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a b s t r a c t

We address the problem of computing the exact characteristics of any subsegment of a
Digital Straight Line (DSL) with known characteristics (a slope a

b , a shift to origin µ). We
present here two new algorithms that solve this problem, whose correctnesses are fully
proved. Their principle is to descend/climb the Stern–Brocot tree of fractions in a top-
down/bottom-up way. The top-down algorithm SmartDSS has a time complexity which
depends on the sum of the quotients of the continued fraction of the output slope and on
the number of pattern repetitions. As a corollary, its time complexity is bounded by the
sum of the quotients of the continued fraction of the input slope, Said and Lachaud (2009)
[18]. The bottom-up algorithm ReversedSmartDSS has a time complexity proportional to
the difference of depth of the input slope and the slope of the output segment, Said and
Lachaud (2011) [17]. As a corollary, its complexity is thus logarithmic in the coefficients
of the input slope. These algorithms are also efficient in practice, as shown by a series
of experiments comparing these new algorithms with standard arithmetic digital straight
segment recognition.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Digital Straight Lines (DSL) havemanydefinitions: digitization of Euclidean straight lines,word combinatorics description
as Christoffel words or Sturmian words, arithmetic description with diophantine linear inequalities. Their first definition
explains why they arise naturally in a digital shape analysis: the boundary of digital shape is indeed composed of finite
parts of digital straight lines, called Digital Straight Segments (DSS). As such, they describe the first order geometry of digital
shape and are used for coding, geometric estimation and feature detection. This explains why they have been so deeply
studied (see the survey [13] or [12]).

Algorithms for recognizing if a sequence of digital points is a DSS have been known for a long time. Given a DSS, there are
infinitelymany DSL that cover it but only one of themhasminimal characteristics (size of slope numerator and denominator,
see [19] for more details about minimal characteristics). The characteristics of this DSL define the (exact) characteristics of
the DSS. In one of the first recognition methods, Freeman [10] suggested to analyze the regularity in the pattern of the
directions in the chain code [9] of a digital curve. Anderson and Kim [1] have presented a deep analysis of the properties
of DSS and suggested a different algorithm based on calculating the convex hull of the points of digital curves to be analyzed.
Modern DSS recognition algorithms achieve a computational complexity ofO(m), ifm is the number of input points andwith
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Table 1
Comparison between the three DSS recognition algorithms in terms of necessary input data and in terms of time complexity. By hypothesis, the digital
points A = P1, . . . , Pm = B are a connected piece of DSL, whose slope is a/b and whose shift is µ. Furthermore, the n-th convergent of the continued
fraction of a/b is [u0; u1, . . . , un]. Note that a′/b′ is a reduced fraction of a/b or a/b itself.

Algorithm Input data Output Complexity

DR95 Points P1, . . . , Pm Characteristics of DSS [AB]: slope
a′/b′ = [u0; u1, . . . , un′ ], shift µ′ , number of
patterns δ

Θ(m)

SmartDSS Points A, B, integers a, b, µ Θ(δ +
n′

i=0 ui)

Reversed-SmartDSS Points A, B, integers a, b, µ,
pi
qi
= (ui)i=0..n Θ(n− n′)

a computing model where arithmetic operations take O(1) time. Interestingly, this complexity is obtained by algorithms
based on arithmetic properties [15,14,3], combinatorial properties [20], or dual-space construction [7].

These algorithms are optimal, when no further information is known. However, there are specific caseswherewe already
know that the observed set of points is included in some DSL of known characteristics. The recognition algorithm has
therefore only to determine the exact characteristics of the input set, and has not to decide whether or not this set is a
piece of DSL. As an illustrating example, this situation occurs when computing the multiresolution geometry of a digital
object, since analytic formulas give the multiresolution of DSL (see the thesis of Figueiredo [8] or the paper [18]).

We show in this paper that one can compute in sublinear time the exact characteristics of a DSSwhen it is a subsegment of
a DSL with known characteristics. We give two algorithms whose principle is related to the Stern–Brocot tree of irreducible
fractions. A variant of the first algorithm was presented in [18]. A variant of the second algorithm was presented in [17]. In
this paper, we present these algorithms in a more unified way that is easier to understand and whose correctness and time
complexity are easier to demonstrate. Full proofs are given and a new exhaustive experimental evaluation is conducted.

Many works deal with the relations between irreducible rational fractions and digital lines (see [6] for characterization
with Farey series, and [21] for a link with decomposition into continuous fractions). In [2], Debled and Reveillès first
introduced the link between the Stern–Brocot tree and the recognition of digital line. Recognizing a piece of digital line is
like going down the Stern–Brocot tree up to the directional vector of the line. To sum up, the classical online DSS recognition
algorithm DR95 [2] (also reported in [12]) updates the DSS slope when adding a point that is just exterior to the current line
(weak exterior points). In [4], de Vieilleville and Lachaud have related the arithmetically-based DSS recognition algorithm
with new parameters related to a combinatorial representation of DSS. New analytic relations have been established and
the relation with the Stern–Brocot tree has been made explicit.

We present two fast algorithms which compute the exact (minimal) characteristics of a DSS that is some subset of a
DSL of known characteristics. More precisely, the first algorithm, called SmartDSS computes the exact characteristics of a
DSS that is a subset of a known DSL, given the endpoints of the DSS, by moving in a top-down way along the Stern–Brocot
tree. Its correctness is established by Proposition 2. Its worst-case computational complexity is Θ((

n′
i=0 ui) + δ), where

[u0; u1, . . . , un′ ] is the continued fraction of the slope of the output DSS and δ is the number of patterns in this DSS
(Proposition 4). The expectation of this sum for fractions a

b with a+b = N is experimentally lower than log2 N , and this sum
is upper bounded by N . On the other hand, the best case is Θ(1). For the second algorithm, the input DSL, say D, is given as
the continued fraction of its slope. The DSS is specified by the positions of its two endpoints A and B. Furthermore, the two
lower leaning points of D surrounding A and B are given as input. This algorithm, called ReversedSmartDSS,1 determines
the characteristics of the DSS by moving in a bottom-up way along the Stern–Brocot tree. We prove the correctness of this
algorithm in Proposition 12. We further show in Proposition 13 that its worst-case computational complexity is Θ(n− n′),
where [u0; u1, . . . , un] is the continued fraction of the slope of the input DSL and [u0; u1, . . . , un′ ] is the continued fraction
of the slope of the output DSS. This result assumes a computing model where standard arithmetic operations are in O(1),
which is a reasonable assumption when analyzing digital shapes. The properties and specificities of these DSS recognition
algorithms are summed up in Table 1.

This is to compare with the complexity of classical DSS recognition algorithms (e.g., DR95 [3], see also [13]), whose
complexities are at best Θ(m), where m is the number of input points. All these algorithms have been implemented.
Experimental results show that algorithm ReversedSmartDSS performs better than SmartDSS algorithm and are much
faster than classical DSS recognition algorithms (see Table 2 in Section 5).

This paper is organized as follows. First, we recall in Section 2 somedefinitions and properties about the rational fractions,
more particularly the relation between the rational fractions and the Stern–Brocot tree. In Sections 3 and 4,we describe these
two new algorithms. We show the correctness of each algorithms, as well as their respective computational complexity.
Section 5 compares the performances of the algorithms SmartDSS, ReversedSmartDSS and the standard arithmetic DSS
recognition.

2. Digital straightness and continued fractions

In this section, we recall some links between DSS, patterns, continued fraction of the slope, and the Stern–Brocot tree
representation of fractions.

1 This name is in opposition to the SmartDSS algorithm, because it moves along the Stern–Brocot in a reversed direction.
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A Digital Straight Line (DSL) of integer characteristics (a, b, µ), gcd(a, b) = 1, is the infinite subset of the digital plane
{(x, y) ∈ Z2, µ ≤ ax−by < µ+|a|+|b|} [16]. It is well-known that these DSL are 4-connected subset of the plane andmay
thus be defined as a sequence of Freeman moves in the plane. They are often called standard. The fraction a/b is the slope of
the DSL, while µ is related to the shift at the origin. A Digital Straight Segment (DSS) is a finite 4-connected piece of DSL. Any
DSS is included in an infinite number of DSL, but the characteristics of the DSS are the characteristics of the DSL containing it
with minimal |a|. A DSS is uniquely determined from its characteristics and the starting and ending points. The remainder of
a DSS – or a DSL – of characteristics (a, b, µ) is the function (x, y) → ax− by. Upper leaning points have remainder µ. Lower
leaning points have remainderµ+|a|+ |b|−1. It is easy to see that the convex hull of these points forms a strip in the plane
of slope a/b which contains all points of the DSL. Weakly exterior points are the points of the digital plane closest to the
strip but not within. Upper weakly exterior points have remainder µ − 1 while lower weakly exterior points have remainder
µ+ |a| + |b|. These points are fundamental when recognizing DSS [2].

Given a standard line (a, b, µ), we call pattern of characteristics (a, b) the succession of Freeman moves between any
two consecutive upper leaning points. The Freeman moves defined between any two consecutive lower leaning points is
the previousword read from back to front and is called the reversed pattern (see [4]).We say that a DSS is primitivewhenever
it contains one pattern of its slope or one reversed pattern of its slope (but not one of each).

As noted by several authors (e.g. see [12], or the work of Berstel reported in [4]), the pattern of any slope can be
constructed from the continued fraction of the slope. We recall that a simple continued fraction is an expression:

z =
a
b
= [u0, u1, u2, . . . , ui, . . . , un] = u0 +

1
u1 +

1
...+ 1

un−1+
1
un

,

where n is the depth of the fraction, and u0, u1, etc., are all integers and called the partial quotients. We call k-th convergent
the simple continued fraction formed of the k first partial quotients: zk =

pk
qk
= [u0, u1, u2, . . . , uk]. The function E takes a

continued fraction z as input to build recursively the pattern of a DSS of slope z in the first quadrant.

E(z−2) = 0, E(z−1) = 1, and, ∀i ≥ 0,

E(z2i+1) = E(z2i)u2i+1E(z2i−1),
E(z2i) = E(z2i−2)E(z2i−1)u2i .

(1)

Let us take for example the fraction 7
16 = [0; 2, 3, 2]. The pattern of any DSS with this slope is thus:

E([0; 2, 3, 2]) = E([0; 2, 3])2 · E([0; 2]) 00010010010001001001 · 001

E([0; 2, 3]) = E([0]) · E([0; 2])3 0 · 001001001
E([0; 2]) = 001 001

E([0]) = 0 0.

The role of partial quotients can be visualized with a structure called the Stern–Brocot tree (see [11] for a complete
definition) which is a hierarchy containing all the positive irreducible rational fractions. The idea under its construction
is to begin with the two fractions 0

1 and 1
0 and to repeat the insertion of the median of these two fractions as follows:

insert the median m+m′
n+n′ between m

n and m′
n′ . The sequence of partial quotients defines the sequence of right and left moves

down the tree. An illustration of this tree is proposed in Fig. 1. Many works deal with the relations between irreducible
rational fractions and digital lines (see [6] for characterization with Farey series, and [21] for a link with decomposition into
continuous fractions). In [2], Debled and Reveillès first introduced the link between this tree and the recognition of digital
line. Recognizing a piece of digital line is like going down the Stern–Brocot tree up to the directional vector of the line. To
sum up, the classical online DSS recognition algorithm DR95 [2] (also reported in [12]) updates the DSS slope when adding
a point that is just exterior to the current line (weak exterior points). The slope evolution is analytically given by the next
property.

