures with Digital Integral Invariants

Digital Voronoi Covariance Measure

Digital surface integration
(With B. Thibert)

Conclusion
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What about surface integrals ?

∑
∂[G((h)X )]h

f dσ h→0−→
∫
∂X f ds

perimeter, area estimation, measures, local area estimation
calculus over surface: geodesics, diffusion, PDE, etc.
transform volume integral into surface integral for speed up

Naive approach with dσ = hd−1 does not work !
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Differential geometry

x

y

a mapping g from ∂[Gh(X )]h to ∂X , Jg Jacobian determinant∫
∂X

f (x)dx =

∫
∂[Gh(X )]h

f (g(y))Jgdy (substitution rule)

g should be bijective, differentiable a.e.

but such g is unknown (since ∂X also)

the projection is a natural choice: g = ξ∂X

But ξ∂X is generally not injective !

In 3D ∂[Gh(X )]h and ∂X may not be homeomorphic [Stelldinger et al. 2007]
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Differential geometry

x

y

n(x)

nh(y)
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Non-manifold places and non-injective places

Theorem (Localization of non-manifold places)

Let X ⊂ R3 compact domain with positive reach ρ. Non-manifoldness of
∂[Gh(X )]h only occurs at places of ∂X where ξ∂X is aligned with an axis (angle
< 1.260h/ρ).
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Non-manifold places and non-injective places

Theorem (Localization and size of non-injective parts)

X ⊂ Rd compact domain with positive reach ρ. Places where ξ∂X is not
injective from ∂[Gh(X )]h to ∂X correspond to places where ξ∂X is orthogonal
to some axis. If h ≤ ρ/

√
d, then one has

Area(mult(∂X )) ≤ K1(h) Area(∂X ) h,

where K1(h) = 8d2
ρ

+ O(h) ≤ d2 4d+1

ρ
.
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Digital surface integral
h

Definition

Let Z ⊂ (hZ)d be a digital set. Let f : Rd → R be an integrable function and
n̂ be a digital normal estimator. We define the digital surface integral by

DIh(f ,Z , n̂) :=
∑

d−1-cellc∈∂[Z ]h

hd−1f (ċ)|n̂(ċ) · n(ċ)|,

where ċ is the centroid of the (d − 1)-cell c and n(ċ) is its trivial normal as a
point on the digitized boundary.
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Digital surface integral
h

Theorem

Let X be a compact domain where reach(∂X ) ≥ ρ. For h ≤ ρ√
d
, the digital

surface integral is multigrid convergent toward the integral over ∂X.

∣∣∣∣∫
∂X

f (x)dx −DIh(f , Gh(X ), n̂)

∣∣∣∣ ≤ Area(∂X ) ‖f ‖BL

(
O(h) + O(‖n̂− n‖est)

)
.

Constants in O only depends on dimension d.
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Digital surface integral
h

Theorem

Let X be a compact domain where reach(∂X ) ≥ ρ. For h ≤ ρ√
d
, the digital

surface integral is multigrid convergent toward the integral over ∂X.

∣∣∣∣∫
∂X

f (x)dx −DIh(f , Gh(X ), n̂)

∣∣∣∣ ≤ Area(∂X ) ‖f ‖BL

(
O(h) + O(‖n̂− n‖est)

)
.

Constants in O only depends on dimension d.

Taking f = 1 and a conv. normal estimator gives a convergent area estimator.
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Steps of the proof

1. First
∫
∂X f (x)dx =

∫
∂X\mult(∂X )

f (x)dx + K1(h)Area(∂X )‖f ‖∞h.
(size of non injective part).

2. Then,
∫
∂X\mult(∂X )

f (x)dx =
∫
∂hX\mult(∂hX )

f (ξ(y))Jξ(y)dy .
(diffeomorphism of ξ + change of variable formula)

3.
∣∣∣∫∂hX\mult(∂hX )

f (ξ(y))Jξ(y)dy −
∫
∂hX f (ξ(y))Jξ(y)dy

∣∣∣ ≤
Area(∂X ) µ ‖f ‖∞O(h)
(multiplicity ae bounded by µ := db

√
d + 1c and coarea formula)

4.
∫
∂hX f (ξ(y))Jξ(y)dy =∫
∂hX f (ξ(y))|n(ξ(y)) · nh(y)|dy + ‖f ‖∞Area(∂X )O(h).

(Jacobian property and upper bound on ∂hX area)

5.
∣∣∣∫∂hX f (ξ(y))|n(ξ(y)) · nh(y)|dy −DIh(f , Gh(X ), n̂)

∣∣∣ ≤
Area(∂X )

(
Lip(f )O(h) + ‖f ‖∞O(‖n̂− n‖est)

)
.

(sum cell by cell plus error between n(ξ(y)) and n̂(c))
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Experimental evaluation

Area estimation error of the digital surface integral with several digital normal
estimators. The shape of interest is 3D ellipsoid of half-axes 10, 10 and 5, for
which the area has an analytical formula giving A ≈ 867.188270334505. The
abscissa is the gridstep h at which the ellipsoid is sampled by Gauss digitization.
For each normal estimator, the digital surface integral Â is computed with
f = 1, and the relative area estimation error |Â−A|

A is displayed in logscale.
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Convergent geometric estimators with digital volume
and surface integrals

Shapes versus digitized shapes

Curvatures with Digital Integral Invariants

Digital Voronoi Covariance Measure

Digital surface integration

Conclusion
(With )
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Conclusion

At the term of this journey, we have multigrid convergence of:
estimator shapes convergence speed noise robustness

volume counting reach > 0 O(h) in practice
dig. moments in Br reach > 0 O(rp+q+s h) in practice

normal DII C 3 + reach > 0 O(h
2
3 ) in practice

princ. dir. DII C 3 + reach > 0 O(h
1
3 ) in practice

princ. curv. DII C 3 + reach > 0 O(h
1
3 ) in practice

DVCM C 2 + reach > 0 function(R, r , h) yes
normal DVCM C 2 + reach > 0 O(h

1
8 ) (obs. O(h)) yes

dig. surf. integral reach > 0 O(h) + O(‖n̂− n‖est) ?
area reach > 0 O(h) + O(‖n̂− n‖est) ?

Everything is implemented in DGtal library: dgtal.org

Digital Integral Invariants are computable in real-time on GPU (see H.
Perrier’s talk on Wednesday).
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Perspectives
Good geometry has numerous applications: feature detection,
reconstruction
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Perspectives

Thank you for your attention !
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