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Abstract. We show in this paper how a digital shape can be efficiently
analyzed through the maximal segments defined along its digital con-
tour. They are efficiently computable. They can be used to prove the
multigrid convergence of several geometric estimators. Their asymptotic
properties can be used to estimate the local amount of noise along the
shape, through a multiscale analysis.
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1 Introduction

It is often interesting to study the geometry of digitization of Euclidean shapes in
the plane, and to establish connections between the discrete geometry computed
along the digital contour and the Euclidean geometry of the initial shape. This
task is essential in image analysis, where the initial Euclidean shape has been
lost through various acquisition and segmentation processes.

Maximal segments are the connected pieces of digital straight lines that are
contained in the digital contour and that are not extensible [11, 12] (if they are
extended on either side, the formed set is no more a digital straight segment).
Maximal segments appear to hold many interesting properties for analyzing dig-
ital shapes. We will show here that they characterize the convex and concave
parts of the shape [9, 11]. They induce discrete geometric estimators of length
and tangent that are multigrid convergent, with a quantifiable error [20, 22].
These asymptotic properties of maximal segments [7] are also extremely useful
to detect the local meaningful scales at which the shape should be analyzed: in
this sense, they provide an unsupervised method to determine locally the level
of noise that is damaging the shape [15].

2 Digital shapes, digital straightness, maximal segments
and convexity

2.1 Digital shapes and shape digitization

A digital shape is a subset of the digital plane Z2. To simplify the exposition, this
shape is simply connected (i.e. a polyomino). Its interpixel boundary is therefore
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Fig. 1. Euclidean shape digitized at finer and finer steps. The interpixel contour of the
digitized shape forms a 4-connected path in some digital plane of half-integers.

a 4-connected contour in the half-integer plane. By translating everything by
vector (1

2 ,
1
2 ), we get back that all pointels of the interpixel boundary have integer

coordinates. The so-formed 4-connected sequence of digital points is called the
digital contour of the digital shape, and will be subsequently denoted by C. The
integer N will stand for the number of points of this contour.

Digital shapes are obtained through the digitization process of Euclidean
shapes. Let Digh be the Gauss digitization process of gridstep h, i.e., for any
subset X of the plane R2, Digh(X) = X ∩ (hZ× hZ). For a positive decreasing
sequence of gridsteps (hi), the family (Dighi

(X)) is composed of digital shapes,
which are finer and finer digital approximation of the Euclidean shape X (see
Fig. 1). The contour of a digitized shape is not necessarily 4-connected since
topological problems may occur. Gross and Latecki [13] and Latecki et al. [23]
have studied the topological properties of digitized shapes for three digitization
processes (intersection, subset, and area). They have shown that, for all these
processes and for any simply connected par(r)-regular shape X, the contour of
Digh(X) is a polyomino for 0 < h ≤ r. A similar property holds for the Gauss

digitization process ( [20], Theorem B.5, p. 149) but for 0 < h <
√
10
5 r.

Smooth Euclidean shapes with C2-boundary and bounded curvature are
par(r)-regular for some r. Therefore we will focus on digital shapes which are
digitizations of par(r)-regular shapes and which are digitized with a sufficiently
small gridstep. All considered digital contours will thus be polyominos.

2.2 Digital straightness

A standard digital straight line (DSL) is a 4-connected digital set {(x, y) ∈
Z2, µ ≤ ax− by < µ+ |a|+ |b|}, all parameters being integers, with gcd(a, b) = 1
[25]. Geometrically, the fraction a/b represents the slope of the line while pa-
rameter µ quantifies its shift at the origin. A Digital Straight Segment (DSS) is
a finite 4-connected piece of DSL. Any DSS is included in an infinite number
of DSL, but the characteristics of the DSS are the characteristics of the DSL
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Fig. 2. Two views of digital straightness. (a) Geometric view: the DSL has slope 7/16.
Upper leaning points are in blue while lower leaning points are in red. (b) Combinatoric
view: the path between two upper leaning points (or pattern) has a recursive definition
and can be obtained by concatenation of simpler patterns.

containing it with minimal |a|. A DSS is uniquely determined from its charac-
teristics and the starting and ending points. The remainder of a DSS — or a
DSL — of characteristics (a, b, µ) is the function (x, y) 7→ ax− by. Upper leaning
points have remainder µ. Lower leaning points have remainder µ+ |a|+ |b| − 1.
It is easy to see that the convex hull of these points forms a strip in the plane
of slope a/b which contains all points of the DSL. A geometric view of a digital
straight line of slope 7

16 is given on Fig. 2a.