Proposition 1 ([4]). The slope evolution in DR95 depends on the parity of the depth of its slope, the type of weakly exterior point
added to the right. This is summed up in the table below, where the slope is [0, u1, . . . , uk], k = 2i even or k = 2i+ 1 odd, and
the number of patterns contained in the DSS is denoted by δ, while the number of reversed patterns is denoted by δ′.

Evenk Odd k
Upper weakly exterior [0, u1, . . . , u2i, δ] [0, u1, . . . , u2i+1 − 1, 1, δ]
Lower weakly exterior [0, u1, . . . , u2i − 1, 1, δ′] [0, u1, . . . , u2i+1, δ

′
]

Wemay look again at our example of fraction 7
16 . The path in the Stern–Brocot tree from the root 0

1 to this fraction is the
list of nodes 0

1 ,
1
1 ,

1
2 ,

1
3 ,

2
5 ,

3
7 ,

4
9 ,

7
16 . Any DSS in a DSL of slope 7

16 has a slope which is one of these fractions. We notice that
the partial quotients of 7

16 are a subset of the preceding list, i.e. 0
1 ,

1
2 ,

3
7 ,

7
16 .

We will use the following technical lemmas for proving the validity of our algorithms. Let D be a DSL of slope a/b, a >
0, b > 0, and let w be a pattern of D.
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Fig. 1. Stern–Brocot tree: positive irreductible rational fractions.

Lemma 1. The pattern w visits exactly one lower leaning point of D.

Proof. A pattern is a path between two upper leaning points of a DSL. The associated remainder function will take all the
values between µ+ 1 and µ+ a+ b− 1 for all the a+ b− 2 points between the two upper leaning points. Therefore, only
one point will have the value µ+ a+ b− 1. �

Lemma 2. Let U,U ′ be the upper leaning points of w and L its lower leaning point. Then the vector t⃗ = U⃗L + (−1, 1) forms
the Bézout coefficients of ⃗UU ′ = (b, a) (i.e. ⃗UU ′ ∧ t⃗ = 1). As a corollary, points U + k ⃗UU ′ + t⃗, k integer, are the upper weakly
exterior points to D. Furthermore, points U + k ⃗UU ′ + (1,−1) are the lower weakly exterior points to D.

Proof. Since L has remainder µ + a + b − 1, the point L + (−1, 1) has remainder µ − 1, hence the vector t⃗ = (tx, ty) =
U⃗L+ (−1, 1) has remainder−1. This means−1 = atx − bty = (tx, ty) ∧ (b, a) which concludes. �

Lemma 3. Let u01v be the decomposition of w into words such that the letters 01 stand around the lower leaning point. Any
DSL containing wk contains at least vwku, for a positive integer k. Furthermore, any path w′ = v′wku′, with v′ right factor of v
and u′ left factor of u, is a DSS with the same slope as w.

Proof. Lemma 1 entails that the writing w = u01v is valid and unique. Let U and U ′ be the two upper leaning points of
w. It is well known that DSS slopes are governed by weakly exterior points (e.g. see [2]). Now, according to Lemma 2, the
first weakly exterior point to the right of wk is at the next lower leaning point plus (−1, 1) (i.e. position U ′ + u⃗1). The first
weakly exterior point to the left of w is at the previous lower leaning point plus (−1, 1) (i.e. position U − 0⃗v). Therefore
there cannot be any change in the slope of DSS between these points, and any DSL containing wk contains vwku. �

3. Fast top-down DSS recognition algorithm when DSL container is known

Let S be some DSS included in a line D. We propose an output-sensitive algorithmic approach SmartDSSwhich computes
all the characteristics of S in a time sublinear in the number of its points (Algorithm 1). The required input data are the
characteristics (α, β, µ′) ofD, aswell as the two extremitiesA, B, of S. Sincewe know thatAB forms aDSS, a faster recognition
algorithm than DR95 can be designed. Indeed, most of the points between A and B do not lead to any slope evolution and
we exploit this property in this algorithm.

In the whole section, D is a DSL in the first quadrant.

3.1. Overview of the algorithm

Starting from the initial correct quadrant, Algorithm 1 determines progressively the positions of the weakly exterior
points. They are related to the Bézout coefficient of the current DSS slope pk

qk
(lines 6 and 10), see also Lemma 2. Since we

update at each step the continued fraction of the slope, these coefficients are given in O(1) time by the function Bezout
(Algorithm 2), assuming a computation model where standard arithmetic operations are in O(1).2

2 A reasonable assumption since characteristics are bounded by 2∥A⃗B∥∞ , hence integers are bounded by the square of this value if the frame is centered
on [A, B].
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Fig. 2. Illustration of Algorithm 1. A digital straight line D(13, 17,−5)with an odd slope. Compute the characteristics (a, b, µ) of a DSS S that is the subset
of D between the origin and the point B(12, 9). The slopes in the figures are drawn with solid blue lines and tested points are circled. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

In the loop (while block at line 1), the algorithm checks in sequence upper and lower weakly exterior points so as to find
the first that is in the DSL. If the algorithm has not overtaken the end point B, three cases arise. The first and second cases
occur when a weakly exterior point happens to be part of the line. Once such a point is found, Proposition 1 indicates how
to update the slope, depending if it is a slope increase (line 3) or decrease (line 7). This is effectively implemented in O(1)
time with Algorithm 3. It remains to update consistently the new first lower leaning point or upper leaning point. We have
to be a little careful of whether the current DSS has a first leaning point that is an upper one (case ULU) or a first leaning
point that is a lower one (case LUL): it is just to adapt δ to be the number of patterns or the number of reversed patterns. The
third case indicates that there is one more pattern and one more reversed pattern in the DSS, and advances the next weakly
exterior points accordingly.

The algorithm stops either when point B has been reached or when the slope of the DSL D has been reached.
The correctness of this algorithm is established in the next subsection (Proposition 2). An upper bound for its time

complexity is given by Proposition 4. It is related to the partial quotients of the DSS slope.
An execution of this algorithm is illustrated in Fig. 2. 11 points have been tested compared with a DSS length of 23. For

this execution, the table below displays the state of themain variables at the beginning of each iteration at line 1. The output
is the DSS (3, 4, 3 ∗ 1− 4 ∗ 1), which has 3 patterns between (0, 0) and (12, 9). Note that 3

4 = [0; 1, 3] and SmartDSS exits
at iteration 1+ δ +


ui = 1+ 3+ (0+ 1+ 3).

Iter U L (b, a) U ′ L′ δ Case
1 (0, 0) (0, 0) (1, 0) (0, 1) (1,−1) 0 δ ++ (line 11)
2 (0, 0) (0, 0) (1, 0) (1, 1) (2,−1) 1 UWE (line 3)
3 (0, 0) (1, 0) (1, 1) (1, 2) (3, 1) 1 LWE (line 7)
4 (1, 1) (1, 0) (2, 1) (4, 3) (4, 1) 1 UWE (line 3)
5 (1, 1) (3, 1) (3, 2) (5, 4) (8, 4) 1 UWE (line 3)
6 (1, 1) (3, 1) (4, 3) (6, 5) (10, 6) 1 δ ++ (line 11)
7 (1, 1) (3, 1) (4, 3) (10, 8) (14, 9) 2 δ ++ (line 11)
8 (1, 1) (3, 1) (4, 3) (14, 11) (18, 12) 3 Exit (line 2)

3.2. Correctness of SmartDSS algorithm

We establish the proof of the correctness of algorithm SmartDSS in Proposition 2. We begin with some useful lemmas.

Lemma 4. If (
pi
qi
)i=0..k are the partial quotients of a

b , then Algorithm 2 returns the Bézout coefficients (b′, a′) of (b, a), i.e.
ba′ − ab′ = 1.
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Fig. 3. Illustration of Lemma 5. Slope evolution of a ULU DSS of slope 2
5 with two patterns (and one reverse pattern). Top row: the upper weakly exterior

point U ′ belongs to D (left), slope becomes 5
12 (right). Bottom row: the lower weakly exterior point L′ belongs to D (left), slope becomes 5

13 (right).

Proof. If k is odd, then ba′ − ab′ = qk(pk − pk−1)− pk(qk − qk−1) = pkqk−1 − qkpk−1. For all continued fractions, this value
is (−1)k+1, hence 1 in this case. If k is even, then ba′ − ab′ = qkpk−1 − pkqk−1 = −(−1)k+1, hence again 1. �

A DSS is said ULU (resp. LUL) if one of its leftmost leaning points is an upper leaning point (resp. a lower leaning point).
Only DSS with trivial slope are both ULU and LUL. In the following, a subsegment from A to B of the DSL D is denoted by
[A, B]D or more simply [A, B]when no confusion may arise.

Lemma 5. At each iteration of algorithm SmartDSS (line 1), the loop invariant is (letting U2
= U + δ(b, a), L2 = L +

δ(b, a), µ = aUx − bUy):

• the Boolean value (ulu or lul) is true.
• if ulu is true, then [A,U2

] is a DSS of characteristics (a, b, µ) that is ULU and has δ patterns. Furthermore, U and L are
respectively its leftmost upper and lower leaning points, while U ′ and L′ are respectively its leftmost upper and lower weakly
exterior points which lie to the right of U2. There are δ patterns in [UU ′[.
• if lul is true, then [A, L2] is a DSS of characteristics (a, b, µ) that is LUL and has δ reversed patterns. Furthermore, U and L are

respectively its leftmost upper and lower leaning points, while U ′ and L′ are respectively its leftmost upper and lower weakly
exterior points which lie to the right of L2. There are δ reversed patterns in [LL′[.

Proof. The invariant is established by induction on the iteration number K . For K = 1, both ulu and lul are true. For
K = 1,U = L = U2

= L2. It is a single point whose slope is by convention (1, 0) and µ = −Ay. U ′ = U + (0, 1): it
is the first point that is upper weakly exterior (used if the first step is a vertical step). L′ = L + (1,−1): it is the first point
that is lower weakly exterior (never used since we are in the first quadrant). All invariant statements are true. Assuming the
invariant was verified at iteration K , we show that it is true at iteration K + 1. According to the test at line 2, we know that
the DSS [A, B] touches at least either U ′ or L′. We examine all mutually exclusive cases:

U ′y ≤ By and U ′ ∈ D. When ulu is true, an illustration is given in Fig. 3, top row. This situation is treated exactly as in the
DR95 algorithm when adding an upper weakly exterior point. The function UpdateSlope is the
implementation of Proposition 1. The new slope a∗/b∗ corresponds to the vector UU ′ (i.e. δ(b, a) +
(b′, a′)). The leaning points are updated as follows: U is not changed, U2

= U+ (b∗, a∗), L becomes the
last lower leaning point. We obtain a DSS [A,U ′], that is ULU (ulu is true) and has exactly one pattern
[U,U ′]. Hence U and L are the leftmost leaning points. Lemma 4 entails that the new positions U ′
and L′ correspond to upper weakly exterior points. The test ‘‘not lul’’ is to take into account that if the
segment is ULU then the upper weakly exterior point is before L′, so L must be translated accordingly.
Points U ′ and L′ are the leftmost weakly exterior points to the right of U2. Indeed subtracting (b∗, a∗)
from their positions gives a vector shorter than (b∗, a∗) for U ′ and L′ (we choose Bézout coefficients
with 0 < a′ ≤ a∗).
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Action SmartDSS( In D : DSL (α, β, µ′), In A, B : Points of Z2,
Out S: DSS (a, b, µ) ) ;

