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Abstract. This paper presents several methods to estimate geometric
quantities on subsets of the digital space Zd. We take an interest both on
global geometric quantities like volume and area, and on local geometric
quantities like normal and curvatures. All presented methods have the
common property to be multigrid convergent, i.e. the estimated quanti-
ties tend to their Euclidean counterpart on finer and finer digitizations
of (smooth enough) Euclidean shapes. Furthermore, all methods rely
on digital integrals, which approach either volume integrals or surface
integrals along shape boundary. With such tools, we achieve multigrid
convergent estimators of volume, moments and area in Zd, of normals,
curvature and curvature tensor in Z2 and Z3, and of covariance measure
and normals in Zd even with Hausdorff noise.
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1 Introduction

Objectives. We are interested in the geometry of subsets of the digital space
Zd, where Z is the set of integer numbers. More precisely, when seeing these
subsets as a sampling of a Euclidean shape, say X, we would like to recover an
approximation of the geometry of X with solely the information of its sampling.
It is clear that this task cannot be done without further hypothesis on X and on
the sampling method. First, at a fixed sampling resolution, there are infinitely
many shapes having the same sampling. Second, subsets of Zd have no canonic
tangent plane or differential geometry. To address the first issue, we will take a
look at specific families of Euclidean shapes, generally by requiring smoothness
properties. We will then show that we can achieve multigrid convergence prop-
erties for some estimators on such shapes, i.e. when the sampling gets finer and
finer, the estimation gets better. The second issue is addressed by using digital
integrals, i.e. well-chosen sums.
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This paper presents the main ingredients and results of three methods that
provide multigrid convergent estimators of the most common geometric quanti-
ties: volume, area, tangent, normal, curvatures, etc. Their common denominator
is to use digital integrals, i.e. sums that approach integrals defined on the Eu-
clidean shape. The stability of these integrals in turns induces the multigrid
convergence of these estimators.

This topic is in fact rather old, since Gauss and Dirichlet already knew
that the volume of a convex set can be approximated by counting digi-
tal points within (reported in [KR04]). Furthermore, it is related to numer-
ical integration. The purpose of this paper is not to provide an exhaustive
lists of multigrid convergent digital estimators. We may point several sources
and surveys in the literature that provides many references or comparisons:
[KŽ00,CK04,dVL09,CLR12]. This work compiles methods and results devel-
oped in several papers [CLL13,CLL14,LCLng,LT15,CLT14,CLMT15]. Note that
the topic of digital geometric estimation through integrals is very active at the
present time. Among the very recent works, we may quote the varifold approach
of [Bue14,BLM15] for normal and mean curvature estimation, the estimation
of intrinsic volumes of [EP16] with persistent homology, or the estimation of
Minkowski tensors with an extension of the Voronoi covariance measure [HKS15].

Main definitions and notations. A digitization process is a family of maps map-
ping subsets of Rd towards subsets of Zd, parameterized by a positive real number
h. The parameter h defines the gridstep of the digitization, a kind of sampling
distance. The digitization process Dh is local whenever z ∈ Dh(X) depends solely
on X ∩ N(hz), where N(hz) is a neighborhood of radius O(h) around point
hz ∈ Rd.

In this work, we consider three simple local digitization processes, defined
below after a few notations. If z ∈ Zd, then Q(z) denotes the (closed) unit
d-dimensional cube of Rd centered on z and aligned with the axes of Zd. We
further define Qh(z) := h ·Q(z), so-called h−cube, as the scaled version of Q(z)
by factor h, i.e. Qh(z) is a d-dimensional cube centered at hz with edge length
h). Then we define the Gauss digitization Gh(X), the inner Jordan digitization
J−h (X) and outer Jordan digitization J+h (X) at step h of a shape X ∈ X as (see
Fig. 1):

Gh(X) :=
{
z ∈ Zd, hz ∈ X

}
, (1)

J−h (X) :=
{
z ∈ Zd, Qh(z) ⊂ X

}
, (2)

J+h (X) :=
{
z ∈ Zd, Qh(z) ∩X 6= ∅

}
. (3)

First relations between shape and its digitization. We will need to compare the
geometry of the Euclidean shape X and its topological boundary ∂X with the
“geometry” of their digitizations. So, for Z ⊂ Zd, we define the body of Z at
step h as [Z]h :=

⋃
z∈Z Qh(z). We call Jordan strip the digitization J0h(X) :=

J+h (X) \ J−h (X), which is a kind of digitization of ∂X. The following properties
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Fig. 1. Illustration of digitization processes and notations.

clarify the relations between X, ∂X and their digitizations and are easy to derive
[LCLng].