Digital straightness has been studied a lot in the 90s (e.g. see Klette and
Rosenfeld review [18] or [19]). We briefly present another vision of digital straight-
ness which is combinatoric and related to continued fractions.

Given a standard line (a, b, µ), we call pattern of characteristics (a, b) the
succession of Freeman moves between any two consecutive upper leaning points.
The sequence of Freeman moves defined between any two consecutive lower lean-
ing points is the previous word read from back to front and is called the reversed
pattern (see [5, 7]). We say that a DSS is primitive whenever it contains one
pattern of its slope or one reversed pattern of its slope (but not one of each).

As noted by several authors ( [2,29], or the work of Berstel reported in [5,7]),
the pattern of any slope can be constructed from the continued fraction of the
slope. We recall that a simple continued fraction is an expression:

z = a
b = [u0;u1, . . . , un−1, un] = u0 + 1

u1+
1

...+ 1
un−1+ 1

un

,

where n is the depth of the fraction, and u0, u1, etc, are all integers and called the
partial quotients. We call k-th convergent the simple continued fraction formed
of the k first partial quotients: zk = pk

qk
= [u0;u1, . . . , uk]. The function E takes

a continued fraction z as input to build recursively the pattern of a DSS of slope
z in the first quadrant.

E(z−2) = 0, E(z−1) = 1, and,∀i ≥ 0,

{
E(z2i+1) = E(z2i)

u2i+1E(z2i−1),
E(z2i) = E(z2i−2)E(z2i−1)u2i .



Fig. 3. Tangential cover of the flower shape of Fig. 1 for finer and finer gridsteps.

Let us take for example the fraction 7
16 = [0; 2, 3, 2]. The pattern of a DSL

with this slope is thus (see Fig. 2(b) for an illustration) :

E([0; 2, 3, 2]) = E([0; 2, 3])2 · E([0; 2]) 00010010010001001001 · 001
E([0; 2, 3]) = E([0]) · E([0; 2])3 0 · 001001001
E([0; 2]) = 001 001
E([0]) = 0 0

Odd patterns (resp. even patterns) are patterns whose slope is a continued
fraction with odd depth n (resp. even depth n). Patterns will be useful to estab-
lish the link between maximal segments and edges of convex digital shapes.

2.3 Maximal segments over a contour

If we consider the 4-connected path C, a maximal segment M is a subset of C
that is a DSS and which is no more a DSS when adding any other points of
C\M . Fig. 4(a,b) displays the set of all the maximal segments covering the dark
pixels. The sequence of all maximal segments along a digital contour is called
the tangential cover [12]. The tangential cover of the “flower” shape is displayed
on Fig. 3. As one can see, maximal segments look like local affine approximation
of the shape boundary. We will show later in the paper that this is indeed true
for several family of shapes.

It is worthy to note that the whole tangential cover of C can be computed
in O(N) time complexity. Indeed, online recognition of DSS takes O(1) time
complexity when adding a point [8], while updating the DSS characteristics
when removing a point takes also O(1) [12,22]. Note that in the 90s, Smeulders
and Dorst also proposed an algorithm to compute the tangential cover [28].
However, since it is based on repetitions (the relation with continued fractions
was not used), it is much harder to understand and implement.
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Fig. 4. Maximal segments on (a) an initial contour C and (b) on its subsampled contour
φ0,0
3 (C). (c) Function f0,0

5 (represented by lines) associating each pixel of C to its pixel
of φ0,0

5 (C).

2.4 Maximal segments and convexity

Maximal segments are characteristics of the global convexity, but also give in-
sights to the local convexity or concavity of the contour (illustrated on Fig. 5.
More precisely:

A digital shape O (a subset of Z2) is digitally convex iff it is 4-connected and
the Gauss digitization of the convex hull of O is O itself (Conv(O) ∩ Z2 = O).
By extension the contour of O is then said to be digitally convex.

