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Abstract

The Minimum Length Polygon (MLP) is an interesting first order approximation
of a digital contour. For instance, the convexity of the MLP is characteristic
of the digital convexity of the shape, its perimeter is a good estimate of the
perimeter of the digitized shape. We present here two novel equivalent defini-
tions of MLP, one arithmetic, one combinatorial, and both definitions lead to
two different linear time algorithms to compute them. This paper extends the
work presented in [PL09], by detailing the algorithms and providing full proofs.
It includes also a comparative experimental evaluation of both algorithms show-
ing that the combinatorial algorithm is about 5 times faster than the other. We
also checked the multigrid convergence of the length estimator based on the
MLP.

1. Introduction

The minimum length polygon (MLP) or minimum perimeter polygon has
been proposed long ago for approaching the geometry of a digital contour
[Mon70, SCH72]. One of its definitions is to be the polygon of minimum perime-
ter which stays in the band of 1 pixel-wide centered on the digital contour. It
has many interesting properties such as: (i) it is reversible [Mon70]; (ii) it is
characteristic of the convexity of the digitized shape and it minimizes the num-
ber of inflexion points to represent the contour [SCH72, Hob93]; (iii) it is a good
digital length estimator [KY00, CK04] and is proven to be multigrid convergent
in O(h) for digitization of convex shapes, where h is the grid step (reported in
[KR04, SS94, SZ96]); (iv) it is also a good tangent estimator; (v) it is the relative
convex hull of the digital contour with respect to the outer pixels [SCH72, SZ01]
and is therefore exactly the convex hull when the contour is digitally convex.

Several algorithms for computing the MLP have been published. We have
already presented the variational definition of the MLP (length minimizer). It
can thus be solved by a nonlinear programming method. The initial computa-
tion method of [Mon70] was indeed an interactive Newton-Raphson algorithm.
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Computational complexity is clearly not linear and the solution is not exact. We
have also mentioned its set theoretic definition (intersection of relative convex
sets). However, except for digital convex shapes, this definition does not lead to
a specific algorithm. The MLP may also be seen as a solution to a shortest path
query in some well chosen polygon. An adaptation of [GH87] to digital con-
tour could be implemented in time linear with the size of the contour. It should
however be noted that data structures and algorithms involved are complex and
difficult to implement. Klette et al. [KKY99] (see also [KY00, KR04]) have also
proposed an arithmetic algorithm to compute it, but as it is presented, it does
not seem to compute the MLP in all cases. As reported in [dVL09], its edges
seem restricted to digital straight segments such that the continued fraction of
their slope has a complexity no greater than two.

The MLP is in some sense characteristic of a digital contour. One may
expect to find strong related arithmetic and combinatorial properties. This is
precisely the purpose of this paper. Furthermore, we show that each of these
definitions induces an optimal time integer-only algorithm for computing it. The
combinatorial algorithm is particularly simple and elegant, while the arithmetic
definition is essential for proving it defines the MLP. These two new definitions
give a better understanding of what is the MLP in the digital world. Although
other linear-time algorithms exist, the two proposed algorithms are simpler than
existing ones. They are thus easier to implement and their constants are better.

The paper is organized as follows. First Section 2 recalls standard definitions.
Section 3 gives formally the above-mentioned alternative definitions of the MLP.
Section 4 presents how to split uniquely a digital contour into convex, concave
and inflexion zones, the arithmetic definition of MLP follows then naturally.
Section 5 is devoted to the combinatorial version of MLP. After establishing its
equivalence with the arithmetic MLP, we show that our algorithm constructs it
in linear time. Section 6 illustrates our results and concludes.

This paper is an extended version of [PL09]. We provide here full proofs and
further examples. We also note that an algorithm for computing the MLP has
just been proposed independently by Roussillon et al. (to appear in [RST09]):
it is extremely similar in spirit to our arithmetic algorithm since its computation
relies also on maximal segment recognition. However our combinatorial MLP
should still be much faster in practice since it does not compute the geometry
of segments along the shape.

2. Preliminaries

This section presents the standard definitions that we will used throughout
the paper, in order to avoid any ambiguity.

2.1. Polyomino, Digital contour, inner and outer polygon

Given some set X in the plane, its topological interior will be denoted by
X◦ while its topological boundary will be denoted by ∂X.

A digital square is a unit closed axis-aligned square in the plane whose center
has integer coordinates. A polyomino is a set of digital squares in the plane
such that its topological boundary is a Jordan curve. It is thus bounded. It is
convenient to represent a polyomino as a subset of the digital plane Z2, which
codes the integer coordinates of the centers of its squares, instead of representing
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Figure 1: A digital contour C with its inner polygon L1(C), its outer polygon L2(C) and its
MLP.

it as a subset of the Euclidean plane R2. When seeing a polyomino as a subset
of R2, we will say the the body of the polyomino. For instance, the Gauss
digitization of a convex subset of the plane is a polyomino iff it is 4-connected.
A subset of Z2, or digital shape, is a polyomino iff it is 4-connected and its
complement is 4-connected.

In the following, we call digital contour the boundary of any polyomino,
represented as a sequence of horizontal and vertical steps in the half-integer
plane (Z + 1

2 ) × (Z + 1
2 ). One can use for instance a Freeman chain to code it

as a word over the alphabet {0, 1, 2, 3}. These words are usually called contour
words. Again, the body of a digital contour is its embedding in R2 as a polygonal
curve. Now, since the body of a digital contour is a Jordan curve, it has one
well-defined inner component in R2, whose closure is exactly the polyomino
whose boundary is the digital contour. There is thus a one-to-one map from
digital contours to polyominoes, denoted by I.

Let Sq be the digital square centered at (0, 0) and let⊕ denotes the Minkowski
sum of two sets.

We only deal in this paper with simple digital contours (or grid continua in
the terminology of [SZ96]). A digital contour C is simple if and only if: (i) any
digital point of a digital contour C has exactly in its 4-neighborhood two other
digital points of C, (ii) the one pixel-wide band C ⊕ Sq is an annulus whose
topological boundary is composed of two simple closed polygonal lines.

Each of these lines induces a finite simple polygon by Jordan’s theorem. The
one included in the body of I(C) is called the inner polygon of C and is denoted
by L1(C). The other one is the outer polygon of C and is denoted by L2(C).
We have thus by definition that C ⊕ Sq = L2(C) \ L1(C)◦. It is easy to check
that all digital points on ∂L1(C) are in the polyomino I(C) while all digital
points on ∂L2(C) are not in the polyomino I(C). These notions are illustrated
on Figure 1.

2.2. Maximal segments; tangential cover; turns

A standard digital straight line (DSL) is some set {(x, y) ∈ Z2, µ ≤ ax−by <
µ + |a| + |b|}, where (a, b, µ) are also integers and gcd(a, b) = 1. It is well
known that a DSL is a 4-connected simple path in the digital plane, which is
the digitization of a Euclidean straight line of slope a

b and shift to origin −µb
[Rev91, DRR95]. A digital straight segment (DSS) is a 4-connected piece of
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Figure 2: Left: digital contour, tangential cover. Right: inside and outside pixels and, in red,
edges of AMLP(C) in a convex part of C.

DSL. Given a digital contour C, a maximal segment M is a subset of C that is
a DSS and which is no more a DSS when adding any other point of C \M .