Var u, p, q : array of integers /* Cont. frac. a
b = [u0, . . . , uk] =

pk
qk

*/ ;
Var U, L,U ′, L′ : Point of Z2 ;
Var ulu, lul, inside : boolean ;
Var k, loop : integer ;
begin

k← 0, u0 ← 0, p0 ← 0, q0 ← 1, p−1 ← 1, q−1 ← 0 ;
(b, a)← (1, 0) ;
(b′, a′)← (0, 1) ; /* ba′ − ab′ = 1 */
U ← A, L← A /* U, L : first leaning points for the current DSS. */;
U ′ ← U + (b′, a′), L′ ← L+ (b− b′, a− a′) ;
δ← 0, ulu← true, lul← true ;
while pk ≠ α do1

/* If ulu, [A,U + δ(b, a)] is a DSS (a, b, aUx − bUy). */;
/* If lul, [A, L+ δ(b, a)] is a DSS (a, b, aUx − bUy). */;
/* U ′ is the next upper weakly exterior point to this DSS. */;
/* L′ is the next lower weakly exterior point to this DSS. */;
if (∥AU ′∥1 > ∥AB∥1) and (∥AL′∥1 > ∥AB∥1) then2

break ;
/* DSS [A, B] reaches at least U ′ or L′. */ ;
else if U ′y ≤ By and U ′ ∈ D then3

/* Increase slope with weak upper leaning point U ′ */ ;
UpdateSlope(true, δ, k, u, p, q ) ;4
L← L′ − (b− b′, a− a′) ; /* Last lower leaning point. */5
if not lul then L← L− (b, a);
(a, b)← (pk, qk) ;
(b′, a′)← Bezout(p, q, k) ; /* ba′ − ab′ = 1 */6
U ′ ← U + (b+ b′, a+ a′), L′ ← L+ (2b− b′, 2a− a′) ;
δ← 1, ulu← true, lul← false ;

else if L′x ≤ Bx and L′ ∈ D then7
/* Decrease slope with weak lower leaning point L′ */ ;
UpdateSlope(false, δ, k, u, p, q) ;8
U ← U ′ − (b′, a′) ; /* Last upper leaning point. */9
if not ulu then U ← U − (b, a);
(a, b)← (pk, qk) ;
(b′, a′)← Bezout(p, q, k) ; /* ba′ − ab′ = 1 */10
U ′ ← U + (b+ b′, a+ a′), L′ ← L+ (2b− b′, 2a− a′) ;
δ← 1, ulu← false, lul← false ;

else11
δ← δ + 1 ; /* One more (reversed) pattern. */
U ′ ← U ′ + (b, a);
L′ ← L′ + (b, a);

µ← aUx − bUy ; /* (a,b,µ) are the characteristics of DSS [P,Q ]. */
end

Algorithm 1: Computes the characteristics (a, b, µ) of a DSS that is some subset of a DSL D, given a starting point A and
an ending point B (A, B ∈ D).

L′x ≤ Bx and L′ ∈ D. When ulu is true, an illustration is given in Fig. 3, bottom row. The reasoning is similar to the previous
case.

Otherwise. BothU ′ and L′ are not in the DSLD, therefore the DSL goes straight until the nextweakly exterior points.
Since they are located (b, a) further, the DSS has one more pattern and one more reversed pattern. If
ulu, [A,U + (δ + 1)(b, a)] is thus a DSS with the same characteristics. If lul, [A, L + (δ + 1)(b, a)] is
thus a DSS with the same characteristics. The next weakly exterior points are just U ′ and L′ translated
by the pattern vector (b, a). �

Let A0, . . . , Am be an arbitrary finite 4-connected sequence of points in some DSL D. Such a sequence of points is by
definition a DSS.
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Function Bezout( In p, q, k ) : (b′, a′) ;
p, q : array of integer /* partial quotients */ ;
k : integer /* depth of continued fraction */ ;
begin

if k is odd then
b′ ← qk − qk−1 ;
a′ ← pk − pk−1 ;

else
b′ ← qk−1 ;
a′ ← pk−1 ;

end
Algorithm 2: Computes in O(1) the Bézout coefficients (b′, a′) of (pk, qk), i.e. qka′ − pkb′ = 1, using the partial quotients
pi
qi

of pk
qk
.

Action UpdateSlope( In uw, δ, InOut k, u, p, q ) ;
uw : Boolean /* True iff upper weak leaning point */ ;
δ : integer /* number of (reversed) patterns */ ;
k : integer /* depth of slope continued fraction */ ;
u, p, q : array of integers /* slope cont. fraction */ ;
begin

if (uw = true and k is odd) or (uw = false and k is even) then
uk ← uk − 1, pk ← pk − pk−1, qk ← qk − qk−1 ;
uk+1 ← 1, pk+1 ← pk + pk−1, qk+1 ← qk + qk−1 ;
k← k+ 1;

if δ = 1 then
uk ← uk + 1, pk ← pk + pk−1, qk ← qk + qk−1 ;

else
uk+1 ← δ, pk+1 ← δpk + pk−1, qk+1 ← δqk + qk−1 ;
k← k+ 1;

end
Algorithm 3: Updates in O(1) the slope of a DSS according to the addition of an upper leaning point (uw is true) or lower
leaning point (uw is false), to the number of patterns or reversed patterns δ, and to the current continued fraction of the
slope. This is the implementation of Proposition 1.

Lemma 6. For a fixed D, the indexm determines the number K(m) of loops (line 1) in SmartDSS(D, A0, Am). Moreover, K(m+1)
is either equal to K(m) or to K(m)+ 1. The state of all variables depends only on K(m).

Proof. Point B intervenes only for exiting the loop (line 2). Since integers ∥AU ′∥1 and ∥AL′∥1 are strictly increasing, the
number of iterations K(m) may not decrease. Lastly, U ′ and L′ moves at least of a vector of 1-norm 1 since vectors (b, a)
form increasing sequences. Since the 1-norm of AmAm+1 is 1, the exit condition (line 2) may be true only one more time,
and K(m + 1)− K(m) ≤ 1. For a given D, the state of all variables depends only on K(m) since B affects only K(m) and no
other computations. �

We prove below the correctness of function SmartDSS (Algorithm 1).

Proposition 2. For any DSL D in the first quadrant such that A, B ∈ D, A ≠ B, Algorithm 1 computes the characteristics of the
segment [A, B] included in D.

Proof. We prove by induction on m that the output of SmartDSS(D, A0, Am) is the characteristics of the DSS [A0, Am
]. For

m = 1, SmartDSS(D, A0, A1) outputs (0, 1,−A0
y) if A1 is A0

+ (1, 0) directly (exit at beginning of iteration 1), or outputs
(1, 0, A0

x) (exit at beginning of iteration 2) if A1 is A0
+ (0, 1). Both answers are correct.

Assuming the induction hypothesis is true for arbitrary 1 ≤ k ≤ m, we prove the property holds form+1. Let us assume
that [A0, Am

]was a DSS (am, bm, µm).
We know that SmartDSS(D, A0, Am) did output (am, bm, µm) by induction hypothesis. According to Lemma 6, modifying

the end point for this algorithm induces either K(m+ 1) = K(m) or K(m+ 1) = K(m)+ 1.
Case K(m+ 1) = K(m). In this case, both SmartDSS(D, A0, Am) and SmartDSS(D, A0, Am+1) have exited at the same

iteration at line 2. Since [A0, Am
] is a DSS (am, bm, µm), we know by the loop invariant

(Lemma 5) that U ′ and L′ are the leftmost first weakly exterior points. But the exit
condition entails both U ′ and L′ are further away from Am+1. Lemma 3 implies [A0, Am+1

]

has the same characteristics as [A0, Am
]. Since K(m + 1) = K(m), the returned value of

SmartDSS(D, A0, Am+1) is also (am, bm, µm), which concludes.
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Case K(m+ 1) = K(m)+ 1. In this case, at iteration K(m), SmartDSS(D, A0, Am) exited at line 2 while SmartDSS
(D, A0, Am+1) did not. We conclude easily that either ∥A0U ′∥1 = ∥A0Am+1

∥1 or ∥A0L′∥1 =
∥A0Am+1

∥1. The properties of weakly exterior points entail that conditions U ′ ∈ D and L′ ∈ D
cannot be true at the same time. Since we are in the first quadrant, we have four cases to
consider: Am+1

= U ′, Am+1
= L′, Am+1

= U ′ + (1,−1), Am+1
= L′ + (−1, 1).

Am+1
= U ′. In this case, Am+1 is upper weakly exterior to DSS (am, bm, µm) and therefore [A0Am+1

] is a
DSS with characteristics as specified by Proposition 1. Now, Am+1

= U ′ ⇒ U ′y ≥ Am+1
y

and Am+1
∈ D ⇒ U ′ ∈ D. The condition on line 3 is thus true. Lemma 5 applied at

beginning of iteration K(m + 1) implies that [A0,U2
] has characteristics (am+1, bm+1, µm+1).

Now U2 is by construction Am+1 (according to UpdateSlope). We conclude that [A0, Am+1
]

has characteristics (am+1, bm+1, µm+1). Since K(m+ 1) = K(m)+ 1, the execution flow exits
the loop immediately at line 2, thus the output is exactly (am+1, bm+1, µm+1), which is the
correct answer.

Am+1
= L′. This case is completely symmetrical to the previous case, replacing U ′ by L′ and U2 by L2, and

the condition in line 7 being true (instead of line 3).
Am+1

= U ′ + (1,−1). Let us compute the remainder of Am+1 for the DSS (am, bm, µm). Since U ′ is upper weakly
exterior (remainder µm

− 1) a short computation gives µm
+ a+ b− 1. Thus Am+1 is a lower

leaning point of this DSS. Thus [A0, Am+1
] has characteristics (am, bm, µm). We prove below

that SmartDSS outputs also these characteristics.
Now, since Am+1

≠ U ′ but Am+1
∈ D,U ′ ∉ D. Thus condition at line 3 is false at iteration K(m).

If am = 0, then condition L′ ∈ D at line 7 is false since theDSS is in the first quadrant. Otherwise,
if ulu is true (lul is false), then U ′ is to the left of L′: U ′x + 1 < L′x. Thus condition L′x ≤ Am+1

x
at line 7 is false because Am+1

x = U ′x + 1 < L′x. If lul is true, then L′ is to the left of U ′. But we
know already that [A0, Am

] was a DSS. Being weakly exterior, L′ touches one of these points,
i.e. L′ + (−1, 1) is one of the Ai, 1 ≤ i ≤ m. Since L′ + (−1, 1) ∈ D, L′ ∉ D by the rules of
remainders. The condition in line 7 is thus also false in this case.
We conclude that the else statement (line 11) was executed at iteration K(m). Both U ′ and
L′ are advanced and the DSS contains one more pattern and one more reversed pattern. The
characteristics (am, bm, µm) are not changed. At iteration K(m) + 1, the execution flow exits
immediately at line 2 since both U ′ and L′ are too far away (the vector (b, a) added to U ′
and L′ has positive 1-norm). Therefore, SmartDSS(D, A0, Am+1) outputs (am, bm, µm), which
concludes.

Am+1
= L′ + (−1, 1). This case is completely symmetrical to the previous case, swapping points U ′ and L′, vectors

(1,−1) and (−1, 1), indices x and y, ‘‘to the left’’ and ‘‘bottom’’, and Booleans ulu and lul. �

3.3. Computational complexity of SmartDSS

Propositions 3 and 4 establish the time complexity of this algorithmwith a tight output sensitive upper bound. Corollary 1
gives a non-tight input sensitive upper bound.