Theorem 1 ( [9]). The contour of a polyomino is digitally convex if and only
if the directions of its maximal segments are monotonous.

(a) (b) nMS = 24, ne = 16 (c) nMS = 4, ne = 24

Fig. 5. (a) Maximal segments and convexity. (b) and (c) number of maximal segments
wrt number of edges of convex hull.

Inflexion maximal segments are maximal segments where slope directions are
increasing on one side and decreasing on the other. They cut the contour of a
digital shape into convex and concave parts. We will thus study the geometry of
digital shapes by parts. Within each part, the contour will be digitally convex



(when concave, it suffices to inverse the role of foreground and background).
We may therefore restrict our study to digitization of convex shapes, and most
properties demonstrated on these shapes will remain valid for shapes with a
finite number of inflexion points.

2.5 Maximal segments along digitally convex contours

If C is digitally convex, then the convex hull of its points forms a convex polygon
P (C) whose vertices have integer coordinates and are pointels of C (see red
vertices in Fig. 5(b)). Edges of P (C) thus partition C. Each part of C is called
a digital edge. It is obvious that digital edges are DSS. More precisely, we have:

Proposition 1 ( [7], Proposition 3.1). Each digital edge of P (C) is a pattern
or a repetition of the same pattern.

This implies that upper leaning points of maximal segments of C are to be found
within the vertices of P (C). A primitive DSS containing only a reversed pattern
(thus no pattern) is called LUL. If not LUL, a DSS is called ULU. Maximal seg-
ments may thus be ULU or LUL. We can precisely relate maximal segments to
digital edges with the following properties. All proofs combine geometric prop-
erties and pattern representation of DSS.

Lemma 1 ( [7], Lemma 3.5). Each ULU maximal segment of C contains a
digital edge of C(P ) with exactly the same slope (which is called its supporting
edge).

Any LUL maximal segment of C has its upper leaning point that is a vertex
of C(P ). This vertex is called its supporting vertex.

Lemma 2 ( [7], Proposition 3.9 and 3.10). Any vertex of C(P ) is the sup-
porting vertex of at most one LUL maximal segment with even depth and of at
most one LUL maximal segment with odd depth.

We denote by nMS(C) the number of maximal segments of C and ne(P (C))
the number of edges of P (C). As shown on Fig. 5(bc), the relation between ne
and nMS was not clear. However Lemma 1 and Lemma 2 entails that nMS(C) ≤
3ne(P (C)).

Patterns are also used to obtain a lower bound on nMS(C) as a function of
ne(P (C)).

Lemma 3 ( [7], Theorem 3.13). An ULU maximal segment of slope zn, n ≥
2, includes at most 2n+ 1 edges (n on each side of the central pattern). A LUL
maximal segment of slope zn, n ≥ 2, includes at most 2n edges.

Figure 6 illustrates the origin of this result. Well-chosen subpatterns do not
change the slope of a DSS but creates digital edges. By examining the construc-
tive proof of the preceding lemma, we may deduce that the shortest maximal
segment which includes 2n+ 1 edges has a slope of the form zn = [0; 2, 2, . . . , 2].



Fig. 6. Shortest maximal segment which contains the greatest number of digital edges:
DSS with slope [0; 2, 2, . . . , 2]. For instance, the edges to the left are 0u1−11, . . .,
E(zn−2)un−1−1, E(zn−1)un−1E(zn−2).

Since pattern length grows exponentially with its depth, a pattern included in a
m×m grid has a depth upper bounded by θ(log(m)).

Since maximal segments cover the contour, it is then clear that nMS(C) ≥
ne(P (C))
θ(log(m)) , where m×m is the bounded box of C.

Putting everything together, we may conclude the following result for digiti-
zations of sufficiently smooth convex shapes:

Theorem 2 ( [7], Theorem 3.15). For a finite convex shape X, let Ch be the
digital boundary of Digh(X). We have

ne(P (Ch))

α1(log 1
h ) + α2

≤ nMS(Ch) ≤ 3ne(P (Ch)).

with α1 ≈ 2.269, α2 ≈ 1.359.

Other results relating the length of maximal segments with the length of
digital edges can be found in the same reference.

Proposition 2 ( [7], Proposition 4.1 and 4.2, with [5], Proposition
3.1.5). The digital lengths of an ULU maximal segment and its supporting edge
are linearly related. The same holds for a LUL maximal segment with one of the
edge around its supporting vertex.