We recall that the tangential cover of a digital contour is the ordered sequence
of its maximal segments [FT99]. In the following, the tangential cover is denoted
by (Ml)l=0..m−1, where Ml is the l-th maximal segment of the contour. Let
us denote by θl the slope direction (angle wrt x-axis) of Ml. All indices are
taken modulo the number m of maximal segments. Since the directions of two
consecutive maximal segments can differ of no greater than π, their variation of
direction can always be casted in ]−π, π[ without ambiguity. The angle variation
(θl− θl+1) mod [−π, π[ is denoted by ∆(θl, θl+1). For clarity, we will also write
θl > θl+1 when ∆(θl, θl+1) > 0. We always consider the digital contour to turn
clockwise around the polyomino. A couple of consecutive maximal segments
(Ml,Ml+1) is thus said to be a ∧-turn (resp. ∨-turn) when ∆(θl, θl+1) is negative
(resp. positive). The symbol ∧ stands for “convex” while the symbol ∨ stands
for “concave”.

Since a maximal segment is contained in a digital straight line, it is formed
of exactly two kinds of steps, with Freeman codes c and (c + 1) mod 4. This
coding defines the quadrant of the maximal segment. Its quadrant vector is then
the diagonal vector that is the sum of the two unit steps coded by the Freeman
codes of the quadrant, rotated by +π

2 .
We eventually associate pixels to contour points (Ci) as follows:

• the inside pixel in(Ci) of Ci is the pixel Ci−
−→v
2 , where −→v is the quadrant

vector of any maximal segment containing it (or the last maximal segment
strictly containing it at a quadrant change).

• the outside pixel out(Ci) of Ci is the pixel Ci+
−→v
2 , where −→v is the quadrant

vector of any maximal segment containing it (or the last maximal segment
strictly containing it at a quadrant change).

Figure 2 illustrates these definitions. It is clear that inside pixels belong to
∂L1(C) and outside pixels to ∂L2(C).

3. Existing definitions of the MLP

We recall and give formally several definitions for the MLP of a digital
contour. The first one relates it to the standard convex hull for convex digital
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contours. The second one extends naturally this definition to arbitrary simple
contours as the intersection of specific subsets of the plane. This definition of
MLP is the most convenient in our case for proving our results. The third one
is the classical definition of MLP as the solution to a variational problem.

3.1. Variational definition

Following the works of Sloboda, Zatko, Stoer [SS94, SZS98, SZ01] (or see
[KKY99, KR04]), we define the minimum length polygon (MLP) of C as the
shortest Jordan curve whose digitization is (very close to) the polyomino of C.
More precisely, letting A be the family of simply connected compact sets of R2,
we define:

Definition 1. The minimum perimeter polygon of two polygons V,U with V ⊂
U◦ ⊂ R2 is a subset P of R2 such that

P = argminA∈A, V⊆A, ∂A⊂U\V ◦Per(A), (1)

where Per(A) stands for the perimeter of A, more precisely the 1-dimensional
Hausdorff measure of the boundary of A.

Definition 2. The minimum length polygon (MLP) of a digital contour C is
the minimum perimeter polygon of L1(C),L2(C).

3.2. Set-theoretic definition

The relative convex hull leads to a nice and simple set-theoretic definition
of the MLP. This definition is very general since it is related to sets in n-
dimensional Euclidean spaces. It is a rather natural extension of convex hull.
In the following, the notation xy stands for the straight line segment joining x
and y, i.e. their convex hull.

Definition 3. [SZ01]. Let U ⊆ Rn be an arbitrary set. A set C ⊆ U is said to
be U -convex iff for every x, y ∈ C with xy ⊆ U it holds that xy ⊆ C.
Let V ⊆ U ⊆ Rn be given. The intersection of all U -convex sets containing V
will be termed convex hull of V relative to U , or more shortly U -convex hull of
V , and denoted by ConvU (V ).

We use this definition in the 2-dimensional case.

Definition 4. The set-theoretic MLP of a digital contour C is the convex hull
of L1(C) relative to L2(C).

3.3. Equivalence; convex case

The two previous definitions (MLP and set-theoretic MLP) are equivalent
due to the following theorem:

Theorem 5. (Theorem 3, [SS94], and [SZ01]) Equation (1) has a unique solu-
tion, which is

1. a polygonal Jordan curve whose convex vertices (resp. concave) belong to
the vertices of the inner polygon (resp. the vertices of the outer polygon),

2. the convex hull of V relative to U .
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Since for a 4-connected convex digital set A, the convex hull of A does not
contain any other integer points (e.g. see [BLPR09]), it is clear that the convex
hull of A is a L2(C)-convex set containing L1(C). It is also clear that it is
included in any other L2(C)-convex set containing L1(C). The convex hull of A
is then the set-theoretic MLP of A, and is therefore its MLP according to the
previous theorem.

We also mention that the perimeter of the MLP is a good discrete perime-
ter estimator [SZS98]. This is proved with standard results related to convex
geometry [San76]. The precision of the estimation is no greater than 8h if the
digitization step is h. The MLP provides thus a multigrid convergent perimeter
estimator with convergence speed O(h) for convex shapes or for shapes with a
finite number of inflexion points.

4. Arithmetic MLP

4.1. Decomposition into convex/concave/inflexion zones

We have the following theorem from Dörksen-Reiter and Debled-Rennesson
[DRDR06], which relates convexity to maximal segment directions. It also in-
duces a linear time algorithm to check convexity.

Theorem 6. (adapted from [DRDR06]) A digital contour is digitally convex iff
every couple of consecutive maximal segments of its tangential cover is made of
∧-turns.

For a given DSS M , its first and last upper leaning points are respectively
denoted by Uf (M) and Ul(M), while its first and last lower leaning points are
respectively denoted by Lf (M) and Ll(M). In the same paper, it is proven that
the point Ul(Ml) is no further than Uf (Ml+1) in the case of a convex contour.
A symmetrical property holds naturally for lower leaning points in the case
of a concave contour. These two properties are necessary for the consistency
of points (1) and (2) of Definition 7. We note also that in any DSS M , the
first upper leaning point Uf (M) is no further than the last lower leaning point
Ll(M): this is due to the fact that leaning points along a DSS alternate between
upper and lower position. This is used for the consistency of points (3) and (4)
of Definition 7. We may now consider the succession of turns along a digital
contour to cut it into parts.

· · · ∧ Mi ∧ · · · ∧ Mj ∧ Mj+1 ∨ Mj+2 ∨ · · · ∨ Mk ∨ Mk+1 ∧ · · ·

. . . convex zone inflexion concave zone inflexion . . .

Definition 7. A digital contour C is uniquely split by its tangential cover into
a sequence of closed connected sets with a single point overlap as follows:

1. A convex zone or (∧,∧)-zone is defined by an inextensible sequence of
consecutive ∧-turns from (Ml1 ,Ml1+1) to (Ml2−1,Ml2). If l1 6= l2, it starts
at Ul(Ml1) and ends at Uf (Ml2), otherwise the digital contour is convex
and constitutes a single convex zone.
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2. A concave zone or (∨,∨)-zone is defined by an inextensible sequence of con-
secutive ∨-turns from (Ml′1

,Ml′1+1) to (Ml′2−1,Ml′2
). It starts at Ll(Ml′1

)
and ends at Lf (Ml′2

).

3. A convex inflexion zone or (∧,∨)-zone is defined by a ∧-turn followed by
a ∨-turn around Mi. It starts at Uf (Mi) and ends at Ll(Mi).

4. A concave inflexion zone or (∨,∧)-zone is defined by a ∨-turn followed by
a ∧-turn around Mi′ . It starts at Lf (Mi′) and ends at Ul(Mi′).

Note that a convex or concave zone may be reduced to a single turn between
two successive inflexions. In this case, the zone may or may not be a single
contour point (see Figure 4).