Proposition 3. Let S be a primitive DSS of slope a
b = [u0, u1, . . . , uk], contained in a DSL D. We denote by T (S) the number of

points tested by Algorithm 1 (test ‘‘∈ D’’) to recognize its slope a
b . If

k
i=0 ui = n, then T (S) ≤ 2n (it only depends on the sum of

the partial quotients).

Proof. We prove by induction on n that T (S) ≤ 2n. For S of slope [0], the initial condition T (S) = 0 is obvious since S is just
a one step horizontal segment and has slope 0. Algorithm 1 exits immediately from the loop at line 2 since tests U ′y ≤ By

and L′x ≤ Bx are false. Since A and the quadrant are known, the output is correct while no test ‘‘∈ D’’ has been made. Assume
that T (S) ≤ 2n for all primitive DSS S of slope [u0, u1, . . . , uk]with

k
i=0 ui = n. We shall prove that for any primitive DSS

S ′ with a sum n+ 1, we have T (S ′) ≤ 2n+ 2.
Let S ′ be such a DSS, with slope a′/b′ = [u′0, u

′

1, . . . , u
′

k′ ] and sum n + 1. The recognition process (Algorithm 1) is
incremental, and corresponds exactly to a progressive descent in the Stern–Brocot tree. Therefore, the recognition process
visits the father a/b of the node a′/b′ at some point. According to Stern–Brocot tree and Proposition 1, there are only two
possible evolutions for a slope of a DSS, either [u0, u1, . . . , uk, δ] or [u0, u1, . . . , uk − 1, 1, δ]. Therefore, we have two cases
for the partial quotients of a/b = [u0, u1, . . . , uk]:

• k = k′ − 1, ∀i = 0 . . . k, ui = u′i, u
′

k′ = δ.
• k = k′ − 2,∀i = 0, . . . , k− 1, ui = u′i, uk = u′k + 1, u′k′−1 = 1, u′k′ = δ.

In both cases,
k

i=0 ui = n+ 1− δ, δ ≥ 1. Therefore, at the moment the node a/b is reached, this first subpart of S ′ (called
S hereafter) is itself a DSS with slope a/b and sum≤ n (see Lemma 3 for more details). This subpart S is also primitive, even
if S ′ itself contains δ repetitions of this pattern. We can apply the inductive hypothesis and we obtain T (S) ≤ 2(n+ 1− δ).
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Then, at each iteration of the loop at line 1, zero, one or two points are tested for their inclusion in D. Since the loop invariant
guarantees that [UU ′[ contains δ patterns or [LL′[ contains δ reversed patterns, the number of iterations between S and S ′
is exactly δ. It follows that at most 2δ points are tested between the recognition of S and the recognition of the slope of
S ′. Furthermore, once this slope is recognized, no other point is tested since S ′ was assumed primitive. Indeed, if any other
point was tested (i.e. U ′ or L′ is equal or before B), Lemma 3 implies that S ′ contains one pattern and one reversed pattern,
which is contradictory with S ′ primitive.

Then, T (S ′) ≤ T (S)+ 2δ ≤ 2(n+ 1− δ)+ 2δ = 2n+ 2. �

Wemay now give a bound on the time complexity of Algorithm 1.

Proposition 4. For any DSL D of characteristics (α, β, ν), α
β
= [u0; u1, . . . , un] and for two points A, B ∈ D,

Algorithm 1 computes the characteristics of the segment S = [A, B] included in D with an output-sensitive time complexity
O(δ+

k
i=0 ui), where the slope of S is [u0, u1, . . . , uk] and S contains δ patterns or reversed patterns. When S and D have same

slope (i.e. k = n), the complexity is O(
n

i=0 ui).

Proof. Proposition 2 tells that Algorithm 1 gives the correct output. Proposition 3 indicates that, when S is primitive, at
most 2

k
i=0 ui tests ‘‘∈ D’’ are executed. This test is performed in O(1) by the computation of the remainder αx− βy of the

point in the DSL D. Looking closely at Algorithm 1 shows that all other operations are O(1). Now, if S is not primitive and has
δ patterns, two cases arise. If S does not have the same characteristics as D, then the loop iterates at most δ times for the δ
patterns of S. If S has the same characteristics as D, the condition at line 1 exits immediately. This concludes. �

Corollary 1. An input-dependent bound is O(
n

i=0 ui), where [u0, u1, . . . , un] is the slope of D. This bound is always greater
than the one of Proposition 4.

Proof. It is only reached as the worst case of the algorithm, when S has the same slope as D. �

Another equivalent way of presenting the time complexity is given by the following corollary.

Corollary 2. The number of started iterations of the loop of SmartDSS is 1+ δ +
k

i=0 ui.

4. A coarsening algorithm for computing the characteristics of a subsegment included in a known DSL

In the next section, we describe our second algorithm ReversedSmartDSS for determining the characteristics of any
subsegment S of a digital straight line D in the first quadrant, whose characteristics (α, β, µ) are known.We further assume
that the input slope α

β
is given as a continued fraction zn with its convergents. We make use of the property that the slope

of S is either α
β
or any one of the ancestors of α

β
in the Stern–Brocot tree ([19], see also Proposition 3 of [18]). The principle

of our new algorithm is to follow a bottom-up way in the Stern–Brocot tree. Moreover, the algorithm jumps from principal
convergent to previous principal convergent, except in the last iteration. It explains why this algorithm has a better worst-
case complexity than SmartDSS, presented in the previous section.

Although ReversedSmartDSS seems to require more input data than SmartDSS for recognizing S, we note that the
additional information is already known if the DSL D was recognized by a classical recognition algorithm (e.g., DR95 [3],
or combinatorial algorithms [20]). Otherwise, the Euclid algorithm applied to α

β
gives this additional information in

O(log(max(α, β))) iterations.
In the next subsections, we begin by giving an overview of this new algorithm. Afterwards, we present subpatterns and

the associated two main functions for computing them (SmallestCovSubpattern and GreatestIncSubpattern). We then
discuss the case where [A, B] is included in two patterns (functionDSSWithinTwoPatterns). We finally take care of the case
where [A, B] is included in one pattern. Eventually, we show the complexity of the whole algorithm.

4.1. Overview of the algorithm

Algorithm 4 is the general algorithm for computing the exact characteristics of a segment S part of a DSL D, whose
characteristics (zn = α

β
, µ) are known. This algorithm thus computes the simplest DSL covering S. The segment S is defined

by its two endpoints A and B, hereafter denoted by [A, B]. Lastly, we give also as input the two upper leaning points U1 and
U2 of D which surround A and B.

Note that the points U1 and U2 can be computed in constant time from zn and zn−1 with standard arithmetic. Without
loss of generality, let us assume that A = (0, 0) and B = (Bx, By). Let (pk/qk) be the convergents of zn. Then (b, a) = (qn, pn),
(b′, a′) = Bezout(p, q, n). We compute cA = (µb′)÷ b, then U1 = µ(b′, a′)− cA(b, a) and U2 = U1 + (b, a).

The algorithm examines several cases listed below. The last case is the only one that makes a recursive call to itself. Cases
are governed by the horizontal distance between U1 and U2, which in fact measures the number of patterns covering the
segment. The whole algorithm is based on the notion of subpattern, and on finding either the smallest subpattern containing
[A, B] or the greatest included in [A, B].
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Function ReversedSmartDSS (In (z = α
β
, µ) : DSL, In U1,U2 ∈ Z2, In A, B ∈ Z2 ) : DSL ;

Var Up1,Up2 : Points of Z2 ; /* Updated upper leaning points. */
Var dU : integer ; /* Horizontal distance between U1 and U2 */
begin

if (Ax == Bx) then return ( 1
0 , Ax);1

if (Ay == By) then return ( 0
1 ,−Ay);2

dU←U2x − U1x ;
/* [A, B] contains at least one pattern of z */;
if (dU ≥ 3β) or (dU == 2β and (A == U1 or B == U2)) or (A == U1 and B == U2) then return ( α

β
, µ) ;3

/* [A, B] is covered by two patterns of z */;
if (dU == 2β) then4

return DSSWithinTwoPatterns ( α
β
,U1,U2, A, B);

/* [A, B] is covered by one pattern of z */;
( α′

β ′
,m,Up1,Up2)←SmallestCovSp( α

β
,U1,U2, A, B, true);5

if (Up1 == U1) and (Up2 == U2) then6

( α′

β ′
,m,Up1,Up2)←GreatestIncSp( α

β
,U1,U2, A, B);

return ( α′

β ′
, α′Up1x − β ′Up1y );

return ReversedSmartDSS(( α′

β ′
, α′Up1x − β ′Up1y),Up1,Up2, A, B);7

end
Algorithm 4: Digital straight segment recognition algorithm with the bottom-up approach. The input is a digital straight
line (DSL) specified as a pattern slope z and a shift to origin µ, two points A and B on this DSL such that A < B, hence
forming a subsegment [A, B]. This algorithm computes the DSL with minimal characteristics that contains the subsegment
[A, B]. The points U1 and U2 are the two upper leaning points of this DSL closest to A and B and such that U1 ≤ A and
U2 ≥ B.

1. A and B have same abscissa or same ordinate. The algorithm then stops and returns ( 1
0 , Ax) (or ( 0

1 ,−Ay)), which are the
obvious results.

2. The distance U2x−U1x is: (1) three times greater than β , (2) equal to 2β, A andU1 are superposed, or B and U2 are superposed,
or (3) A and U1 are superposed, and B and U2 are superposed. The algorithm then stops and returns ( α

β
, µ) (line 3). Indeed,

in these cases, the DSS contains at least one pattern, so the characteristics immediately follow.
3. This distance is 2β . Segment [A, B] is then strictly included in two patterns of D, with A in the first pattern and B in the

second. The characteristics are computed by the function DSSWithinTwoPatterns (line 4), described by Algorithm 5.
4. This distance is β . Segment [A, B] is included in one pattern of D. The function SmallestCovSp (Algorithm 6) attempts to

extract a smaller subpattern that contains [A, B]. If this was impossible, then the exact characteristics of [A, B] are the
characteristics of the greatest subpattern included in [A, B], that we obtain with a call to GreatestIncSp (Algorithm 7).
Otherwise, segment [A, B] is covered by a proper subpattern of D, whose slope is an ancestor of zn in the Stern–Brocot.
We recursively call ReversedSmartDSS on this simpler DSL.

4.2. Subpatterns of pattern

We begin by defining subpatterns as subsegments of a pattern anchored in the plane, i.e. words in {0, 1}with a starting
point in the plane (see Fig. 4(a) for an illustration).

Definition 1 (Subpattern). Let E(z2i+1) = [U1,U2] be an odd pattern defined by its slope z2i+1 and its upper leaning points
U1 and U2. Let us define the points Uk

= U1 + k(q2i, p2i) for k ∈ {1, . . . , u2i+1}. A subpattern of [U1,U2] is any subsegment
[V1, V2] of the pattern [U1,U2], for V1, V2 ∈ {U1,U1, . . . ,Uu2i+1 ,U2} and V1 ≤ V2.

Let E(z2i) = [U1,U2] be an even pattern defined by its slope z2i and its upper leaning points U1 and U2. Let us define the
points Uk

= U2 − k(q2i, p2i) for k ∈ {1, . . . , u2i}. A subpattern of [U1,U2] is any subsegment [V1, V2] of the pattern [U1,U2],
for V1, V2 ∈ {U1,Uu2i , . . . ,U1,U2} and V1 ≤ V2.

A proper subpattern is different from U1U2. A null subpattern is an empty segment.