We conclude this section with another interesting result on maximal segments
that indicates how many maximal segments cover a point on a contour. This



result was not obvious since Feschet [11] has exhibited a way to construct a
contour such that, for any integer k, there is a point on this shape with k
maximal segments covering it.

Lemma 4 ( [5], Proposition 3.2.13). Given some contour C, the average
number of maximal segments covering a point of C is upper bounded by 22.

Figure 3(a,b,c) also indicates that the maximal segment are geometrically
close to the tangents along the shape boundary. This remark will help us in
designing multigrid convergent estimators.

3 Multigrid convergence and asymptotic properties

Multigrid convergence is an interesting way of relating digital and Euclidean
geometries. The idea is to ask for discrete geometric estimations to converge
toward the corresponding Euclidean quantity when considering finer and finer
shape digitizations (here, Gauss digitization). Maximal segments allow the con-
struction of multigrid convergent estimators of global geometric quantities (like
length) and local geometric quantities (tangent).

3.1 Multigrid convergence for global geometric quantities

Definition 1 (Definition 2.10 of [19]). A discrete geometric estimator Q̂ is
multigrid convergent for a family of shapes F and a digitization process Dig·
iff for all shape X ∈ F , there exists a grid step hX > 0 such that the estimate
Q̂(Digh(X)) is defined for all 0 < h < hX and

|Q̂(Digh(X))−Q(X)| ≤ τ(h),

where τ : R+ → R+ with null limit at 0. This function is the speed of convergence
of the estimator.

For instance, when Q is the area A of the shape, the estimator Â(O) =
h2Card(O) is multigrid convergent for most family of shapes (Gauss, Dirichlet as
reported in [19], see also [14] for best known upper bound). Multigrid convergence
has also been established for several length estimators (reported in [4]). The
minimum perimeter polygon of a digital shape is multigrid convergent with speed
O(h) [27].

The minimum perimeter polygon of a digital contour C can be computed
in optimal time O(N) from its maximal segments [21, 24], and see also [26] for
a very close approach. Therefore, maximal segments are useful to estimate the
length of digitized shapes.



3.2 Multigrid convergence for local geometric quantities

Tangent direction, normal vector, curvature are local geometric quantities along
the shape boundary. Each of them is thus some function of the shape bound-
ary. However, the contour of the shape digitization does not define the same
domain. Therefore we cannot directly compare the true geometric function with
the estimated geometric function. We provide below a definition of multigrid
convergence for discrete local estimators. It is neither a parametric definition
as in [10] nor a point-wise definition as the standard multigrid convergence re-
ported in [19]. Furthermore, for the sake of simplicity, there is no direct mapping
between the contour and its digitized counterpart as proposed in [20]. It is a ge-
ometric definition, stating that any digital point sufficiently close to the point of
interest has its estimated geometric quantity which tends toward the expected
local value of the geometric function. This definition of multigrid convergence
imposes shapes with continuous geometric fields. Of course, one can afterwards
relax this constraint by splitting the shape boundary into individual parts where
the geometric function is continuous.

Given a shape X in F , and some x in the topological boundary ∂X of X, let
Q(X,x) be some local geometric quantity of ∂X at x. A discrete local estimator
Q̂ is a mapping which associates to any digital contour C, a point y ∈ C and a
gridstep h, some value in a vector space (e.g., R for the curvature). We are now
in position to define the multigrid-convergence of this estimator:

Definition 2. The estimator Q̂ is multigrid-convergent for the family F if and
only if, for any X ∈ F , there exists a grid step hX > 0 such that the estimate
Q̂(Digh(X), y, h) is defined for all y ∈ ∂Digh(X) with 0 < h < hX , and for any
x ∈ ∂X,

∀y ∈ ∂Digh(X) with ‖y − x‖1 ≤ h, |Q̂(Digh(X), y, h)−Q(X,x)| ≤ τX,x(h),

where τX,x : R+∗ → R+ has null limit at 0. This function defines the speed of

convergence of Q̂ toward Q at point x of ∂X. The convergence is uniform for X
when every τX,x is bounded from above by a function τX independent of x ∈ ∂X
with null limit at 0.