4.2. Definition of the arithmetic MLP of C

The following lemma expresses the fact that a convex zone is naturally de-
composed by the consecutive quadrants of its maximal segments. We recall that
a polyomino is h-convex when each of its rows is connected, v-convex when each
of its columns is connected and hv-convex when it is h-convex and v-convex.

Lemma 8. Any convex zone has a unique decomposition into a factor of
(1Q0<10Q3<03Q2<32Q1<2)∗, where Qa<b is written over the two letters {a, b},
begins by b and ends by b.

Proof. A word that is not such a factor contains necessarily either some 30k1,
23k0, 12k3, 01k2 (trivial concavity), or some 02, 20, 13, 31 (back and forth),
or some 103, 210, 321, 032 (one pixel wide quadrant change). The first case
may not happen in a clockwise contour of a hv-convex polyomino, and therefore
it may not happen in a convex zone (discrete convexity implies hv-convexity).
The second case may not happen on the boundary of any polyomino. The third
case may not happen on a simple digital contour. �

The words Qa<b are called the quadrant words of the convex zone. A sym-
metric decomposition into a factor of (0Q1<01Q2<12Q3<23Q0<3)∗ holds for the
concave zones.

Definition 9. Assume Ci,j is a connected part of a contour, with only two kinds
of steps. The left envelope of Ci,j is the sequence of edges of the convex hull
of the inside pixels of Ci,j, such that the first vertex is the inside pixel of Ci,
the last vertex is the inside pixel of Cj and the edges turn clockwise around the
hull. The right envelope of Ci,j is defined symmetrically by replacing everywhere
inside pixel by outside pixel and clockwise by counterclockwise.

We may now define a linear analog to a digital contour which is the arithmetic
MLP. We refer the reader to Figure 3 for an illustration of this definition, see
also Figure 4 for a more detailed description of the construction of the AMLP
around inflexion zones.

Definition 10. The arithmetic MLP (or AMLP) of a digital contour C is the
polygon AMLP(C) defined by zones Ci,j in C, according to its type:
zone type of Ci,j associated part of AMLP(C)

(∧,∧)-zone union of the left envelope of each quadrant word of Ci,j

(∨,∨)-zone union of the right envelope of each quadrant word of Ci,j

(∧,∨)-zone segment joining the inside pixel of Ci to the outside pixel of Cj

(∨,∧)-zone segment joining the outside pixel of Ci to the inside pixel of Cj
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Figure 3: Illustration of the construction of the AMLP from a digital con-
tour. Left: the input digital contour is the word 1101011010010003303003003333233
2323223212211010101112122232333321212. The maximal segments define two (∧,∧)-zones
(in blue), two (∨,∨)-zones (in green), two (∧,∨)-zones (in red) and two (∨,∧)-zones (in ma-
genta). Center: Each convex zone is decomposed into quadrant words. For instance, the
leftmost convex zone is decomposed as 21212 ·1 ·10101101001 ·0 ·00, where the isolated letters
1 and 0 correspond to quadrant changes. Right: the AMLP is computed by zones either
by convex hull computation in convex or concave zones, or just by connecting endpoints in
inflexion zones.

Figure 4: Examples of AMLP: Left. the left envelope of a (∧,∧)-zone, the right envelope
of a (∨,∨)-zone both joined by the segment associate to the (∧,∨) convex inflexion zone.
Center. A (∨,∨)-zone is reduced to a single point bordered by two inflexion zones. Right.
An example of AMLP with inside (resp. outside) pixels of each quadrant word.

4.3. The arithmetic MLP is a polygon with boundary in the band L2(C)\L1(C)◦

We shall prove in this section that the arithmetic MLP of a digital contour
is a polygon which separates inner pixels from outer pixels.

Lemma 11. AMLP(C) is a closed polygonal line with vertices in Z2.

Proof. We look first at a convex zone of C. According to Definition 10, the
arithmetic MLP is constructed by parts for each quadrant word. The definition
of envelope (Definition 9) guarantees that each part is a polygonal line. The fact
that one letter is removed between two quadrant words ensures that the inside
pixel of the last point of the first quadrant word is the same as the inside pixel
of the first point of the second quadrant word. Therefore, each part is correctly
connected to the next one and AMLP(C) is a polygonal line in a convex zone
of C. The same argument holds for a concave zone. Lastly, AMLP(C) is by
Definition 10 a segment in an inflexion zone.
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We have just proved that AMLP(C) is a polygonal line in each zone of
C. Now, any two consecutive polygonal lines share the same extremity. For
instance, a proper (∧,∧)-zone of C, terminated at in(Uf (Ml)) may only be
followed by a (∧,∨)-zone, beginning also at in(Uf (Ml)). The digital contour
point is clearly the same for both, and so is its inside pixel. Indeed, since
Uf (Ml) is the first upper leaning point of a maximal segment, the next maximal
segment Ml+1 cannot contain it. Therefore it is Ml that defines the quadrant
vector for this point and thus the position of the inside pixel. Other cases are
treated identically. AMLP(C) is thus a closed polygonal line whose vertices are
by construction in Z2. �

We recall that the set C⊕Sq is also the one pixel wide band L2(C)\L1(C)◦.

Lemma 12. In a (∧,∧)-zone Ci,j of C, the corresponding edges of AMLP(C)
form a simple polygonal line included in L2(C)◦ \ L1(C)◦, and in Ci,j ⊕ Sq.

Proof. The word Ci,j is composed of quadrant words (Lemma 8). Let Qa<b be
one of them. Without loss of generality, assume a = 0 and b = 1. We claim
that its left envelope E0<1 is in Q0<1 ⊕ Sq.

We further denote by −→v the quadrant vector of a word in {0, 1}∗. Since Ci,j
is a convex zone, the sequence of maximal segments of Q0<1 has only ∧-turns.
Theorem 8.1 in [DRDR06] shows this contour is digitally convex, and there is
then no integer point between the upper convex hull of Q0<1 and Q0<1 itself.
Now the inside pixels in(Q0<1) of Q0<1 constitutes the same contour as Q0<1

but for a translation by −
−→v
2 . Furthermore, the left envelope E0<1 is also the

translation by −
−→v
2 of the upper convex hull of Q0<1. Hence there is no integer

point between E0<1 and in(Q0<1).
We denote by P the polygon formed by the union of the two polygonal

curves E0<1 and in(Q0<1). Its interior does not contain any point of Z2. The
only integer points that are touched by P are in I(C). First, P has an empty
intersection with L1(C)◦. Indeed, assume there is some x ∈ P ∩L1(C)◦, then x
would belong to an open unit square delimited by four adjacent integer points of
L1(C). This is not possible since the points of L1(C) that may touch P form an
oriented path in the quadrant 0 < 1. A square would require a step in another
direction than 0 or 1.

Furthermore, the boundary of P does not cross any unit segment between
two adjacent points of Z2 \ I(C) (otherwise we could be build a smaller convex
set which does not cross it). Since the vertices of L2(C) belong to this set
of points, we conclude that P cannot intersect ∂L2(C). The Jordan theorem
applied to ∂L2(C) induces that P ⊂ L2(C)◦.