Lemma 1 J−h (X) ⊂ Gh(X) ⊂ J+h (X) and [J−h (X)]h ⊂ X ⊂ [J+h (X)]h.

Lemma 2 [J0h(X)]h = [J+h (X)]h \ Int([J−h (X)]h) and ∂X ⊂ [J0h(X)]h.

In fact, we can be more precise and relate these sets with the Hausdorff
distance. Recall that the ε-offset of a shape X, denoted by Xε, is the set of
points of Rd at distance lower or equal to ε from X. We can state with some
elementary arguments that boundaries of Jordan digitizations are close to the
boundary of the shape in the Hausdorff sense:



Lemma 3 ([LCLng], Lemma 3) Let X be a compact domain of Rd. Then

[J0h(X)]h ⊂ (∂X)
√
dh, ∂[J−h (X)]h ⊂ (∂X)

√
dh and ∂[J+h (X)]h ⊂ (∂X)

√
dh.

The remarkable point here is that the sole requirement on X is compactness !
If the shape X has a smoother boundary, we can get tighter bounds for the Gauss
digitization. Therefore, let the medial axis MA(∂X) of ∂X be the subset of Rd
whose points have more than one closest point to ∂X. The reach reach(X) of
X is the infimum of the distance between ∂X and its medial axis. Shapes with
positive reach have a C2 smooth boundary almost everywhere and have principal
curvatures bounded by ±1/reach(X). We then have:

Theorem 1 ([LT15]) Let X be a compact domain of Rd such that the reach of
∂X is greater than ρ. Then, for any digitization step 0 < h < 2ρ/

√
d, the Haus-

dorff distance between sets ∂X and ∂[Gh(X)]h is less than
√
dh/2. In particular,

∂[Gh(X)]h ⊂ (∂X)
√

d
2 h

.

The projection πX of Rd \MA(∂X) onto ∂X is the map which associates to any
point its closest point on ∂X. From the properties of the medial axis, the pro-
jection is defined almost everywhere in Rd. We may thus associate to any point
x̂ ∈ ∂[Gh(X)]h the point x := πX(x̂) ∈ ∂X, such that the distance between x̂
and its projection x is smaller than

√
dh/2. We have just constructed a mapping

between a shape boundary and its digitization, which will help us for defining
local geometric estimators.

Multigrid convergence. Let V be any vector space (generally R or Rd). A geo-
metric quantity is an application that associates a value in V to any subset of
Rd, with the property that it is invariant to some group operations, most often
the group of rigid transformations. Notable examples are the volume and the
area. A local geometric quantity is an application that associates a value in V
to a subset X of Rd and a point x on ∂X. Common examples are the normal
vector, the mean curvature or principal curvatures and directions. A discrete
geometric estimator is an application that associates a value in V to a subset of
Zd and a gridstep h ∈ R+. A local discrete geometric estimator is an application
that associates a value in V to a subset Z of Zd, a point in ∂[Z]h and a gridstep
h ∈ R+.

Definition 1 (Multigrid convergence) A discrete geometric estimator Ê
(resp. a local discrete geometric estimator F̂ ) is said to be multigrid conver-
gent to some geometric quantity E (resp. to some local geometric quantity F )
for the family of shapes X and digitization process D, if and only if, for any
X ∈ X, there exists a gridstep hX > 0, such that ∀h, 0 < h < hX , we have:

|E(X)− Ê(Dh(X), h)| ≤ τX(h), (4)

respectively ∀x ∈ ∂X, ∀x̂ ∈ ∂[Dh(X)]h, ‖x̂− x‖∞ ≤ h,
|F (X,x)− F̂ (Dh(X), x̂, h)| ≤ τX(h), (5)

where the function τX : R+ \ {0} → R+ has null limit at 0 and defines the speed
of convergence of the estimator.