The following lemma is obvious from the definition of points U j, obtained by translation of a reduced partial of the slope
zn. Berstel formulas (1) induce the rules on the depth and slope of a subpattern.

Lemma 7. A subpattern is a digital straight segment included in its pattern. A subpattern of an odd pattern E(z2i+1) is a factor of
the form E(z2i)mE(z2i−1)m

′

, where m,m′ are integers and 0 ≤ m ≤ u2i+1, 0 ≤ m′ ≤ 1. A subpattern of an even pattern E(z2i) is
a factor of the form E(z2i−2)m

′

E(z2i−1)m, where m,m′ are integers and 0 ≤ m ≤ u2i, 0 ≤ m′ ≤ 1.
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Fig. 4. Illustration of subpatterns: (a) odd pattern E( 7
17 = [0; 2, 2, 3]), (b) smallest subpattern covering [A, B] is E( 2

5 )2E( 1
2 ), (c) greatest subpattern

included in [A, B] is E( 2
5 ).

The depth and the slope of a subpattern of w = E(zn) follows these rules:

Depth/slope m′ = 0 m′ = 1
m = 0 (null)/(null) n− 2/zn−2
m = 1 n− 1/zn−1 n−1/[u0, u1, . . . , un−1+1]
2 ≤ m ≤ un n− 1/zn−1 n/[u0, u1, . . . , un−1,m]

It is clear that the slope of a proper non-null subpattern of zn is always an ascendant of zn in the Stern–Brocot tree. The
slope is either a convergent with the same depth n but smaller quotient, or a principal convergent of depth n− 1 or n− 2.
Two subpatterns are especially important in our context.

Definition 2. Given a pattern E(zn) = [U1,U2], n ≥ 1, and a segment [A, B] in this pattern, the smallest subpattern
of [U1,U2] covering [A, B] is the subpattern [U ′1,U

′

2] = E(z2i)mE(z2i−1)m
′

if n = 2i + 1 or the subpattern [U ′1,U
′

2] =

E(z2i−2)m
′

E(z2i−1)m if n = 2i, with the smallest integerm and smallest integerm′ such that [A, B] is a subsegment of [U ′1,U
′

2].
Symmetrically, the greatest subpattern of [U1,U2] included in [A, B] is the subpattern [U ′1,U

′

2] = E(z2i)mE(z2i−1)m
′

if
n = 2i + 1 or the subpattern [U ′1,U

′

2] = E(z2i−2)m
′

E(z2i−1)m if n = 2i, with the greatest integer m and greatest integer m′
such that [U ′1,U

′

2] is a subsegment of [A, B].

It is obvious that these subpatterns are unique and well-defined (see Fig. 4(b), (c) for an illustration).
Our algorithm is based on the following property of subpatterns.

Proposition 5. Let [A, B] be some subsegment of a pattern [U1,U2]. If its smallest subpattern covering [A, B] is the pattern itself,
then its greatest subpattern included in [A, B] defines the extremal upper leaning points of the digital straight segment [A, B].
Hence, the slope of this subpattern is the slope of [A, B].

Proof. We show only the case where [U1,U2] is an odd pattern E(z2i+1). The proof is made by the positions of A and B.
Since the smallest covering subpattern is the pattern itself, the definition of smallest subpattern (Definition 2) implies that
A ∈ [U1,U1

[ and B ∈]Uu2i+1 ,U2]. Otherwise said, Lemma 7 induces that point A belongs to the first E(z2i) and point B belongs
to the last E(z2i−1). There are three possible cases (PS is previous slope z2i, PPS is previous previous slope z2i−1).

1. U1 and A are superposed. The greatest subpattern included in [A, B] is [U ′1,U
′

2] = E(z2i)u2i+1 , where U ′1 and U ′2 are its
upper leaning points.

u2i+1  
U1 ≡ A B U2
E(z2i) E(z2i) . . . E(z2i) E(z2i−1)
U ′1 U ′2   

PPS

2. U2 and B are superposed. The greatest subpattern included in [A, B] is [U ′1,U
′

2] = E(z2i)u2i+1−1E(z2i−1).

U1 A U2 ≡ B
E(z2i) E(z2i) . . . E(z2i) E(z2i−1)   U ′1 U ′2
PS

3.A and B are not respectively superposed to U1 andU2. The greatest subpattern included in [A, B] is [U ′1,U
′

2] = E(z2i)u2i+1−1.

U1 A B U2
E(z2i) E(z2i) . . . E(z2i) E(z2i−1)   U ′1 U ′2   
PS PPS
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For each case, the slope of [A, B] is defined from the slope of the subpattern. This is due to the fact that the word [A,U ′1]
is a strict right factor of E(z2i) and hence does not modify the slope of a DSS E(z2i)mE(z2i−1)m

′

when concatenated to the left.
Furthermore, the word [U ′2, B] is a strict left factor of E(z2i−1) and it does not modify the slope of a DSS E(z2i)mE(z2i−1)m

′

when concatenated to the right. �

There are other cases where smallest subpatterns have a specific behavior, whichwill be used for proving the complexity
of our algorithm.

Proposition 6. Let E(zn) be some pattern, with zn = [u0; u1, . . . , un], and [A, B] a segment within. Let w be its smallest
subpattern that covers [A, B]. If the slope of w has a depth n too, then w is a pattern and its smallest subpattern covering [A, B]
is w itself.

Proof. We only prove the case where n is odd, i.e. n = 2i+ 1. Lemma 7 implies w takes the form E(z2i)mE(z2i−1)m
′

, where
m,m′ are integers and 0 ≤ m ≤ u2i+1, 0 ≤ m′ ≤ 1. If the slope of w has a slope depth n too, then necessarily m′ = 1 and
m > 1. Indeed, if m = 1, then the slope is [u0; u1, . . . , u2i, 1], which can be written as [u0; u1, . . . , u2i + 1], a fraction of
depth 2i = n− 1. Since m′ = 1 and m > 1, then w is a pattern of slope z ′n = [u0; u1, . . . , un−1,m]. Thus, every subpattern
ofw is also a subpattern of E(zn), which entails immediately that the smallest pattern ofw covering [A, B] is the same as the
smallest pattern of E(zn) covering [A, B], which is w itself. This situation is illustrated below:

[ . . . A . . . [ ] . . . B . . .]

E(z2i) . . . E(z2i) . . . E(z2i) E(z2i−1)
Smallest subpattern is E(z2i) . . . E(z2i) E(z2i−1)

�

Wemention the two following properties of subpatterns, which can be proven similarly:

Proposition 7. The slope of the smallest subpattern of a pattern E(zn) covering a segment [A, B] is either the slope of [A, B] itself
or one of its descendant in the Stern–Brocot tree.

Proposition 8. The slope of the greatest subpattern of a pattern E(zn) included in a segment [A, B] is, when not null, either the
slope of [A, B] itself or one of its ascendant in the Stern–Brocot tree.

The functions SmallestCovSp (Algorithm6) andGreatestIncSp (Algorithm7) compute subpatterns. The fact that function
SmallestCovSp(zn, A, B,U1,U2, false) computes exactly the smallest subpattern of E(zn) = [U1,U2] covering [A, B] is
discussed in Appendix. Similarly, the fact that function GreatestIncSp(zn, A, B,U1,U2, false) computes exactly the greatest
subpattern of E(zn) = [U1,U2] included in [A, B] is discussed in Appendix.

4.3. Reversed subpatterns

We recall that a reversed pattern of slope zn is the succession of Freeman moves between two consecutive lower leaning
points of a DSL of slope zn. The minimal characteristics of a digital straight segment may be defined by a reversed pattern
and not by any pattern. We therefore also have to look for reversed patterns in a segment [A, B] to determine in all cases its
minimal characteristics.

Fortunately, reversed patterns share many characteristics with patterns. The most important one is that a reversed
pattern of slope zn is exactly the pattern of slope zn read from right to left. Therefore Berstel formulas (1) must just be
reversed for reversed pattern. Another way of doing that is to inverse the rules for odd and even patterns.

This is exactly what we do for extracting smallest covering and greatest included reversed subpatterns. The functions
SmallestCovSp (Algorithm 6) and GreatestIncSp (Algorithm 7) computes also reversed subpatterns if the Boolean parameter
rev is true. The inversion of odd and even rules is done in both cases at line 1. Nothing else is changed in the two functions.

One may question why everything is not symmetric in our algorithm, i.e. reversed subpatterns are checked wherever
subpatterns are checked. In fact, for speed up purposes, as long there are at least two upper leaning points, we do not check
for reversed patterns since they would induce the same characteristics. Therefore the only case where reversed patterns
must be checked is when the sought segment has only one upper leaning point. In this case this segment is contained in
two patterns and its upper leaning point is the middle one. This is why we take care of reversed patterns only in function
DSSWithinTwoPatterns (Algorithm 5).

Proposition 9. Let [A, B] be some subsegment of a reversed pattern [L1, L2] such that L1 and L2 are its lower leaning points and
L1 ≤ A < B ≤ L2. If its smallest reversed subpattern covering [A, B] is the reversed pattern [L1, L2] itself, then its greatest reversed
subpattern included in [A, B] defines the extremal lower leaning points of the digital straight segment [A, B]. Hence, the slope of
this reversed subpattern is the slope of [A, B].

Proof. The proof is exactly the same as the proof of Proposition 5, substituting odd and even and upper and lower leaning
points. This proof holds since reversed patterns are patterns read from right to left. �
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We add the following property which will be used in the next section.

Proposition 10. If [U1,Um][Um,U2] are two consecutive patterns of same slope, L1 and L2 their respective leaning points. Then
any segment [A, B] with U1 ≤ A ≤ L1 and L2 ≤ B ≤ U2 has the same characteristics as the segment [L1, L2].

Proof. Obviously since [U1, L1] is a right factor of [L1, L2] and [L2,U2] is a left factor of [L1, L2], adding them does not change
the slope of the DSS (see Lemma 3 for more details). �

4.4. The segment [A, B] is included in two patterns of the DSL

The function DSSWithinTwoPatterns (Algorithm 5) is really the core of this DSS recognition method. In principle, the
whole algorithm could be written as three independent recursive functions: given some upper leaning point Um within
[A, B], the first function looks for the best pattern with Um as right upper leaning point, the second function looks for the
best pattern with Um as left upper leaning point, the third function looks for the best reversed pattern with only upper
leaning point Um.

However, this is not the method that achieves best complexity, since it would often occur that the first function ends up
at the root of the Stern–Brocot tree, while the two other functions stop at a deepest slope (so in fewer calls). Therefore, we
transform these three recursive functions into a loop where the three best patterns are sought progressively.

In the loop of DSSWithinTwoPatterns, three different patterns are tested progressively, so as to find the first that has
exactly the sought slope. It is easy to see that, since the segment is included in two patterns, the middle upper leaning point
Um is the uppermost point of the segment. Therefore, if the slope of the segment is defined by a pattern (i.e. defined by two
upper leaning points), then one of the extremities of the pattern is this point Um. We thus test in sequence the possible
patterns to the left and to the right of Um. However, the slope of a DSSmay also be defined by a reversed pattern (i.e. defined
by two lower leaning points L1 and L2). We thus test also in sequence the possible reversed patterns.