We have thus that E0<1 ⊂ P ⊂ L2(C)◦ \ L1(C)◦. It thus shows E0<1 ⊂
C ⊕ Sq. All points defining the hull are included in Q0<1 ⊕ Sq. Only an
edge of P may go outside Ci,j ⊕ Sq. We already know that such edges may
not cross ∂L2(C) or ∂L1(C). The only ways out are the two unit segments
(Ci−1 ⊕ Sq)∩ (Ci ⊕ Sq) and (Cj ⊕ Sq)∩ (Cj+1 ⊕ Sq). It is clear that would an
edge of P go outside through these segments, then it exit through one before
entering through the other. So P does a loop around L1(C) within C⊕Sq, and
has slopes in all quadrants. This is impossible since by construction all edges of
P starting from the bottom left point are on both sides with slopes in the first
quadrant (along E0<1 on one side and in(Q0<1) on the other side).
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Figure 5: Geometry of a DSS of slope 2
3

along a digital contour. The digital contour is drawn
in-between the corresponding inside and outside pixels. They clearly draw the same contour up
to a translation. Upper and lower leaning points are denoted by grey right triangles. The thick
red line connects the first upper leaning point on the inside contour to the last lower leaning
point on the outside contour. The two straight lines define a straight band which separates
inside from outside pixels. The thick red line is in this band, thus in L2(C) \ L1(C)◦.

Gathering every left envelope of Ci,j we get a polygonal line from in(Ci) to
in(Cj), which is included in Ci,j ⊕ Sq. This polygonal line is simple since it
is simple in each part and since each connection made at quadrant change is a
proper vertex. �

The following lemma is proven similarly to the previous one.

Lemma 13. In a (∨,∨)-zone Ci′,j′ of C, the corresponding edges of AMLP(C)
form a simple polygonal line included in L2(C) \ L1(C), and in Ci′,j′ ⊕ Sq.

Lemma 14. In a (∧,∨) or (∨,∧)-zone Ci′′,j′′ of C, the corresponding edges of
AMLP(C) form a single straight segment included in L2(C) \ L1(C)◦, and in
Ci′′,j′′ ⊕ Sq.

Proof. We refer the reader to Figure 5. The AMLP(C) is in this zone the thick
red segment squeezed in the band that separates inside from outside pixels. It is
indeed easy to see that, if (a, b, µ) are the characteristics of the maximal segment
associated with the inflexion zone, the thick red segment is between the straight
lines ax − by = µ + a+b

2 and ax − by = µ + a+b
2 − 1. The remainders differing

by one, the interior of this band does not contain any integer point. The lemma
follows. �

Theorem 15. AMLP(C) is a simple polygon with boundary in L2(C)\L1(C)◦.

Proof. We know already that AMLP(C) is a closed polygonal line (Lemma 11).
Lemmata 12, 13 and 14 guarantee that the restriction of the edges of AMLP(C)
in each type of zone is always a single polygonal line in L2(C) \L1(C)◦. Taking
any two zones on C, say Cl1,l2 and Cl′1,l′2 , these contours may share a point if
and only if they are consecutive (l2 = l′1 or l1 = l′2). Furthermore, since C ⊕ Sq
is an annulus with two simple polygonal boundaries, the sets Cl1,l2 ⊕ Sq and
Cl′1,l′2 ⊕ Sq may have a non-empty intersection if and only if l2 ≤ l′1 ≤ l2 + 2 or
l1 − 2 ≤ l′2 ≤ l1. We remark that an inflexion zone contains at least two points
and, if it contains only two, it is surrounded by concave or convex zones each of
which with at least three points. A convex or cancave zone may be reduced to
one point but is then surrounded by inflexion zones each of which with at least
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three points. There is thus at most one intermediate zone between two zones
with a non-empty intersection.

If there is none, then one of them is an inflexion zone and the other is a
convex or a concave zone. At a convex junction Ck, AMLP(C) ∩ (Ck ⊕ Sq)
is reduced to the point in(Ck), therefore with no other self-intersections. A
symmetric result is obtained at a concave junction.

If there is one, this intermediate zone is composed of one, two or three points
(0, 1, 2 linels). In all cases, AMLP(C) in this zone is either reduced to a point
or to a straight segment. In the former case, the two parts of AMLP(C) coming
from the two surrounding zones touch at this point and there is no other self-
intersection. In the latter case, the straight segment in the intermediate zone
joins the last point of the previous zone to the first point of the next zone and
has therefore an otherwise empty intersection with both of them. �

We mention a property of a ∧-turn (a symmetric one exists for ∨-turn).
We already know that the slopes of the two maximal segments of a ∧-turn
are decreasing but we need to be more precise to determine the slope of the
AMLP(C) in an inflexion zone.

Lemma 16. Let Mi and Mi+1 be two consecutive maximal segments forming a
∧-turn, and −→ci and −−→ci+1 their quadrant vectors. Setting A = Lf (Mi) + −→ci and
A′ = Ll(Mi+1) + −−→ci+1. Let θ be the direction of the DSS Mi ∩Mi+1, α be the

direction of the vector
−−−−−−→
AUl(Mi), α

′ be the direction of the vector
−−−−−−−−→
Uf (Mi+1)A′.

Then
θi > α ≥ θ ≥ α′ > θi+1 (2)

Proof. Let us assume we are in the first quadrant and let us identify the DSS
Mi ∩Mi+1 with its part Ck,l on the contour. It is the common part of two
consecutive maximal segments, then both Ck−1 and Cl+1 are weak lower leaning
points. The slope of Ck−1,l, and thus the slope of Mi, are right descendants of
the slope of Ck,l in the Stern-Brocot tree of fractions. Since A is a weak upper
leaning point of Mi, the slope of the straight line from A to the last upper
leaning point of Mi is either a left descendant of the slope of Ck−1,l (and is then
greater than the slope of its ancestor Ck,l) or exactly the ancestor of the slope
Ck−1,l (and is then equal to the slope Ck,l). We have just proved θi > α ≥ θ.
The right part is proven similarly. �

Corollary 17. Let θ be the direction of the edge e of ∂AMLP(C) in a (∧,∨)-
inflexion zone. Let θ′ and θ′′ be the respective directions of the edges of ∂AMLP(C)
just before and just after e. Then θ′ ≥ θ and θ ≤ θ′′.

Proof. LetMi the maximal segment carrying the (∧,∨)-inflexion zone. Applying
Lemma 16 to the ∧-turn (Mi−1,Mi) gives θ′ ≥ θ (worst case is Mi−1 is a (∨,∧)-
zone and we must keep α for Mi−1 and α′ for Mi). Applying the symmetric of
Lemma 16 for a ∨-turn gives the other part. �

Corollary 18. Convex vertices of AMLP(C) are inside pixels of C (i.e. ∈
∂L1(C)), concave vertices of AMLP(C) are outside pixels of C (i.e. ∈ ∂L2(C)).

Proof. We already know that in a convex zone of C, vertices of AMLP(C) are by
Definition 10 inside pixels with strictly decreasing edge directions. In a concave
zone of C, vertices of AMLP(C) are outside pixels with strictly increasing edge
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directions. Around an inflexion zone of direction θi, θi−1 > θi impose a (∧,∨)-
zone by Corollary 17, which means that the vertex is the inside pixel of an upper
leaning point. The reasoning is similar when θi−1 < θi. �

4.4. AMLP(C) is the MLP of C

We can now prove that the polygon AMLP(C) is the minimum perimeter
polygon of L1(C), L2(C), or the so-called minimum length polygon of C in
the terminology of Klette et al.. We recalled in Theorem 5 the equivalence of
minimum perimeter polygon with relative convex hull. We will therefore prove:

Theorem 19. If C is a simple 4-connected digital contour, then AMLP(C) is
the convex hull of L1(C) relative to L2(C) or, otherwise said, AMLP(C) is the
intersection of every L2(C)-convex set containing L1(C).

Proof. We proceed in four steps (the two first ones are proven afterwards):

1. AMLP(C) is a L2(C)-convex set containing L1(C) (Lemma 20).

2. Every convex and every concave vertex of AMLP(C) belongs to every
L2(C)-convex set containing L1(C) (Lemma 21).

3. Every edge of AMLP(C) belongs to every L2(C)-convex set containing
L1(C). Indeed, let U be such a L2(C)-convex set and let PQ be some edge
of AMLP(C). Now, P and Q belongs to U (from step (2)). As PQ ⊂
L2(C), by definition of relative convexity, PQ ⊂ U , which concludes.