In both definitions, the multigrid convergence property characterizes estima-
tors that give better and better geometric estimates as the grid sampling gets
finer and finer. We have now all the notions to study the multigrid convergence
of several discrete geometric estimators.

2 Volume and moments estimators

In this section, X is some compact domain of Rd and Z is a subset of Zd. We
take here an interest in estimating volume and moments from digital sets. These
results will be used to define digital integral invariant estimators of curvatures in
the following section. In the whole section, let (pi)i=1...d be the integers defining
the moment exponents, with 0 ≤ pi ≤ 2, and let σ := p1 + · · ·+ pd, with σ ≤ 2.

Moments and digital moments. The p1 · · · pd-moment of X is defined as

mp1···pd(X) :=

∫
· · ·
∫
X

xp11 · · ·x
pd
d dx1 . . . dxd.

The 0 · · · 0-moment of X is the volume of X (denoted Vold(X)). The p1 · · · pd-
digital moment of Z at step h is defined as

m̂p1···pd
h (Z) := hd+p1+···+pd

∑
(z1,...,zd)∈Z

zp11 · · · z
pd
d .

The 0 · · · 0-digital moment of Z is the digital volume of Z (denoted by V̂ol
d
(Z, h)).

It is well known that V̂ol
d

is multigrid convergent toward Vold for the family
of convex shapes and the Gauss digitization, with a convergence speed of O(h),
and even faster for smoother shapes [Hux90,KN91,M9̈9,Guo10]. We wish to go
further on multigrid convergence of moments, so we take a special interest in
(digital) moments of h-cubes. The following equalities, obtained by simple inte-
gration, show that discrepancies between digital and continuous moments begin
with order two, and only when one pi = 2.

Lemma 4 Let z ∈ Zd. Point z is the Gauss digitization of h-cube Qh(z), but
also its inner or outer Jordan digitization. Moments and digital moments of h-

cubes satisfy m̂p1···pd
h ({z}) = mp1···pd(Qh(z)) + E(p1, . . . , pd), where E = hd+4

12
when one pi equals 2 and otherwise E = 0.

Errors in volume estimation. The following volume “convergence” theorem is re-
markable since it requires only the compactness ofX. Its proof requires Lemma 4,
a volume relation on symmetric difference of sets, the definition of Jordan strip,
and Lemma 3.

Theorem 2 ([LCLng]) Let X be a compact domain of Rd. Let D be any dig-
itization process such that J−h (X) ⊂ Dh(X) ⊂ J+h (X). Digital and continuous
volumes are related as follows:∣∣∣∣Vold(X)− V̂ol

d
(Dh(X), h)

∣∣∣∣ ≤ Vold(∂X
√
dh). (6)



Another proof, written independently, is in [HKS15]. This theorem states a multi-
grid convergence property whenever ∂X is d−1-rectifiable, but not in the general
case: consider for instance the set X of rational numbers in the unit cube. A more
useful — but more restricted — convergence theorem relates this error bound to
the area of ∂X. It uses Theorem 2 but also the fact that, for sets X with positive
reach, the volume of some ε-offset of ∂X is upper-bounded by a constant times
the area of ∂X (Proof of Lemma 10 [LT15].

Theorem 3 With the same hypotheses as Theorem 2 with the further require-
ment that the reach of ∂X is greater than some value ρ. For h < ρ/

√
d, the

volume estimator V̂ol
d

is multigrid convergent toward the volume Vold with speed
2d+1
√
dArea(∂X)h.

Volume and moment estimation in a local neighborhood. For the digital inte-
gral invariant method we will require convergence results on sets that are the
intersection of two sets with positive reach, more precisely on sets of the form
X ∩ BR(x), where BR(x) denotes the ball of center x ∈ Rd and radius R. The
previous theorem cannot be applied as is. We must first bound the volume of
offsets of the boundary of X ∩BR(x):

Theorem 4 ([LCLng], Theorem 3) Let X be a compact domain of Rd such
that the reach of ∂X is greater than ρ. Let x ∈ Rd. Let R (the radius of the ball)
and h (the gridstep) be some positive numbers such that h ≤ R√

2d
and 2R ≤ ρ.