The progressive computation of these three sequences of patterns (left pattern, right pattern, reversed pattern) is done
in a parallel manner. More precisely, they are run consecutively one step at each time:

• line 3 computes the next covering subpattern that has Um as its right upper leaning point. Either a smaller one is found
that covers [A,Um] or it stops and zLU is set to the greatest subpattern included in [A,Um].
• line 4 computes the next covering subpattern that has Um as its left upper leaning point. Either a smaller one is found

that covers [Um, B] or it stops and zRU is set to the greatest subpattern included in [Um, B].
• line 5 computes the next covering reversed subpattern that has Um as its upper leaning point. Either a smaller one is

found that covers [A, B] or it stops and zL is set to the greatest reversed subpattern included in [A, B] and containing Um.

The conditions at lines 3, 4 and 5 correspond to three possible cases where respectively none, one, or two pattern
computation(s) is/are stopped. At each iteration, the pattern, reversed or not, that lies in the deepest position in the
Stern–Brocot tree is the candidate solution. It is indeed the slope of [A, B] if it has stopped (Boolean b∗ is true). The function
then returns the characteristics of the elected pattern. Otherwise, the function loops and computes the new patterns.

Note that we use two functions vUU(zn) and vUL(zn). The first one simply returns the vector between two consecutive
upper leaning points of the pattern zn, i.e. (qn, pn). The second one returns the vector between an upper leaning point and
the next lower leaning point. It is related to the Bézout vector of (qn, pn) as follows: vUL(zn = pn

qn
) = (qn−1 + 1, pn−1 − 1)

when n is even, and (qn − qn−1 + 1, pn − pn−1 − 1) when n is odd.
We establish the proof of the correctness of algorithm DSSWithinTwoPatterns in Proposition 11.

Proposition 11. Let [U1,U2] be two patterns of slope zn and let [A, B] be a segment included in it, with U1 ≤ A < Um < B ≤ U2.
Then function DSSWithinTwoPatterns (Algorithm 5) calculates the greatest pattern or reversed pattern included in [A, B] and
containing Um. Its slope is the slope of [A, B].

Proof. First of all, the algorithm stops. Indeed, at each iteration for each (reversed) pattern, either it is replaced by a strictly
smaller (sub)pattern or its computation stops. At some point, all three will be stopped and condition at line 7 will be true:
the algorithm then exits immediately.

The proof is given for the case of an odd pattern, n = 2i+ 1. An illustration is given in the table below.

U1 A Um Um B U2
E(z2i) . . . E(z2i) E(z2i) E(z2i−1) E(z2i) · · · E(z2i) E(z2i−1)

U ′1 Um Um U ′2
U1 A L1 Um B L2 U2
· · · E(z2i−1) E(z2i) · · · E(z2i) E(z2i) · · ·

L′1 L′2
We note first that all the points of [A, B] except the point Um are below the straight line (U1U2). Hence, since A and B are

on different sides of Um, we have by convexity that Um is necessarily an upper leaning point of the DSS [A, B].
We have two cases, depending on the fact that (i) [A, B] has at least two upper leaning points or (ii) only one.
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Function DSSWithinTwoPatterns
(In zn =

pn
qn

: Pattern, /* Slope of the input two patterns. */

In U1,U2 ∈ Z2, /* Their first and last upper leaning points. */
In A, B ∈ Z2 /* The extremities of the segment. */

) : DSL ;
Var L1, L2,Um,U ′1,U

′

2, L
′

1, L
′

2, A
′, B′ : ∈ Z2; /* Leaning and other points. */

Var bLU , bRU , bL : Boolean; /* Tells if the pattern is indeed the slope. */
Var zLU , zRU , zL, z ′ : Pattern; /* Current patterns given as cont. fractions. */
begin

bLU ←false, bRU ←false, bL←false ;
Um←U1 + vUU(zn); /* Middle upper leaning point between U1 and U2 */1

L1←U1 + vUL(zn) ; /* Lower leaning point in [U1,Um]. */2

L2←L1 + vUU(zn) ; /* Lower leaning point in [Um,U2]. */
zLU ← zn, zRU ← zn, zL ← zn ;
while true do

/* Subpattern left of Um */
if ! bLU then3

(zLU , k,U ′1,Um)←SmallestCovSp(zLU ,U1,Um, A,Um, false);
if U ′1 = U1 or k > 1 then

(zLU , k,U1,Um)←GreatestIncSp(zLU ,U ′1,Um, A,Um, false);
bLU ← true ; /* Slope of [A,Um] is zLU . */

else U1 ← U ′1;
/* Subpattern right of Um */
if ! bRU then4

(zRU , k,Um,U ′2)←SmallestCovSp(zRU ,Um,U2,Um, B, false);
if U ′2 = U2 or k > 1 then

(zRU , k,Um,U2)←GreatestIncSp(zRU ,Um,U2,Um, B, false);
bRU ← true ; /* Slope of [Um, B] is zRU . */

else U2 ← U ′2;
/* Reversed subpattern containing Um */
if ! bL then5

if A < L1 then A′ ← L1 else A′ ← A;6
if B > L2 then B′ ← L2 else B′ ← B;
(zL, k, L′1, L

′

2)←SmallestCovSp(zL, L1, L2, A′, B′, true);
if L′1 = L1 and L′2 = L2 then

(zL, k, L1, L2)←GreatestIncSp(zL, L1, L2, A′, B′, true);
bL ← true ; /* Slope of [A,Um, B] is zL. */

else L2 ← Um + vUL(zL), L1 ← L2 − vUU(zL) ;

z ′ ← DeepestSlope(zLU , zRU , zL) ; /* Deepest fraction z ′ = p′

q′ . */

if (bLU and z ′ = zLU ) or (bRU and z ′ = zRU ) or (bL and z ′ = zL) then return (z ′, p′Umx − q′Umy ) ;7

end
Algorithm 5: Given two patterns E(zn)2 = [U1,U2] and a subsegment [A, B],U1 < A < Um < B < U2, computes the
minimal characteristics of the segment [A, B].

Case (i). Since Um is already an upper leaning point, we have to look for another upper leaning point U ′ either before Um
or after Um.

If the characteristics of [A, B] are defined by [U ′,Um], then we claim that the pattern [U1,Um] of slope zLU will eventually
be this pattern. We already have with Proposition 5 that zLU is exactly this pattern when the smallest subpattern covering
[A,Um] was the pattern itself. Otherwise, the smallest subpattern is not the pattern itself. The slope zLU has then changed.
If the subpattern is repeated (k > 1), then we can already conclude since k − 1 pattern(s) zLU are included in [A,Um].
Otherwise, the process will continue at the next iteration with one smaller pattern whose slope depth is either n, n − 1 or
n − 2 (Lemma 7). At some point, the smallest subpattern covering [A,Um] will be the pattern itself, and Proposition 5 will
conclude.

If the characteristics of [A, B] are defined by [Um,U ′], then we claim that the pattern [Um,U2] of slope zRU will eventually
be this pattern. The reasoning is identical to the previous one.

Case (ii). Then there are two lower leaning points L′1 and L′2, with A ≤ L′1 < Um < L′2 ≤ B, such that the reversed pattern
[L′1, L

′

2] defines the slope of [A, B]. We claim that the pattern [L1, L2] of slope zL will eventually be this reversed pattern. We
use first Proposition 10 to justify line 6: A and B are casted in [L1, L2] before looking for reversed subpatterns. We then have
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Fig. 5. Illustration of Algorithm 5. A DSL D of odd depth slope 13/18 with two patterns containing a segment [A, B]. U1 and U2 are respectively their
leftmost and rightmost upper leaning points. Upper and lower leaning points are drawn as red boxes. The (red, blue or cyan) arrows represent bottom-up
move along the Stern–Brocot Tree for respectively the patterns zLU , zRU and reversed pattern zL . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

with Proposition 9 that zL is exactly this reversed pattern when the smallest reversed subpattern covering [A′, B′] was the
reversed pattern itself.

Otherwise, the smallest reversed subpattern is not the pattern itself. The slope zL has then been changed. Even if the
reversed subpattern has k reversed patterns, we only keep the reversed subpattern that contains Um since we look only for
one reversed pattern (as noticed above, if there are two reversed patterns, it means there is at least one pattern and zLU
or zRU will conclude). The process will continue at the next iteration with one smaller pattern whose slope depth is either
n, n− 1 or n− 2 (Lemma 7). At some point, the smallest reversed subpattern covering [A′, B′]will be the pattern itself, and
Proposition 9 will conclude.

We have shown above that one of zLU , zRU or zL will correspond to the sought slope. If the deepest slope corresponds to
a ‘‘stopped’’ pattern z ′, the other patterns are then factor of this pattern (according to Berstel formulas), and hence will not
modify its slope. [A, B] has thus the slope of z ′. �

Example. Let us look at a run of function DSSWithinTwoPatterns (Algorithm 5) for the DSL of slope zn = 13/18 =
[0, 1, 2, 1, 1, 2] (Fig. 5), for the subsegment [A, B]. Here the segment is included in two patterns 13/18.

For the first step, pattern zLU has slope 3/4 (call SmallestCovSp(z,U1,Um, A, B, false), see Fig. 6(a)), right pattern
has slope 5/7 (call SmallestCovSp(z,Um,U2, A, B, false), see Fig. 6(c)), and reversed pattern has slope 5/7 (call
SmallestCovSp(z, L1, L2, A′, B′, true), see Fig. 6(b)). We compute the deepest slope of 3/4, 5/7 and 5/7, which is 5/7. As
pattern zL is stopped and has the deepest slope, Algorithm 5 exits and returns this slope (final result 5/7).

The whole process is illustrated in Fig. 5. All the computations for each of the three (reversed) patterns are displayed,
although fewer computations are done. Indeed, since patterns are computed in a parallel manner, the first pattern that finds
the correct answer makes the algorithm stop.

Let us now give some explanations of (Fig. 6(a)). In the first step, we fix X ′1 at U1 and X ′2 at Um, and we compute L the
length of pattern zn = 13/18 and L′ the length of previous pattern zn−1 = 5/7 (L = 13 + 18 = 31 and L′ = 5 + 7 = 12).
Since the depth of zn is odd (line 1, Algorithm SmallestCovSp), thenwe calculate k1 (k1 = 2) the number of previous pattern
5/7 just before or equal to A from X ′1 to the right. As B = X ′2, then B in the E(zn−2) part and the function SmallestCovSp
stops and returns (z ′ = 3/4, k = 1, X ′1, X

′

2), such that X ′1 = X1 + k1(7, 5) and X ′2 = X ′1 + k(4, 3). We have now a new slope
z ′ = 3/4 between the new X ′1 and X ′2. In the second step, as X ′1 ≠ U1 and k = 1, then we recall the function SmallestCovSp
with zn = 3/4,U1 = X ′1 and U2 = Um. Since the depth of zn is even (line 2, Algorithm SmallestCovSp), then we calculate
k1 (k1 = 0) the number of previous patterns 1/1 just after or equal to B from X ′2 to the left. As A is in the E(zn−1) part, then
k2 = 3 and the function SmallestCovSp stops and returns (z ′ = 1/1, k = k2 − k1, X ′1, X

′

2), such that X ′2 = X2 − k1(1, 1) and
X ′1 = X ′2 − k(1, 1). As X ′1 reaches A, this algorithm stops and returns the slope 1/1. The tables below display the states of
patterns left pattern, right pattern and reversed pattern that are seen in Fig. 6.
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Fig. 6. Illustration of Algorithms SmallestCovSp and GreatestIncSp. The DSS L1L2 (resp. U1Um and UmU2) of characteristics (13/18, 0), which is a subset of
U1U2 of Fig. 5. The blue arrows represent the move between the lower (upper) leaning points. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Iter U1 Um U2 L1 L2 zn zLU zRU zL Case

1
(0, 0) (18, 13) 13/18 3/4 CovSp

(18, 13) (36, 26) 13/18 5/7 CovSp
(16, 10) (23, 15) 13/18 5/7 CovSp, GIncSp

2 (14, 10) (18, 13) 3/4 1/1 CovSp, GIncSp
(18, 13) (25, 18) 5/7 2/3 CovSp, GIncSp

For example, called separately, the left pattern would exit at iteration 2 ≤ 6-2 (6 is the depth of the input DSL (D)
13
18 = [0, 1, 2, 1, 1, 2] and 2 is the depth of the outputDSS (S) 1

1 = [0, 1]). The outputwould be theDSS(1/1, 1∗Umx−1∗Umy).
ButReversedSubPattern has already exited at iteration 1with output DSS (5/7, 5∗Umx−7∗Umy), whichwas the deepest
slope, and so is the final result.