It is worth noting that, for sufficiently regular shapes (par(r)-regular shapes
[23]), there exists a gridstep below which the boundary of the shape digitization
has same topology as the shape boundary ( [20], Theorem B.5). Furthermore,
these two boundaries are very close. Indeed, there exists a gridstep below which
for any x ∈ X there is a y ∈ ∂Digh(X) with ‖y−x‖1 ≤ h and conversely for any
y ∈ ∂Digh(X), there is a x ∈ X with ‖y−x‖1 ≤ h ( [20], Lemma B.9). Therefore
the previous definition of multigrid convergence guarantees that the estimated
local quantity converges toward the true local geometric quantity everywhere
along the shape boundary.

3.3 Convergent tangent estimation with maximal segments

As observed in [3] and stated in [7, 22], the slope of maximal segments tend
to approximate the slope of the tangent of the underlying points. This result



is achieved by establishing some asymptotic properties of maximal segments
along a digitized shape as the digitization step tends to 0. To get the behavior
of the average length of maximal segments, we combine the behavior of the
number of maximal segments (Theorem 2) with the properties on their length
(Proposition 2), which gives:

Theorem 3 ( [7], Theorem 4.4). For a finite convex shape X, let Ch be the
digital boundary of Digh(X), and (MSi)i=1..nMS(Ch) be its maximal segments.
The following inequalities hold

1

3

Per(P (Ch))

ne(P (Ch))
≤
∑nMS(Ch)
i=1 L1(MSi)

nMS(Ch)
≤ Θ(log

1

h
)
Per(P (Ch))

ne(P (Ch))
.

The average digital length of maximal segments is almost proportionnal to
the average digital length of digital edges. Now, Theorem 2 of Balog et Bárány [1]
indicates that the average digital length of digital edges of digitization of shapes
X with C3-boundary and strictly positive curvature is some Θ(h−

1
3 ). By relating

this result to Theorem 3, we obtain:

Theorem 4 (Theorem 5.1 of [7] and Theorem 5.26 of [20])). With X
and Ch defined as above, digital lengths of maximal segments follow:

average LMS: Θ(h−
1
3 ) ≤ LMS(Ch) ≤ Θ(h−

1
3 log

1

h
) (1)

shortest Lmin
MS: Θ(h−

1
3 ) ≤ Lmin

MS(Ch) (2)

longest Lmax
MS : Lmax

MS (Ch) ≤ Θ(h−
1
2 ) (3)

As one can see, the digital length of maximal segments grows as the reso-
lution gets finer. Therefore, estimating the tangent direction at some point as
the direction of any maximal segment covering it leads to a discrete tangent
estimator that is uniformly convergent in O(h

1
3 ) (from (2) and Taylor expan-

sion [20,22]). More precisely, this property of maximal segments induces that for
any point P ∈ C:

1. the tangent at P estimated by the most centered maximal segment covering
P (estimator of [12]),

2. the tangent at P estimated as a convex combination of maximal segments
covering P (λ-MST estimator of [22]),

3. the tangent at P estimated as derivative of Gaussian of kernel size equal to a
maximal segment covering P (Hybrid Gaussian Derivative estimator of [6]),

are uniformly multigrid convergent with speed Θ(h
1
3 ). Their convergence speed

is experimentally O(h
2
3 ) nearly everywhere.

Furthermore, the length of any digital path can be estimated by integrating
at each linel the scalar product of its tangent estimation and the linel direction.
The preceding result induces a multigrid convergent length estimator with speed
O(h

1
3 ). It is also interesting to notice that (1) refutes the hypothesis used in the

proof of the multigrid convergence of the curvature estimator by circumscribed
circle (Theorem B.4, [3]). This estimator is also not convergent experimentally.