4. Points (2) and (3) implies ∂AMLP(C) is included in every L2(C)-convex
set containing L1(C), which proves that ∂AMLP(C) is included in the
intersection of every L2(C)-convex set containing L1(C). Let x be some
point in AMLP(C)◦. Taking any straight line containing x, it intersects
∂AMLP(C) at least two points by Jordan theorem. Picking the points
closest to x on each side, say P and Q, the same reasoning as in step
(3) concludes that the whole segment PQ and hence x belong to every
L2(C)-convex set containing L1(C). We have proven that AMLP(C) is
included in the intersection of every L2(C)-convex set containing L1(C).
Being itself such a relative convex set (point (1)), it is necessarily the
convex hull of L1(C) relative to L2(C).

�
We detail now the properties related to steps (1) and (2).

Lemma 20. AMLP(C) is a L2(C)-convex set containing L1(C).

Proof. Figure 6 illustrates this proof. It is clear from Theorem 15 that
AMLP(C) ⊂ L2(C). Furthermore, ∂AMLP(C) is a deformation of C in the
annulus C ⊕ Sq, bounded on the inside by L1(C), and therefore AMLP(C) ⊃
L1(C).

In order to show that AMLP(C) is a L2(C)-convex, it remains to show that
for every x, y ∈ AMLP(C) with xy ⊆ L2(C) it holds that xy ⊆ AMLP(C).
Taking the contrapositive of preceding statement, let x, y ∈ AMLP(C) such
that xy * AMLP(C), we shall prove that xy * L2(C). Let x′ be the element of
xy ∩ ∂AMLP(C) closest to x (existence guaranteed by Jordan theorem). The
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Figure 6: Illustration of the proof of Lemma 20.

open ray (x′y) has a connected part (x′y′) outside AMLP(C). The sequence S
of unit squares in the half-integer plane intersected by (x′y′) is itself a digital
straight segment, whose first square is Ci ⊕ Sq with Ci some point of C. Since
(x′y′) is not in AMLP(C), it is even less in L1(C)◦. Thus the squares of S are
outside L1(C)◦.

If the ray (x′y′) goes outside L2(C), then we have found a point of xy that
is not in L2(C), which concludes the argument. Otherwise we shall reach a
contradiction. Indeed the ray has a cover of consecutive unit squares in L2(C) \
L1(C)◦. Otherwise said, there is a subpart Ci,j of the digital contour such that
Ci,j ⊕ Sq covers (x′y′). Without loss of generality, we may assume −→xy is in the
first quadrant, with direction 0 ≤ p < π

2 . Then the direction of ∂AMLP(C) at
x′ is smaller than p. It is also necessary that the direction of ∂AMLP(C) at y′ is
greater than p. It is thus compulsory to have at least one concave vertex strictly
between x′ and y′ along the boundary of AMLP(C). We denote by A the first
concave point encountered when moving from Ci to Cj . By Corollary 18, the
point A is the outside pixel of some Ck and belongs to L2(C). Remark also that
the square Ci ⊕ Sq has at least one side joining a point B on L1(C) to a point
B′ on L2(C) that does not intersect (x′y′). The point z at the intersection of
BB′ and ∂AMLP(C) is not between x′ and y′.

The curve starting from z to B′ then moving along ∂L2(C) until point A
then going back along ∂AMLP(C) until z is a Jordan curve. Since (x′y′) goes
outside AMLP(C), there is a point x′′ ∈ (x′y′) ∩ L2(C) which is inside this
curve. But point y′ is outside this curve. The segment x′′y′ thus crosses it at
some point. It cannot be between z to B′ nor between A and z otherwise y
would be in-between. It cannot also be along ∂L2(C) but not at A otherwise
then it goes outside L2(C) (case treated above). If the ray exits exactly at A
then the direction p is smaller than the direction θ of ∂AMLP(C) just before A.
But the sequence of directions from x′ to A is strictly decreasing (A is the first
concave point). And the direction of (x′y) is strictly greater than the direction
of ∂AMLP(C) at x′. We have just build some sequence p > α1 > · · · > θ > p.
This is a contradiction. �

Lemma 21. Every convex and every concave vertex of AMLP(C) belongs to
every L2(C)-convex set containing L1(C).

Proof. Let U be a L2(C)-convex set containing L1(C). Let A be some convex
vertex of AMLP(C), and let us prove it belongs to U . By Corollary 18, the point
A is the inside pixel of some Ck and belongs to ∂L1(C). Thus A ∈ L1(C) ⊂ U .
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Let A′ be some concave vertex of AMLP(C). We shall prove that A′ ∈ U .
Let B1 be the first convex vertex of AMLP(C) before A′ and B2 be the first
convex vertex of AMLP(C) after A′. Let C be the curve going from B1 to B2

following ∂AMLP(C) (so that A′ ∈ C) and going back to B1 following ∂L1(C).
Lemma 13 ensures that C is a Jordan curve since a concave part of AMLP(C)
does not intersect L1(C).

Let D be the angle bisector of the two edges of AMLP(C) joining in A′. Let
the line D′ be the perpendicular to D that intersects it at A′. Since A′ is a
concave vertex relatively to AMLP(C), it is also concave relatively to C and so,
by Jordan’s Theorem, there exist two closest points x, y distinct from A′ on this
Jordan curve such that A′ ∈ xy. These two points x and y must be on ∂L1(C)
because the whole part of C going from B1 to B2 along AMLP(C) is concave.

Thus, belonging to L1(C), points x and y belongs to U . Since xy ⊂ L2(C),
relative convexity implies xy ⊂ U , which in turns implies A′ ∈ U . �

4.5. The arithmetic MLP can be computed in linear time

We finish by providing an algorithm to compute AMLP(C).

Algorithm 1: Computation of AMLP(C). On line 1 the tangential cover
of C is computed using [LVdV07] (see boxes on Figure 3, left). On line 2 the
(α, β)-zones are computed following Definition 7 (see colors on Figure 3,
center). On line 7 the left or right envelope can be computed with for
instance Melkman’s algorithm [Mel87] (see Figure 3, right).

Input: C: A digital contour
Output: S: A sequence of points, that is the MLP of C
Compute (Mi)i=0..m−1 the tangential cover of C;1

Decompose (Mi)i=0..m−1 in (α, β)-zones (Zj)j=1..z; // where2

α, β ∈ {∧,∨}
S = ();3

for j = 1 to z do4

if Zj is a (∧,∧) or (∨,∨)-zone then5

for each quadrant word Qi of Zj do6

add to the back of S the left (if (∧,∧)-zone) or right (if7

(∨,∨)-zone) envelope of Qi ;

else
add to the back of S the segment defined in Definition 10.8

return S9

Theorem 22. Algorithm 1 computes AMLP(C) in time linear with respect to
the length of C.

Proof. Let n be the number of points of C. Computation of the tangential cover
on line 1 is performed in linear time according to [FT99] or [LVdV07]. The
computation on line 2 is clearly proportional to m which is also O(n). Finally,
on line 7, there are two cases to consider. Given a convex or concave zone, the
AMLP(C) is some convex hull of a simple polygonal line which is computed in
time proportional to the length of the zone using [Mel87] or [BLPR09]. Given an
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inflexion zone, the computation is reduced to a segment, thus a O(1) operation.
Total computation time is O(n). �

5. Combinatorial definition of the Minimum Length Polygon

Based on the combinatorial characterization of digital convexity obtained
in [BLPR09], we propose a new algorithmic definition of the minimum length
polygon. We begin this section by recalling some standard definitions and useful
properties of word combinatorics.