4.5. Correctness of ReversedSmartDSS algorithm

We prove below the correctness of the function ReversedSmartDSS (Algorithm 4) for computing the minimal
characteristics of some subsegment of a known DSL.

Proposition 12. In the first quadrant, for any DSL D of slope zn and shift µ, for any A, B ∈ D with A < B, a call to
ReversedSmartDSS((zn, µ),U1,U2, A, B) computes the minimal characteristics of the segment [A, B] included in D, provided
that U1 and U2 are the upper leaning points of D closest to A and B,U1 ≤ A and B ≤ U2.
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Proof. We prove this result by induction on the depth n of the slope of the input DSL D. The initial steps n = −1 or
n = 0 are obvious since D is just a vertical or horizontal segment and has slope 1/0 or 0/1. In this case, Algorithm
4 returns the correct characteristics ( 1

0 , Ax) or ( 0
1 ,−Ay) (lines 1 and 2). The induction hypothesis is that this algorithm

has a correct output for every segment [A, B] that is a subset of a DSL of slope [u0; u1, . . . , un]. We shall prove that
the output is also correct for every segment [A, B] that is a subset of some DSL D with a depth of its slope equal
to n+ 1.

If the horizontal distance between the upper leaning points U1 and U2 verifies one of the three conditions of line 3, then
Algorithm 4 stops and returns the characteristics of the segment [AB]which are trivially in this case the characteristics of D
itself (i.e. depth is n+ 1).

Otherwise, if this distance is equal to 2β , thenAlgorithm4 returns the result ofDSSWithinTwoPatterns(zn+1,U1,U2, A, B)
at line 4. In this case, Proposition 11 concludes directly.

The last case occurs when S is included in only one pattern of D. At line 5, the smallest subpattern w of zn+1 covering
[A, B] is computed (let us denote its slope by z ′). If it is zn+1 itself, then the function returns the characteristics of the greatest
subpattern included in [A, B] and Proposition 5 concludes.

Otherwise, the subpattern w covers [A, B] hence [A, B] is a subsegment of the DSL carried by the slope z ′. Function
ReversedSmartDSS recursively calls itself with this new slope and updated upper leaning points. Lemma 7 indicates that
the subpattern w may have also a slope depth of n + 1, i.e. z ′ = [u0; u1, . . . , un, k], with k < un+1. In this case, the
recursive call will end at line 6, since the smallest covering subpattern will be the pattern itself, and Proposition 5 will
conclude. Otherwise the subpatternmay have a slope depth n or n−1. In both cases, the induction hypothesis concludes the
argument. �

4.6. Computational complexity of ReversedSmartDSS

We establish the time complexity of this algorithm in the proposition below, as a function of the depth of the slopes of
the input DSL and output DSS.

We assume that we have stored all the convergents of the slope of D before running Algorithm 4. We further assume
a computing model where standard arithmetic operations takes O(1). Note that the largest integer used in the presented
algorithms is lower than α2

+ β2, if the slope of the input DSL is α
β
, for a frame centered on the DSS.

Proposition 13. Function ReversedSmartDSS (Algorithm 4) takes O(n− n′) time complexity, where n is the depth of the slope
α
β
= [u0, u1, . . . , un] of the input DSL and n′ is the depth of the slope a

b = [u0, u1, . . . , un′−1, u′n′ ] of the output DSS [A, B]. The
following table sums up the complexity of the different functions.

Algorithm Complexity
ReversedSmartDSS O(n− n′)
DSSWithinTwoPatterns O(n− n′)
SmallestCovSp O(1)
GreatestIncSp O(1)

Proof. First of all, it is clear that functions SmallestCovSp and GreatestIncSp (Algorithms 6 and 7) have constant
time complexity assuming standard arithmetic operations are O(1) and knowledge of convergents of zn. Furthermore,
computation of Algorithm 4 on line 1, 2 and 3 is clearly O(1).

We prove the complexity of ReversedSmartDSS by induction on the depth of the input slope n. If n = −2, the input
slope and the output slope are both∞ and the function exits immediately at line1 in O(1). If n = −1 both slopes are 0 and
the function exits immediately at line 2 in O(1). Assume now the complexity is correct for any n, n ≥ −1, let us prove this
complexity for an input slope of depth n+ 1, whichever is the output slope n′. We know already that n′ ≤ n since the slope
of [A, B] is an ascendant of the slope of α

β
in the Stern–Brocot tree.

Easy cases are O(1). If the segment [A, B] is horizontal or vertical, the correct output slope is given in O(1) at line1 or
2, which is some O(n − n′). If [A, B] is included in three patterns or more or in two patterns but either A or B lies at some
extremity, then the output slope is given in O(1) at line 3, which is also some O(n− n′).

Segment [A, B] lies over two patterns, complexity is O(n+1−n′). Otherwise, if [A, B] is included in two patterns of the DSL
(line 4), the function DSSWithinTwoPatterns is called (Algorithm 5). In this case, Proposition 11 indicates that the slope of
[A, B] is given either by zLU , zRU or by zL. Since all operations within the main loop are O(1) (mainly calls to SmallestCovSp
and GreatestIncSp), the question is how many iterations are done. Let us consider zLU for instance. Its depth is n+ 1 at the
beginning. Looking at line 3 shows that its smallest subpattern covering [A,Um] is computed. There are three cases:

(i) The smallest subpattern is zLU itself or is some repetition of the same pattern. Then the computation is stopped and the
number of iterations is 1.

(ii) The smallest subpattern has a slope of depth n + 1 too (see Lemma 7). In this case, Proposition 6 tells that the next
call to SmallestCovSp will return the pattern itself. Thus the computation will stop at next iteration, and the number
of iterations is 2.
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(iii) The smallest subpattern has a slope strictly smaller than n + 1, i.e. n or n − 1. The computation of zLU then continue
with an input slope of depth strictly smaller than n+ 1.

Let nLU be the depth of the exact slope of [A,Um]. The three preceding cases induce immediately that the number of iterations
to determine this slope is at most n+ 1− nLU + 2.

The same reasoning is applied to zRU and zL. Now, the computations of zLU , zRU and zL are made in parallel, one step for
each at each iteration. The exact output slope is either given by [AUm], [UmB] or a reversed pattern in [AB]. For each one, the
number of iterations is upper bounded respectively by n−nLU +3, n−nRU +3 and n−nL+3. If the output slope is z ′ = zLU
(say), then n′ = nLU and nLU ≥ nRU and nLU ≥ nL. Thus zLU stops after at most n− nLU + 3 iterations and is then necessarily
one of the deepest slopes. The algorithm exits at line 7 after at most n− nLU + 3 = n+ 1− n′+ 2 loops. Overall complexity
is thus O(n+ 1− n′). Other cases are similar.

Segment [A, B] lies within one pattern, complexity is O(n + 1 − n′). In this case, let w be the smallest subpattern of zn+1
covering [A, B]. Again, there are three cases:
(i) The smallest subpattern is zn+1 itself. Proposition 5 indicates that the depth n′ of the output slope is either n+ 1, n or

n− 1. The output slope is immediately returned by a call to GreatestIncSp in O(1).
(ii) The smallest subpattern has a slope of depth n + 1 too (see Lemma 7). In this case, Proposition 6 tells first that

the subpattern is a pattern and second that the next call to SmallestCovSp will return the pattern itself. Function
ReversedSmartDSS is recursively called. It is easy to check that we are again in the case where the segment [A, B] lies
within one pattern, so SmallestCovSp returns the pattern w itself. Hence n′ is again either the depth n′ or the output
slope. The output slope is immediately returned by a call to GreatestIncSp in O(1).

(iii) The smallest subpattern has a slope of depth n or n−1 (see Lemma 7). FunctionReversedSmartDSS is recursively called
with this new digital straight line. We can apply the induction hypothesis and concludes that this function returns after
O(n− n′) time complexity.

We have examined all cases. Time complexity of ReversedSmartDSS is some O(n− n′). �

Lamé’s theorem implies that Algorithm 4 takes at most O(log(max(α, β))) time.

Corollary 3. An input-sensitive bound of ReversedSmartDSS is O(log(max(α, β))) if zn = α
β
is the slope of D, or equivalently

O(n). This input-sensitive bound is greater or equal to the output-sensitive bound of Proposition 13.

5. Experimentation

Wehave implemented the presented algorithms SmartDSS andReversedSmartDSS in the open-source libraryDGtal [5],
more specifically the Arithmetic package. We have then compared the running times of these two algorithms for increasing
slope numerators and denominators. We have also run a standard arithmetic DSS recognition algorithm [3] both to validate
the extracted characteristics and to compare the running times.

The experiments were conducted as follows for each one of the three algorithms (ArithmeticDSS, SmartDSS,
ReversedSmartDSS):
1. A maximal value N for α and β is chosen.
2. A maximal valueM for Ax is chosen as either N/2 (one half of N) or N/10 (one tenth of N).
3. Each experiment is done for 40000 randomly chosen α/β , where both α and β are randomly chosen in {1, . . . ,M}with

a uniform law.
4. For each slope α/β , five different shifts µ are randomly chosen in {0, . . . , α + β − 1}with a uniform law.
5. For each DSL (α/β, µ), ten different abscissae Ax are randomly chosen in {0, . . . ,M−1}with a uniform law. The ordinate

Ay is chosen so that A belongs to the DSL. The abscissa Bx is randomly chosen in {Ax+1, . . . , Ax+M}with a uniform law.
The ordinate By is chosen so that B belongs to the DSL.

6. The chosen algorithm is then executed to compute the exact characteristics of the subsegment [A, B] of the digital straight
line (z = α

β
, µ).

7. Wemeasure the total running time T inms of these 40 000×5×10 executions. The timeper call inms is then T/2 000 000.

Note that each algorithm was fed with the same sequence of input parameters.
The running times for these experiments are given in Fig. 7. The linear complexity ofArithmeticDSSwith respect to |AB|1

is clear, while both SmartDSS and ReversedSmartDSS are logarithmic (see Fig. 8). ReversedSmartDSS is generally better
than SmartDSS, especially for big segments with complex slopes. It is worthy to note that our new algorithms are already
20% faster than ArithmeticDSS for segments of size≈5. Speed-ups are given in Table 2.

Other experiments were presented in [17].
Implementation details. Implementing fractions so as to have constant-time access to convergents of a fraction is not

trivial. The naive approach that copies quotients has of course a complexity Θ(n), where n is the depth of the fraction. We
adopt a completely different approach. We construct the Stern–Brocot on demand. Each fraction is thus computed once and
placed forevermore in its correct position in the tree, with its correct fathers (left and right). Getting a convergent is thus just
moving to the left or right ascendant node, which takesO(1) time complexity. This is done in class SternBrocot, repertory
DGtal/math/arithmetic.
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(a)M is N/10. (b) M is N/2.