Vold
(

(∂(X ∩BR(x)))
√
dh
)
≤ K1(d)Rd−1h , (7)

where K1(d) is a constant that depends only on the dimension d.

The proof first decomposes the set with the equality (∂(A∩B))ε = ((∂A)∩B)ε∪
(A∩ (∂B))ε. Then it uses differential geometry and the fact that curvatures are
bounded by the reach. The good point is that the geometry of X does not
intervene in the constants.

We have now all the keys to upperbound the error in volume estimation,
and more generally moments estimation, within a ball around the boundary of
a compact domain X.

Theorem 5 ([LCLng], Theorem 4) We take the same hypotheses as the ones
of Theorem 4 and the digitization process D defined in Theorem 2. Then digi-
tal moments within a ball BR(x) are multigrid convergent toward continuous
moments as follows∣∣mp1···pd(X ∩BR(x))− m̂p1···pd

h (Dh(X ∩BR(x)))
∣∣

≤ K1(d)Rd−1(‖x‖∞ + 2R)σ h+
h4

12
VdR

d, (8)

where Vd is the volume of the unit d-dimensional ball. Furthermore, the term in
h4 is only present when one pi is equal to 2.



The proof decomposes the errors in each h-cube induced by digitization. Errors
in the interior of the set X ∩BR(x) are easily solved with Lemma 4. Errors close
to the boundary of X ∩ BR(x) are bounded with Theorem 4 and some care on
moments with negative value.

3 Curvatures with digital integral invariants

Curvature and mean curvature estimation. If x ∈ ∂X and ∂X smooth enough,
one easily notices that the volume of X ∩ BR(x) is related to the local differ-
ential geometry of ∂X around x for infinitesimal values of R. Several authors
[BGCF95,PWY+07,PWHY09] have made explicit this relation:

Lemma 5 ([PWHY09]) For a sufficiently smooth shape X in R2, x ∈ ∂X
(resp. smooth shape X ′ in R3, x′ ∈ ∂X ′), we have

Vol2(X ∩BR(x)) =
π

2
R2 − κ(X,x)

3
R3 +O(R4) , (9)

Vol3(X ′ ∩BR(x′)) =
2π

3
R3 − πH(X ′,x′)

4
R4 +O(R5) , (10)

where κ(X,x) is the curvature of ∂X at x and H(X ′,x′) is the mean curvature
of ∂X ′ at x′.

Since we have seen that we can approach volumes within a ball (see Theo-
rem 5), it is very natural to define digital curvature estimators from the volume
relations Eq.(9) and Eq.(10).

Definition 2 ([CLL13]) For any positive radius R, we define the 2D integral
digital curvature estimator κ̂R (resp. 3D integral mean digital curvature estima-
tor ĤR) of a digital shape Z ⊂ Z2 at any point x ∈ R2 (resp. of Z ′ ⊂ Z3 at any
point x′ ∈ R3) and for a grid step h > 0 as:

∀0 < h < R, κ̂R(Z,x, h) :=
3π

2R
−

3V̂ol
2
(BR/h(x/h) ∩ Z, h)

R3
, (11)

ĤR(Z ′,x′, h) :=
8

3R
−

4V̂ol
3
(BR/h(x′/h) ∩ Z ′, h)

πR4
. (12)

We can bound the error between these estimators and their associated geo-
metric quantities as ([CLL13], but precise constants in [LCLng]):

Theorem 6 Let X be a compact domain of R2 such that its boundary ∂X is C3-
smooth and has reach greater than ρ. (Respectively let X ′ be a compact domain
of R3 such that its boundary ∂X ′ is C3-smooth and has reach greater than ρ).