Given an arbitrary ordered alphabet A = {a1, a2, . . . , an} with the order
a1 < a2 < · · · < an, written A = {a1 < a2 < · · · < an} for short, we extend
this order to words over A using the lexicographic order. We note |w|a the
number of occurrences of the letter a in w and |w| =

∑
a∈A |w|a is the length

of w. Let An be the set of all words of length n over A, in particular A0 = {ε}
where ε is called the empty word. A word w is non-empty if w 6= ε and we note
A∗ = ∪n≥0An and A+ = A∗ \ {ε}. The i-th letter of a word w is w[i] and we
refer to factors of w like this : w = w[1 : i− 1]w[i : i+ j]w[i+ j + 1 : n], where
w[1 : i − 1] is a prefix of w, w[i + j + 1 : n] is a suffix of w and all three are
factors of w. We denote by Pref(w) the set of all prefixes of w and Pref+(w) the
set of all proper prefixes of w that is the set Pref+(w) = Pref(w) \ {w}. Note
for any word w, ε ∈ Pref(w).

By reference to the Freeman coding, given a word w ∈ {0, 1, 2, 3}n the
translation vector associated to w is −→w = (|w|0 − |w|2, |w|1 − |w|3).

5.1. Lyndon words

Definition 23. A non-empty word w over the ordered alphabet A is a Lyndon
word if w < v for any non-empty suffix v of w. LA is the set of all Lyndon
words over A.

Note that when the alphabet is unambiguous, we might simply write L.

Theorem 24 ([Lot97] Theorem 5.1.1). Any non-empty word w over A ad-
mits a unique factorization (called Lyndon factorization) as a sequence of de-
creasing Lyndon words: w = ln1

1 ln2
2 · · · l

nk

k with l1 > l2 > · · · > lk where ni ≥ 1
and li ∈ LA for all 1 ≤ i ≤ k.

We define the function FLF, called first Lyndon factor, as FLF(w,A) =
(l1, n1) where w = ln1

1 ln2
2 · · · l

nk

k is its unique Lyndon factorization according to
the ordered alphabet A. For practical reasons, given a word w ∈ A+ such that
FLF(w,A) = (u, k), we define the auxiliary functions FLFone(w,A) = u and
FLFall(w,A) = uk. If the alphabet is implicit, we may simply write FLF(w).
Finally, we recall the following basic property of Lyndon words.

Property 25 ([Lot97], Proposition 5.1.3). Given u, v ∈ LA, if u < v then
uv ∈ LA so the inequality u < uv < v holds.
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5.2. Christoffel words

Introduced by Christoffel in [Chr75], Christoffel words where reinvestigated
by Borel and Laubie in [BL93]. Since then their impressive combinatorial struc-
ture has been studied by many, see [BLRS09] for a comprehensive self-contained
survey. Here is one of the many equivalent definitions of Christoffel words.1

Definition 26. A Christoffel word on the alphabet {a < b} is the Freeman code
of the path joining two consecutive upper leaning points of a DSS with positive
slope according to the convention that the letter a codes an horizontal step and
the letter b codes a vertical one.

A Christoffel word is said to be trivial if it has length 1 and we note Ca<b

the set of all Christoffel words over the ordered alphabet {a < b}, while the set
of non-trivial Christoffel words is denoted C′a<b. Again, when the alphabet is
unambiguous we simply write C.

Referring to the Freeman code, the slope of w is defined as ρ(w) = |w|b/|w|a
with the convention that 1/0 =∞. In the case of Christoffel words, unlike the
general case, the lexicographic order matches the natural order on the slopes :
u, v ∈ Ca<b implies (u < v ⇐⇒ ρ(u) < ρ(v)) .

A convex polyomino being composed of only one convex zone, Lemma 8
provides a natural decomposition of its boundary in four quadrant words. Our
combinatorial view of convexity is based on the following result which charac-
terizes convex quadrant words.

Theorem 27 ([BLPR09]). A hv-convex polyomino P is convex if and only if
the factorization as decreasing Lyndon words of each quadrant words Qa<b =
ln1
1 ln2

2 · · · l
nk

k is such that li ∈ Ca<b for all 1 ≤ i ≤ nk. Moreover, in the case
where P is convex, for each quadrant, the edges of its convex hull coincide with

the vectors ni
−→
li .

In other terms, we have convexity when Lyndon factors are Christoffel words.
This leads us to define the variant First Lyndon Christoffel Word FLCF of the
FLF function as follows. Let w be a word over A = {a1 < a2 < a3 < a4}, such
that w[1] = a2 and FLF(w,A) = (u, k), then

FLCF(w,A) =

{
(u, k, true) if u is in Ca2<a3 ,
(ε, 0, false) otherwise.

5.3. Definition of the CMLP

We define the combinatorial minimum length polygon algorithmically using
Algorithm 3 which simply computes vertices given by a list of edges given by
Algorithm 2 which is base on the function FLCF. We suppose that the word w
codes the boundary of a polyomino P starting from the point (x0, y0) which is
the lowest point among the leftmost points of P (i.e. x0 = min{x|(x, y) ∈ P}
and y0 = min{y|(x0, y) ∈ P}).

In order to illustrate how Algorithm 2 works, we discuss the geometrical
interpretation of the modifications performed to the alphabet A in Algorithm 2.
First, notice that the alphabet is initialized by A = {0 < 1 < 2 < 3} as we know

1These words are sometimes referred as primitive lower Christoffel words.
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Algorithm 2: nextEdge

Input: (u,A) such that u ∈ A+ and A = {a1 < a2 < a3 < a4}.
Output: (x, l, A) with x ∈ Z2, l ∈ N.
(v, k, inC)← FLCF(u,A); // Try to extract next Christoffel edge.1

x = k−→v ; l = k|v|;2

if v = a2 then3

// Quadrant change.
A ← {a4 < a1 < a2 < a3};4

x← x−−→v ;5

else if not inC then6

// Inflexion detected.
t← u[0];7

u[0]← a3;8

A ← {a4 < a3 < a2 < a1};9

(x, l, A)← nextEdge(u,A);10

u[0]← t;11

return (x, l, A)12

Algorithm 3: Computation of vertices from Algorithm 2.

Input: w ∈ {0, 1, 2, 3}N the boundary word of P .
Output: (x0, x1, x2, . . . ) a list of vertices that form the CMLP of P .
x← (0, 0); i← 0; A← {0 < 1 < 2 < 3};1

w ← w · 10; N ← N + 2 ;2

while w 6= ε do3

(v, l, A) = nextEdge(w,A);4

xi+1 ← xi + v ;5

i← i+ 1 ;6

w ← w[l + 1 : N ] ;7

N ← N − l ;8

return (x0, x1, x2, . . . , xi)9

that the leftmost part of the shape is convex (of the form 21 · · · 10), the contour
going clockwise around the shape. All through the algorithm, it shall always be
the case that when analyzing a convex quadrant word Qa2<a3 the alphabet A
is set to {a1 < a2 < a3 < a4} so that the word a2a1 codes a quadrant change
while a3a4 codes a change of convexity type.