Fig. 7. Execution times (in log-scale) for determining the minimal characteristics of a digital straight segment included in a known digital straight line: in
abscissa, the increasing sequence of parameter N; in ordinate, the running time in ms. Algorithms SmartDSS and ReversedSmartDSS are compared to the
standard arithmetic DSS recognition (i.e. DR95 [3] mentioned in [13]). See text for an explanation of the parameters N andM .

(a)M is N/10. (b) M is N/2.

Fig. 8. Comparing execution times of Algorithms SmartDSS and ReversedSmartDSS with the logarithmic bound O(log(N)): in abscissa, the increasing
sequence of parameter N; in ordinate, the time divided by log(N). See text for an explanation of the parameters N and M .

Table 2
Speed-up factors of our newDSS recognition algorithmswith respect to the standard arithmetic recognition algorithm (i.e.DR95 [3]). The slope parameters
α and β of the digital straight line are randomly chosen in {1, . . . ,N}. The distance between the extremities of the segment is randomly chosen in
{1, . . . ,M}.

N Speed-up factor wrt ArithmeticDSS
SmartDSS ReversedSmartDSS
M = N/10 M = N/2 M = N/10 M = N/2

30 1, 2 1, 5 1, 1 1, 4
100 1, 4 2, 3 1, 3 2, 3
400 2, 3 6, 8 2, 2 6, 8

1 600 6, 7 26, 9 6, 3 27, 7
6 400 23, 5 156, 7 23, 7 169, 8

25600 70, 9 378, 3 75, 5 441, 9
102400 338, 1 1312, 9 383, 7 1564, 2
409600 2195, 0 22274, 8 2574, 1 27239, 4

6. Conclusion

We have presented two novel fast DSS recognition algorithm, in the special case where a DSL container is known. Their
principle is to move either in a bottom-up or top-down way along the Stern–Brocot tree of irreducible fractions, starting
from the root or from the initial known DSL slope. We have proved their correctness and we have given input and output-
sensitive bounds, the latter ones being tight. Finally, we have implemented these algorithms in the open-source library
DGtal [5]. Experiments have shown the considerable speed-up that they achieve with respect to standard DSS recognition
algorithm, even for small segments. Our ReversedSmartDSS algorithm is only sensitive to the depth of the input DSL and
output DSS, and is clearly sublinear. SmartDSS algorithm is more sensitive to the partial quotient values of the output DSS,
but is generally sublinear.
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Function SmallestCovSp
(In zn =

pn
qn

: Pattern, /* Input slope as a continued fraction. */
In X1, X2 ∈ Z2, /* Upper or lower leaning points. */
In A, B ∈ Z2, /* Extremities of segment [A, B]. */
In rev : Boolean /* when true, consider zn as a reversed pattern. */
) : (z ′ : Pattern,m : integer, X ′1, X

′

2 : Points of Z2);
Var k1, k2 : integer;
begin

if pn = 0 or qn = 0 then return (
pn
qn

, 1, X1, X2) ;
L← pn + qn ; /* Length of pattern zn */
L′ ← pn−1 + qn−1 ; /* Length of previous pattern zn−1 */
if (! rev and odd(n) ) or (rev and even(n) ) then1

/* Case E(zn) = E(zn−1)unE(zn−2). */
k1 ← ⌊|A− X1|/L′⌋ ; /* Position of A wrt the left. */
if |B− X1| > unL′ then

/* B in the E(zn−2) part. */
z ′ ← [u0; u1, . . . , un−1, un − k1] ; /* k1-th father of zn */
m← 1 ; /* One covering pattern. */

else
k2 ← ⌈|B− X1|/L′⌉ ; /* B in some E(zn−1). */
z ′ ← zn−1; /* Previous convergent of zn. */
m← k2 − k1 ; /* k2 − k1 covering patterns zn−1. */

X ′1 ← X1 + k1(qn−1, pn−1) ; /* New position of leaning point. */
X ′2 ← X ′1 +m(q′, p′) ; /* Where z ′ = p′

q′ . */

else2
/* Case E(zn) = E(zn−2)E(zn−1)un . */
k1 ← ⌊(L− |B− X1|)/L′⌋ ; /* Position of B wrt the right. */
if |A− X1| < L− unL′ then

/* A in the E(zn−2) part. */
z ′ ← [u0; u1, . . . , un−1, un − k1] ; /* k1-th father of zn */
m← 1 ; /* One covering pattern. */

else
k2 ← ⌈(L− |A− X1|)/L′⌉ ; /* A in some E(zn−1). */
z ′ ← zn−1; /* Previous convergent of zn. */
m← k2 − k1 ; /* k2 − k1 covering patterns zn−1. */

X ′2 ← X2 − k1(qn−1, pn−1) ; /* New position of leaning point. */
X ′1 ← X ′2 −m(q′, p′) ; /* Where z ′ = p′

q′ . */

return (z ′,m, X ′1, X
′

2);
end

Algorithm 6: Input: If rev is false, a pattern E(zn) = [X1, X2]with its two upper leaning points X1 and X2, or if rev is true, a
reversed pattern Ê(zn) = [X1, X2]with its two lower leaning points X1 and X2. A and B are two points of this segment such
that X1 ≤ A < B ≤ X2. Output: the smallest (reversed if rev is true) subpattern E(z ′)m = [X ′1, X

′

2] that covers [A, B].

An interesting question is whether or not it is possible to compute the exact characteristics of a subsegment of a DSL in
constant time. Even better, is it possible to obtain an analytical description as for DSL [8,18]? We intend to explore these
open problems in future works.

Appendix. Functions computing subpatterns

The functions SmallestCovSp (Algorithm 6) and GreatestIncSp (Algorithm 7) compute subpatterns.

A.1. Overview of SmallestCovSp algorithm

Let X1 and X2 be the upper (lower if rev is true) leaning points of zn =
pn
qn

and A and B are the extremities of segment
[A, B]. The function SmallestCovSp (Algorithm 6) computes the smallest covering (reversed if rev is true) subpatterns
E(z ′)m = [X ′1, X

′

2] that cover [A, B], such that X ′1 and X ′2 are the new positions (upper or lower) leaning points. It is easy
to see that this function is related to the depth of the current pattern zn and the Boolean rev (line 1, 2).
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Function GreatestIncSp
(In zn =

pn
qn

: Pattern, /* Input slope as a continued fraction. */
In X1, X2 ∈ Z2, /* Upper or lower leaning points. */
In A, B ∈ Z2, /* Extremities of segment [A, B]. */
In rev : Boolean /* when true, consider zn as a reversed pattern. */
) : (z ′ : Pattern,m : integer, X ′1, X

′

2 : Points of Z2);
Var k1, k2 : integer;
begin

if pn = 0 or qn = 0 then return (
pn
qn

, 1, X1, X2) ;
L← pn + qn ; /* Length of pattern zn */
L′ ← pn−1 + qn−1 ; /* Length of previous pattern zn−1 */
if (! rev and odd(n) ) or (rev and even(n) ) then1

/* Case E(zn) = E(zn−1)unE(zn−2). */
k1 ← ⌈|A− X1|/L′⌉ ; /* Position of A wrt the left. */
if B = X2 then

/* B at right extremity of E(zn−2) part. */
z ′ ← [u0; u1, . . . , un−1, un − k1] ; /* k1-th father of zn */
m← (k1 < un)?1 : 0 ; /* One or zero included pattern. */

else
k2 ← ⌊|B− X1|/L′⌋ ; /* B strictly inside E(zn). */
z ′ ← zn−1; /* Previous convergent of zn. */
m← max(k2 − k1, 0) ; /* 0 or k2 − k1 incl. patterns zn−1. */

X ′1 ← X1 + k1(qn−1, pn−1) ; /* New position of leaning point. */
X ′2 ← X ′1 +m(q′, p′) ; /* Where z ′ = p′

q′ . */

else
/* Case E(zn) = E(zn−2)E(zn−1)un . */
k1 ← ⌈(L− |B− X1|)/L′⌉ ; /* Position of B wrt the right. */
if A = X1 then

/* A at left extremity of E(zn−2) part. */
z ′ ← [u0; u1, . . . , un−1, un − k1] ; /* k1-th father of zn */
m← (k1 < un)?1 : 0 ; /* One or zero included pattern. */

else
k2 ← ⌊(L− |A− X1|)/L′⌋ ; /* A strictly inside E(zn). */
z ′ ← zn−1; /* Previous convergent of zn. */
m← max(k2 − k1, 0) ; /* 0 or k2 − k1 incl. patterns zn−1. */

X ′2 ← X2 − k1(qn−1, pn−1) ; /* New position of leaning point. */
X ′1 ← X ′2 −m(q′, p′) ; /* Where z ′ = p′

q′ . */

return (z ′,m, X ′1, X
′

2);
end

Algorithm 7: Input: If rev is false, a pattern E(zn) = [X1, X2]with its two upper leaning points X1 and X2, or if rev is true, a
reversed pattern Ê(zn) = [X1, X2]with its two lower leaning points X1 and X2. A and B are two points of this segment such
that X1 ≤ A < B ≤ X2. Output: the greatest (reversed if rev is true) subpattern E(z ′)m = [X ′1, X

′

2] included in [A, B].

In the condition (if at line 1), the algorithm examines two cases, either the slope of zn is ULU and odd depth or LUL (rev is
true) and even depth. Otherwise (line 2), the slope of zn is ULU and even depth or LUL (rev is true) and odd depth.

In the following, we have tested one case where [A, B] is included in one pattern zn. We assume that zn is ULU and
has an odd depth. In this case, we calculate the position of A from the left (X ′1 = X1 + k1(qn−1, pn−1)), such that k1
is the largest integer smallest or equal to |A − X1|/L′. zn−1 =

pn−1
qn−1

is the previous convergent of zn. We thus test the
position of B, if |B − X1| > unL′, then B in the E(zn−2) part and m = 1 (it means that [A, B] is included in one pattern
E(z ′) = [u0; u1, . . . , un−1, un − k1]). Otherwise, the point B in some E(zn−1) and m = k2 − k1, then [A, B] is included
in (k2 − k1)−covering patterns z ′ = zn−1 (previous covergent of zn) and X ′2 = X ′1 + m(q′, p′) (z ′ = p′

q′ ). Finally, the
function SmallestCovSp returns the new pattern z ′ repeated m times and its new leaning points (X ′1, X

′

2). We pursue the
same reasoning for the other cases.

A.2. Overview of GreatestIncSp algorithm

The function GreatestIncSp (Algorithm 7) computes the greatest (reversed if rev is true) subpatterns E(z ′)m = [X ′1, X
′

2]

included in [A, B]. In this section, we focus to explain the red parts. For example, In the case where [A, B] is included in one
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odd pattern ULU zn. We then calculate the position of A from the left (X ′1 = X1+ k1(qn−1, pn−1)), such that k1 is the smallest
integer greater or equal to |A − X1|/L′. If B = X2, then B at the right extremity of E(zn−2) part and m = (k1 < un?1 : 0)
(it means that the greatest subpattern included in [A, B] is E(z ′) = [u0; u1, . . . , un−1, un − k1]) repeated zero or one times.
Otherwise, the point B strictly inside E(zn) andm = max(k2−k1, 0) (k2 is the largest integer smaller or equal to |B−X1|/L′),
then the greatest subpattern included in [A, B] is E(z ′) = E(zn−1) repeated zero or (k2 − k1)− times. We pursue also the
same reasoning for the other cases.
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