The following bounds hold for R < ρ/2:

∀0 < h ≤ R/2, ∀x ∈ ∂X, ∀x̂ ∈ ∂[Gh(X)]h with ‖x̂− x‖∞ ≤ h,∣∣κ̂R(Gh(X), x̂, h)− κ(X,x)
∣∣ ≤ (27π

√
2/4 + 3K1(2)

)
R−2h+O(R) . (13)

∀0 < h ≤ R/
√

6, ∀x′ ∈ ∂X ′, ∀x̂′ ∈ ∂[Gh(X ′)]h with ‖x̂′ − x′‖∞ ≤ h,∣∣∣ĤR(Gh(X ′), x̂′, h)−H(X ′,x′)
∣∣∣ ≤ (18

√
3 + 4K1(3)/π

)
R−2h+O(R). (14)

Chosing R = Θ(h
1
3 ) implies the multigrid convergence of estimator κ̂R (resp.

estimator ĤR) toward curvature κ (resp. mean curvature H) with speed O(h
1
3 ).

The first term in each error bound comes from the error done in volume esti-
mation of X ∩ BR(x) because point x̂ is not exactly on x but at distance O(h)
(Theorem 1). The second term comes from the digitization in the volume estima-
tion (Theorem 5). The third term in the error comes from the Taylor expansion
of Eq.(9) and Eq.(10). Since error terms are either decreasing with R or increas-
ing with R, we balance error terms to minimize the sum of errors and we get
convergence of curvature estimators as immediate corollaries.

Normal, principal curvatures and principal directions. The same methodology
can lead to estimators of principal curvatures or normal and principal directions.
The idea is to use moments of zeroth, first, and second order instead of volumes.
More precisely, the eigenvalues and eigenvectors of the covariance matrix of
X ∩BR(x) were shown to hold curvature information ([PWY+07], Theorem 2).
The covariance matrix of a set A ⊂ R3 is easily defined from moments as:

V(A) :=

m200(A) m110(A) m101(A)
m110(A) m020(A) m011(A)
m101(A) m011(A) m002(A)


− 1

m000(A)

m100(A)
m010(A)
m001(A)

⊗
m100(A)
m010(A)
m001(A)

T . (15)

The definition of digital covariance matrix Vh(Z) at step h of a set Z ⊂ Z3

is similar, just replacing mp1···pd(A) by m̂p1···pd
h (Z) in Eq.(15).

Definition 3 Let Z ⊂ Z3 be a digital shape and h > 0 be the gridstep. For
h < R, we define the integral principal curvature estimators κ̂R1 and κ̂R2 of Z
at point y ∈ R3, their respective integral principal direction estimators ŵR

1 and
ŵR

2 , and the integral normal estimator n̂R as

κ̂R1 (Z,y, h) :=
6

πR6
(λ̂2 − 3λ̂1) +

8

5R
, ŵR

1 (Z,y, h) := ν̂1 n̂R(Z,y, h) := ν̂3 ,

κ̂R2 (Z,y, h) :=
6

πR6
(λ̂1 − 3λ̂2) +

8

5R
, ŵR

2 (Z,y, h) := ν̂2

where λ̂1 ≥ λ̂2 ≥ λ̂3 are the eigenvalues of Vh(BR/h(y/h)∩Z), and ν̂1, ν̂2, ν̂3 are
their corresponding eigenvectors.



Unfortunately, there is no hope in turning Theorem 5 into a multigrid con-
vergence theorem for arbitrary moments, because a very small perturbation in
the position of the ball center can lead to an arbitrary error on polynomial xσ.
However, due to their formulations, continuous and digital covariance matrices
are invariant by translation, and error terms can thus be confined in a neigh-
borhood around zero. Using this fact and error bounds of moments within the
symmetric difference of two balls, we get:

Theorem 7 ([CLL14]) Let X be a compact domain of R3 such that its bound-
ary ∂X has reach greater than ρ. Then the digital covariance matrix is multigrid
convergent toward the covariance matrix for Gauss digitization for any radius
R < ρ

2 and gridstep h < R√
6

, with speed O(R4h).