A bijective map µ : A → A over the letters A extends naturally to any
word w ∈ An as µ(w) = µ(w[1])µ(w[2]) · · ·µ(w[n]). Using the notation µ(A) =
{µ(a1) < µ(a2) < . . . }, clearly µ(w) ∈ LA ⇐⇒ w ∈ Lµ−1(A) and µ(w) ∈
Ca<b ⇐⇒ w ∈ Cµ−1(a)<µ−1(b). Algorithm 2 uses this fact so that instead
of applying transformations to the whole word w, only the order relation over
the four letter alphabet is changed. Let w be the contour word of C over
A = {3 < 0 < 1 < 2} and define r : A → A as r(3) = 2, r(0) = 3, r(1) = 0
and r(2) = 1. One verifies that the contour coded by r−1(w) corresponds to
a rotation by π/2 (see Figure 7). This explains line 4 of Algorithm 2 which is
called when a quadrant change occurs.
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Figure 7: Left. A path coded by w = 1000101033322222, Center. r−1(w) =
2111212100033333 and Right. w = 0111010122233333.

Figure 8: Illustration of Algorithm 2. Left. Starting from the step �, the path coded by
w = 001001001011 · · · is such that FLCF(w, {3 < 0 < 1 < 2}) = (ε, 0, false). Right.
Starting from the step �, the path coded by w = 110110110100 · · · , and starting from the
step ≫, the path coded by f(w) = 010110110100 · · · is such that FLCF(f(w), {3 < 0 < 1 <
2}) = (01011011, 1, true). The thick red line shows the MLP’s edge obtained from 01011011.
This edge defines an inflexion zone, more precisely a (∧,∨)-zone. Working with f(w) allows
to consider both extremities of the inflexion zone as inside pixels.

Similarly, let A = {a1 < a2 < a3 < a4} and define the bar operator ( )
as a1 = a4, a2 = a3, a3 = a2 and a4 = a1. Consider a quadrant word Qa<b,
one verifies that Qa<b corresponds to a reflexion by the line y = x if {a, b} ∈
{{0, 3}, {2, 1}} or by the line y = −x if {a, b} ∈ {{1, 0}, {3, 2}}. Once again,
see Figure 7 for an example. Roughly speaking, this transformation turns this
part of the contour inside out, so that computing the left envelope of Qa<b is
equivalent to the computation of the right envelope of Qa<b. This explains line
9 of Algorithm 2.

The modification of the first letter of w at line 8 is due to the fact that w
code the inter-pixel path. Since the condition at line 6 detects a change in the
convexity type, the inner pixel adjacent to the step coded be w[1] must now be
consider as an outside pixel (see Figure 8). This is done by switching the value
of the first letter of w from a2 to a3. An equivalent point of view is given by the
following involution on words. Let w = au be a non-empty word with a ∈ A
and u ∈ A∗, we define the function f by:

f(au) = au. (3)
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Definition 28. The combinatorial MLP of a digital contour C, noted CMLP(C),
is obtained by joining consecutive vertices given as output of Algorithm 3.

We suppose that the lowest pixel among the leftmost pixels of the poly-
omino P is centered at (0, 0). This ensures that point v0 = (0, 0) is a vertex of
CMLP (C). Moreover, in order to close the polygonal path computed, the word
10 is added at the end of w so that an extra vertex located at (0, 0) is added at
the end of the list closing the polygonal line (line 2 in Algorithm 3).

5.4. The CMLP is the same as the AMLP

The main result in order to show that CMLP and AMLP are both the same
polygon is given by Theorem 27. Indeed, it implies that for a given convex
quadrant word, Algorithm 3 computes its convex hull. Now we need to show
that these parts are all connected with each other correctly.

Lemma 29. Let M = Ci,j be a (∧,∨)-MDSS corresponding to an inflexion zone
of C, and let the word w ∈ A∗ be the Freeman code of C starting from Uf (M).

The couple (c, k) = FLF(f(w),A) is such that
−→
c = out(Ll(M))− in(Uf (M)).

Proof. Let M be a (∧,∨)-MDSS. Moreover, without lost of generality, con-
sider the case where the quadrant vector is (−1/2, 1/2) and A = {3 < 0 < 1 <
2}.

Starting from the DSS M , we use the algorithmic techniques from [LVdV07]
in order to remove points at the beginning of the DSS one by one until Uf (M)
is removed. After that, we use technique from [DRR95] in order to add the
point A = Uf (M) + (1,−1). Let k be such that Ck = Uf (M) consider the DSS
M ′ = {A} ∪ Ck+1,j .

The proof is made in two parts. First we show that A = Lf (M ′) and
that Ll(M) is the second lower leaning point of M ′. Then we show that the
word c = FLFone(f(w)) is defined by those two leaning points and satisfies
−→
c = out(Ll(M))− in(Uf (M)).

For the first part, there are two cases to consider, depending if Ck+1,j has
same slope as M or not.

(a) If Ck+1,j has same slope as M , then Uf (M) does not change the slope of
Ck+1,j when added, and it is an upper leaning point. Then point A, being
its translation by (1,−1) is necessarily a lower weakly exterior point to
the digital straight line supporting Ck+1,j . Therefore M ′ = {A} ∪ Ck+1,j

has a greater slope than Ck+1,j . Algorithm [DRR95] tells that A is its
first lower leaning point (A = Lf (M ′)) while the last lower leaning point
remains unchanged (Ll(M) = Ll(Ck,j) = Ll(M

′)). We can conclude since
there are only two leaning points.

(b) If the slopes of Ck+1,j and M are different, then Uf (M) is an upper weakly
exterior point to Ck+1,j . Then point A, being its translation by (1,−1)
is necessarily a lower leaning point to the digital straight line supporting
Ck+1,j , and we have A = Lf (M ′). Let B be the second lower leaning
point of M ′, then B is the first lower leaning point of Ck+1,j . Algorithm
[DRR95] tells that Ck,j has B as its last lower leaning point. Since M and
Ck,j have the same last lower leaning points, we conclude Ll(M) = B.
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Let R be the reflexion of M ′ by the line y = x. Of course, R is a DSS whose
upper leaning points are the lower leaning points of M ′. Call U the image of A
in R and U ′ the image of Ll(M). From what precedes, it is clear that UU ′ is a
Christoffel word, that we denote by c. By construction, we have

−→
c = Ll(M)− (Uf (M) + (1,−1)) = out(Ll(M))− in(Uf (M)).

Let v be the Freeman code of the DSS R. As R starts on an upper leaning
point, there exists some positive integer k and word p proper prefix of c such
that v = ckp. Since the DSS M is not extensible to the right, the following
letter in w is either a3 or a4. In the reflexion f(w), this letter, say a, is either
a2 or a1. Using Lemma 39 (see Appendix A), with u = c, we conclude that
FLFone(f(w)) = c.

�
The next Lemma has a symmetric proof.

Lemma 30. Let M = Ci,j be a (∨,∧)-MDSS (resp. (∨,∧)-MDSS) correspond-
ing to an inflexion zone of C, and let the word w ∈ A∗ be the Freeman code
of C starting from Lf (M). The couple (c, k) = FLF(f(w),A) is such that
−→
c = in(Ul(M))− out(Lf (M)).

Theorem 31. AMLP (C) and CMLP (C) are the same polygon.

Proof. First of all, Algorithm 3 starts at the lowest point among the leftmost
points of the shape. It starts thus exactly at the end of some word in Q1<2.
The first letter is clearly 1 so the starting alphabet is consistent for FLCF. The
vertical leftmost edge is thus extracted and is followed by a quadrant change.
After that, we are now in some quadrant word Q0<1 with the alphabet {3 < 0 <
1 < 2} in a convex zone. Again, the first letter is 0 so the alphabet is consistent
for FLCF.

By Theorem 27, on any convex part that stays in the same quadrant, the
edges computed by Algorithm 2 are the same as those of the convex hull, which is
the left envelope of this part. Quadrant changes are managed by the condition
at line 3 of Algorithm 2. In the case of a quadrant change, the alphabet is
modified in order to correspond to the new quadrant, and thus the following
letter will be consistent for the next FLCF. Note that the extracted vector is
shortened by 1 (line 5) since the interpixel path is always one step longer than
the boundary of L1(C) in this case.