4 Reverse asymptotic, meaningful scales and noise
detection

The preceding asymptotic properties can be used to detect the meaningful scales
at which a shape should be locally considered [15,17]. Indeed, let x be some point
on ∂X. We denote by (Lhj ) the discrete lengths of the maximal segments, defined
along ∂Digh(X), and which cover x. If U is an open connected neighborhood of
x on X, Theorem 4 induces (4) (Equation (5) is rather straightforward):

if U is strictly convex or concave, then Ω(1/h1/3) ≤ Lhj ≤ O(1/h1/2) (4)

if U has null curvature everywhere, then Ω(1/h) ≤ Lhj ≤ O(1/h). (5)

In practice, we only have a digital shape O as input data at some scale. It is
thus not possible to obtain the asymptotic digitizations of the original shape X
with finer and finer grid steps h. A solution is to observe the asymptotic but in the
reverse direction, i.e. with coarser and coarser grid steps. We then consider the
subsampling φx0,y0

i (O) with increasing covering pixel sizes i×i for i = 2, .., n and
with shift x0, y0. Several subsampling processes can be considered at this stage,
but it is necessary to maintain a surjective map fx0,y0

i which associates any point
P of C to its image point in the subsampled contour φx0,y0

i (C). Such a function is

illustrated on Fig. 4(c). Then, we can consider the discrete lengths (Lhi,x0,y0
j ) of

the maximal segments on the subsampled shapes φx0,y0
i (C) containing fx0,y0

i (P )
with the increasing sequence of digitization grid steps hi = ih (see Fig. 4(a,b)).
For a given subsampling size i, the average digital length of all the maximal

segments containing the subsampled pixel is denoted as L
hi

.
The multiscale profile Pn(P ) at point P is defined as the sequence of samples

(Xi, Yi) = (log(i), log(L
hi

))i=1..n (see Fig. 7(a,b)). According to (4) (resp. (5)),
if P is located on a curved (resp. flat) part, the slope of an affine approximation
of the multiscale profile should be in [− 1

2 ,− 1
3 ] (resp. [−1,− 1

2 ]). Since for noisy
contour parts the preceding properties are not valid, an invalid slope detects
them directly. A threshold tm is given to determine the meaningful scale defined
as a pair (i1, i2), 1 ≤ i1 < i2 ≤ n, such that for all i, i1 ≤ i < i2, Yi+1−Yi

Xi+1−Xi
≤ tm.

For the example of Fig. 7, the meaningful scales of the points P1 and P2 are
respectively equal to (1, 15) and (3, 15).

The noise level ν(P ) of a point P is the integer i1 − 1, where (i1, i2) is the
first meaningful scale at P . Experimentally the threshold value tm = 0 gives best
results both on curved or flat noisy parts. Figure 8 shows some results obtained
on various shapes. The noise detection appears to be well linked to the amount
of noise, and is accurate and fast to compute.

Figure 9, left, gives another example of noise detection on the contour of a
thresholded photography. Furthermore we can just threshold the slope of the
meaningful scale to decide whether it is a curved part (slope is in [− 1

2 ,− 1
3 ]) or

a flat part (slope is in [−1,− 1
2 ]). The output of this simple classifier is displayed

on Fig. 9, right.
The presented noise detector is available online at [16].
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Fig. 7. Illustration of multiscale profile (b) on several points of the contour (a). (c)
shows the resulting noise level estimation represented by a centered box of size ν(P )+1.

(b) 874 points, 445 ms

(a) 544 points, 293 ms (c) 828 points, 430 ms

(d) zoom on lower-right of (b) (e) zoom on upper-left part of (c).

Fig. 8. Noise detection obtained on various shapes (noise level locally represented by a
centered box of size ν(P ) + 1). The contour in (a) is a thresholding of the background
image (Gaussian noise of variances σ = 0, 50, 100, 150 added by quadrant). (b) and (d):
Experiments on a photography of a letter. (c) and (e): Noise detection on a synthetic
object with noise added locally to the curve. Timings obtained on an Intel Pentium 4,
3GHz, 1Go with a maximal scale n equal to 15.



Fig. 9. Noise detection (left) and curve/flat zone classification (right) on real photogra-
phy. The local noise level is represented by a box of corresponding size. Automatically
classified curve parts are underlined in blue.

Further details on maximal segments and their applications can be found
in [7, 15,17,20–22,24].

References

1. A. Balog and I. Bárány. On the convex hull of the integer points in a disc. In Proc.
7th Symp. on Computational geometry (SCG’91), pages 162–165. ACM Press, 1991.

2. A. M. Bruckstein. The self-similarity of digital straight lines. In Proc. 10th Int.
Conf. Pattern Recognition (ICPR’1990), Atlantic City, NJ, volume 1, pages 485–
490, 1990.
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