The constant in O is independent from the shape size or geometry. According to
Definition 3, it remains to show that eigenvalues and eigenvectors of the digital
covariance matrix are convergent toward the eigenvalues and eigenvectors of the
continuous covariance matrix, when error on matrices tends to zero. Classical
results of matrix perturbation theory (especially Lidskii-Weyl inequality and
Davis-Kahan sin θ Theorem) allow to conclude on the following relations:

Theorem 8 ([CLL14,LCLng]) Let X be a compact domain of R3 such that
its boundary ∂X has reach greater than ρ and has C3-continuity. Then, for these
shapes and for the Gauss digitization process, integral principal curvature esti-
mators κ̂R1 and κ̂R2 are multigrid convergent toward κ1 and κ2 for small enough

gridsteps h, choosing R = kh
1
3 and k an arbitrary positive constant. Convergence

speed is in O(h
1
3 ). Furthermore, integral principal direction estimators ŵR

1 and

ŵR
2 are also convergent toward w1 and w2 with speed O(h

1
3 ) provided princi-

pal curvatures are distinct. Last the integral normal estimator n̂R is convergent
toward the normal n with speed O(h

2
3 ).

To our knowledge, these were the first estimators of principal curvatures shown
to be multigrid convergent.

4 Digital voronoi covariance measure

Integral curvatures estimators are convergent. They are rather robust to the
presence of Hausdorff noise in input data (see [CLL14]). However, this robustness
comes with no guarantee. We present here another approach that reaches this
goal, and which can even be made robust to outliers. The first idea is to use
a distance function to input data, which is stable to perturbations [CCSM11].
The second idea is to notice that Voronoi cells of input data tend to align with
normals of the underlying shape. To make this idea more robust, it suffices to
integrate the covariance of gradient vectors of the distance function within a
local neighborhood: this is called Voronoi covariance measure [MOG11].

Definition 4 A function δ : Rd → R+ is called distance-like if (i) δ is proper,
i.e. lim‖x‖→∞ δ(x) =∞, (ii) δ2 is 1-semiconcave, that is δ2(.)−‖.‖2 is concave.



It is worthy to note that the standard distance dK to a compact K is distance-
like. Clearly this distance is robust to Hausdorff noise, i.e. dH(K,K ′) < ε implies
‖dK − dK′‖∞ < ε. Although we will not go into more details here, the distance
to a measure [MOG11,CLMT15] is even resilient to outliers and the error is
bounded by the Wasserstein-2 distance between measures. Let Nδ := 1

2∇δ
2.

Definition 5 (δ-VCM) The δ-Voronoi Covariance Measure (VCM) is a tensor-
valued measure. Given any non-negative probe function χ, i.e. an integrable
function on Rd, we associate a positive semi-definite matrix defined by

VRδ (χ) :=

∫
δR

Nδ(x)⊗Nδ(x) · χ (x−Nδ(x)) dx, (16)

where δR := δ−1((−∞, R]).

Note that Nδ is defined almost everywhere in Rd.
In the following, we define δ as the distance to a compact dK in all results, but

one should keep in mind that these results are extensible to arbitrary distance-
like functions. Then NdK corresponds to the vector of the projection onto K,
except for the sign. The dK-VCM corresponds then to the covariance matrix of
Voronoi cells of points of K, restricted to a maximum distance R, and weighted
by the probe function.

Definition 6 Let Z ⊂ Zd and h > 0. The digital Voronoi Covariance Measure
of Z at step h and radius R associates to a probe function χ the matrix:

V̂RZ,h(χ) :=
∑

z∈vox(Zh,R)

hdNdZh
(z)⊗NdZh

(z)χ(z−NdZh
(z)), (17)

where Zh := h ·Z and vox(Zh, R) designates the points of h ·Zd whose h-cube is
completely inside the R-offset of Zh. See Fig. 2 for an illustration.

Since NdZh
corresponds to the projection onto Zh, the previous formulation

is easily decomposed per Voronoi cells of Zh and can be computed exactly by
simple summations. The digital VCM is shown to be close to the VCM for
digitizations of smooth enough shapes [CLT14]. Errors are related first to the
difference between ∂X and its digitization ∂[Gh(X)]h (essentially bounded by
Theorem 5.1 of [MOG11]). Secondly they are linked to the transformation of
the integral in VRδ in a sum in V̂RZ,h (bounded by the fact that the projection

is stable and that the strip ZRh \ vox(Zh, R) is negligible). Proofs ressemble the
ones of Section 2.

Theorem 9 ([CLT14]) For X a compact domain of Z3 whose boundary is C2-
smooth and has reach greater than ρ > 0. Then, for any R < ρ/2 and probe
function χ with finite support diameter r and for small enough h > 0, letting
Z = ∂[Gh(X)]1 ∩ (Z + 1

2 )3, we have:

‖VR∂X(χ)− V̂RZ,h(χ)‖op ≤ O
(
Lip(χ)(r3R

5
2 + r2R3 + rR

9
2 )h

1
2

+ ‖χ‖∞[(r3R
3
2 + r2R2 + rR

7
2 )h

1
2 + r2Rh]

)
.
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Fig. 2. Left: the limits of the R-offset of a set of digital points are drawn as a cyan con-
tour, while vectors connecting points within the R-offset (i.e. ZRh ) to their projection
are drawn in deep blue. Right: Voronoi cells defining the VCM. The domain of inte-
gration for a kernel χ of radius r is drawn in dark orange (both germs and projection
vectors). The kernel itself is drawn in red.

As one can see, the digital VCM is an approximation of the VCM, but the
quality of the approximation is related not only to the gridstep h but also to
two parameters, the size r of the support of χ and the distance R to input data,
which defines the computation window.

An interesting fact about the VCM is that it is in some sense complementary
to integral invariants. It does not aim at fitting a tangent plane to ∂X, it aims
at fitting a line to the normal vector n to ∂X. It carries thus information about
the normal to ∂X. This is shown by the relation below ([CLT14], Lemma 2,
adaptation of a relation in [MOG11]):∥∥∥∥ 3

2πR3r2
VRd∂X

(1Br(x))− [n(x)⊗ n(x)]

∥∥∥∥
op

= O(r +R2). (18)

Putting together Theorem 9 and Eq.(18), as well as an error term coming from
the positioning error of the kernel χ, provides a multigrid convergence theorem,
that has the remarkable property to be stable to Hausdorff perturbation of digital
data.

Theorem 10 ([CLT14]) With the same hypothesis as in Theorem 9, χ bounded
Lipschitz, and denoting n̂Rχ the eigenvector associated to the highest eigenvalue

of V̂RZ,h(χ), then n̂Rχ is multigrid convergent toward the normal vector to ∂X,

with speed O(h
1
8 ) when both R and the support r of χ are chosen in Θ(h

1
4 ).

Experiments indicate a much faster convergence speed (close to O(h)) even in
presence of noise. The discrepancy comes mainly from the fact that χ is any
bounded Lipschitz function while Eq.(18) is valid for the characteristic function
of Br(x).



5 Digital surface integration

Until now, convergence results where achieved by approximating well-chosen
volume integrals around input data. What can we say if we wish to approach
integrals defined over the shape boundary, given only the shape digitization. We
focus here on Gauss digitization and we write ∂hX for ∂[Gh(X)]h. A natural
answer is to define a mapping between the digitized boundary ∂hX and the
continuous boundary ∂X. Using standard geometric integration results, a surface
integral defined over ∂X can be transformed into a surface integral over ∂hX
by introducing the Jacobian of this mapping. However, we have to face several
difficulties in our case. The first one is that, starting from 3D, ∂hX may not
even be a manifold, whatever the smoothness of ∂X and the gridstep h [SLS07].
Hence, it is not possible to define an injective mapping between the two sets.
The second difficulty is that the underlying continuous surface is unknown, so
we have to define a natural mapping without further hypothesis on the shape.
The best candidate is the projection π∂X onto ∂X, which is defined everywhere
in the R-offset of ∂X, for R smaller than the reach of ∂X. It is nevertheless
easily seen that π∂X , although surjective, is generally not injective between the
digitized boundary and the continuous boundary. In the following, we bound
these problematic zones in order to define convergent digital surface integrals.
For simplicity, we write π for π∂X and π′ for its restriction to ∂hX.

Definition 7 ([LT15]) Let Z ⊂ Zd be a digital set, with gridstep h > 0 between
samples. Let Bd(Z) = {(z1 + z2)/2, z1 ∈ Z, z2 6∈ Z, ‖z1 − z2‖1 = 1}. It corre-
sponds to centroid of d − 1-cells separating Z from Zd \ Z. Let f : Rd → R be
an integrable function and n̂ be a digital normal estimator. We define the digital
surface integral by

DIf,n̂(Z, h) :=
∑

y=hz,z∈Bd(Z)

f(y)|n̂(y) · nh(y)|,

where y visits faces of ∂[Z]h and nh(y) is the trivial normal of this face.

We show the following facts in [LT15], if X is a compact domain of Rd such that
reach(∂X) > ρ > 0:

– for d = 3 and h < 0.198ρ, ∂hX may not be a manifold only at places at
distance lower than h to parts of ∂X whose normal makes an angle smaller
than 1.26h/ρ to some axis;

– for arbitrary d ≥ 2 and h < ρ/
√
d, let y ∈ ∂hX and nh(y) be its (trivial)

normal vector; then the angle between the normal n(x) to ∂X at x = π(y)
and nh(y) cannot be much greater than π/2, since n(x) ·nh(y) ≥ −

√
3dh/ρ;

– let Mult(∂X) be the points of ∂X that are images of several points of ∂hX by
π′, then it holds for at least one of the point y in the fiber of x ∈ Mult(∂X)
under π′ that n(x) · nh(y) is not positive;

– the Jacobian of π′ is almost everywhere |n(x) · nh(y)|(1 +O(h)|;
– areas are related with Area(∂hX) ≤ 2d+2d

3
2 Area(∂X);



(a) h = 0.1 (b) h = 0.05 (c) h = 0.025
Aπ = 58.40%, Anm = 1.57% Aπ = 30.71%, Anm = 0.38% Aπ = 15.88%, Anm = 0.09%

(a) h = 0.04 (b) h = 0.02 (c) h = 0.01
Aπ = 62.22%, Anm = 0.88% Aπ = 30.54%, Anm = 0.12% Aπ = 16.67%, Anm = 0.03%

Fig. 3. Properties of several Gauss digitizations of two polynomial surfaces (top row
displays a Goursat’s smooth cube and bottom row displays Goursat’s smooth icosa-
hedron). Zones in dark grey indicates the surface parts where the Gauss digitization
might be non-manifold (their relative area is denoted by Anm). Zones in light grey (and
dark grey) indicates the surface parts where projection π might not be a homeomor-
phism (their relative area is denoted by Aπ). Clearly, both zones tends to area zero as
the gridstep gets finer and finer, while parts where digitization might not be manifold
are much smaller than parts where π might not be homeomorphic.

– hence, when h ≤ R/
√
d, the area of the non-injective part of π′ decreases

with h: Area(Mult(∂X)) ≤ K2 Area(∂X) h, with K2 ≤ 2
√

3 d2 4d/ρ.

The preceding properties show that problematic places on ∂hX for the inte-
gration have decreasing area. Furthermore, if E(n̂,n) := supy∈∂hX ‖n(π(y)) −
n̂(y)‖, errors in normal estimation induce propotional errors in surface integra-
tion. We can then prove the multigrid convergence of the digital surface integral
toward the surface integral.

Theorem 11 Let X be a compact domain whose boundary has positive reach
ρ. For h ≤ ρ/

√
d, the digital surface integral is multigrid convergent toward the

integral over ∂X. More precisely, for any integrable function f : Rd → R with



bounded Lipschitz norm ‖f‖BL := Lip(f) + ‖f‖∞, one gets∣∣∣∣∫
∂X

f(x)dx−DIf,n̂(Gh(X), h)

∣∣∣∣ ≤ Area(∂X) ‖f‖BL

(
O(h) +O(E(n̂,n))

)
.

The constant involved in the notation O(.) only depends on the dimension d
and the reach ρ. Note that Theorem 8 and Theorem 10 have shown that there
exist normal estimators such that E(n̂,n) tends to zero as h tends to zero. Ex-
perimental evaluation of the digital surface integral shows a better convergence
in practice for area analysis, with convergence speed close to O(h2) both for
integral normal estimator and digital VCM normal estimator.
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