On a concave part, the reversal of the alphabet at line 9 of Algorithm 2
reverses the perspective and allows to use exactly the same algorithm to compute
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the convex hull of the outside pixels of C, which is the right envelope of this
part. In such case, the first letter is modified (line 8) so as to be consistent with
the next FLCF.

Finally, Lemma 29 and Lemma 30 ensure that the edges computed over the
inflexion zones between convex and concave zones, which are detected at line 6
of Algorithm 2, are the same as those of the AMLP(C). �

6. Implementation of FLCF and linear computational complexity of
CMLP

In order to compute the function FLCF one may use Duval’s algorithm
[Duv83] which computes the pair (u, k) = FLF(w,A) for any word w with a
time complexity of O(k|u|). This optimal algorithm is attributed to [FM78]
in [Lot05]. In Algorithm 2 we compute (u, k) = FLF(w,A) but, in the case
where u 6∈ C the specific output (u, k) does not matter. Based on this idea, we
propose a modified version of Duval’s algorithm. Algorithm 4 has the ability
to determine dynamically if the word read might lead to a Christoffel word and
the computation immediately stops if not.

We first present the algorithm computing FLCF. Then, after recalling some
helpful combinatorial properties of Christoffel words, we prove the validity of
this algorithm and we determine the computational complexity of the whole
CMLP algorithm.

6.1. The Modified Duval’s Algorithm

Starting from Duval’s algorithm, we add a few lines in order to stop the
computation on the case where the word read is not a Christoffel word. In
Algorithm 4, by considering only the lines tagged by (D), one gets the well
known Duval algorithm which computes the FLF function in a time linear in
the length of its output (see [Lot05], algorithm LyndonFactorization). The
extra variables p and q are related to properties of Christoffel words and will be
further explained in the next subsections.

By updating these two variables p and q when needed, this new algorithm
computes the function FLF exactly as Duval’s algorithm if the output is a
Christoffel word. Otherwise, it stops at line (∗). The test performed to reach
line (∗) is directly based on the upcoming Corollary 34. Figure 9 illustrates this
algorithm on a simple example.

In addition to this, we also added some optional lines tagged by (CF). In
the case where FLFone(w,A) = c ∈ CA, the list [u0;u1, . . . , ud] is the continued
fraction of the slope of c. Note that this extra information is not required in
Algorithm 2: this is why we do not output it in the context of CMLP computa-
tion. One may easily check that this does not affect the overall time complexity
of the algorithm.

6.2. More about Christoffel words.

Introduced by Borel and Laubie [BL93], the standard factorization of Christof-
fel words is the word combinatorics equivalent of the well known splitting formula
of DSS (see [Vos93]).
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Algorithm 4: Duval++

Input: (w, {a1 < a2 < a3 < a4}) where w ∈ {a2} · {a1, a2, a3, a4}N−1.
Output: (u, k, b) where b is a boolean such that

b ⇐⇒ (u, k) = FLF(w,A).
(D) i← 1; j ← 2;

p← 1; q ← 2;
(CF) m← 0; d← 0; ud ← 0;

(D) while j ≤ N and w[i] ≤ w[j] do
(D) if w[i] = w[j] then

if j = q then
q ← q + p;

(CF) m← m+ 1;
(D) i← i+ 1;

(D) else
if j 6= q or w[j] 6= a3 then

(∗) return (ε, 0, false);

(D) else
(D) i← 1;

q ← 2q − p ;
p← j;

(CF) if m = 0 then
(CF) ud ← ud + 1;

(CF) else
(CF) d← d+ 1; ud ← m;
(CF) d← d+ 1; ud ← 1;
(CF) m← 0

(D) j ← j + 1;

(D) return
(
w[1 : j − i], b j−1

j−i c, true
)

;

Property 32 ([BL93]). For all w ∈ C′a<b, there exist a unique pair x, y ∈
Ca<b such that w = xy. This is called the standard factorization w, it is
denoted by w = (x, y).

Note that in such case, the inequality x < w < y holds. As mentioned previously,
Christoffel words may be defined in many ways. Here is another characterization
describing their internal structure. First, let us define the functions G and D
as follow :

G,D : C′ −→ C′

G(u, v) = (u, uv),

D(u, v) = (uv, v).

Theorem 33 ([BL93, BdL97]). Every non-trivial Christoffel word over the
alphabet {a < b} admits a unique sequence H1, H2, . . . ,Hk ∈ {G,D} such that

w = H1 ◦H2 ◦ · · · ◦Hk(a, b).

Reciprocally, for every sequence H1, H2, . . . ,Hk ∈ {G,D}, the word w = H1 ◦
H2 ◦ · · · ◦Hk(a, b) is a Christoffel word.
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These functions (G for left and D for right) build a tree that is equivalent to
the Stern-Brocot tree of irreducible fractions, each fraction being the slope of
the corresponding Christoffel word.

This theorem constrains the structure of the prefixes of a Christoffel word
as follows.

Corollary 34. For any w = (u, v) ∈ C′a<b, let χw = {wz ∈ C′a<b | z ∈
{a, b}+}. One has that

X ∈ χw =⇒ ∃n ≥ 1, wnv ∈ Pref(X). (4)

Proof. Any Christoffel word having w as a prefix is in the right subtree of w,
i.e. the right subtree of (u, v) (in the tree induced by G and D). Any node of
this subtree has a prefix of the form wnv, which concludes. �

Note that χa = C′a<b and χb = ∅.
We can now establish some combinatorial properties of Christoffel words

which will be used later on to show the correctness of Algorithm 4. Recall that
a period p of a word w is a positive integer such that w[i] = w[i + p] for all
1 ≤ i ≤ |w| − p.

Property 35. Let w ∈ C′a<b, then there exist u, x, y such that w = aub = (x, y)
with the following properties :

(a) aub ∈ Ca<b.

(b) u is a palindrome.

(c) y = y′b implies that y′a ∈ Pref(w).

Proof.

(a) It is a direct consequence of [BLRS09] Theorem 6.3, where the result is
attributed to [dLM94].

(b) See for instance [BLRS09] Proposition 4.2.

(c) The case y′ = ε is trivial while otherwise, we have y = y′b = au′b and by
(b) both words u and u′ are palindromes. This means that u′ is prefix
and suffix of u and so y′ ∈ Pref(au) ⊂ Pref(w). Finally, if y′a 6∈ Pref(w) it
means that y′b = y ∈ Pref(w) and so y < w which contradicts Property 32.

�

6.3. Validity and computational complexity of algorithm Duval++

In this subsection, we show that algorithm Duval++ (Algorithm 4) com-
putes FLCF and that its time complexity is linear with the size of its output
(Proposition 37). Before proving it, we list the formal interpretations of each
variable involved in this algorithm:

j : the index of the new letter in the input word, which will be read during this
iteration;
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Figure 9: Illustration of Algorithm 4 on input word 00100101000. At initialization (a): i = 1,
j = 2, vector −→p illustrates the Christoffel word w[1 : p] and vector −→q illustrates the next
Christoffel word to be obtained if the slope increases. At the beginning of the third iteration
(b): i = 1, j = 4, p = 3, q = 5, −→p = (2, 1) and −→q = (3, 2). A new Christoffel word 001
has been detected at the previous iteration and the algorithm will now test if it is repeated.
This is performed by comparing the letters of w starting from position j with the letters
starting from position i = 1. Also, q has been set to 5 because, according to Corollary 34, a
Christoffel word that begins with 001 must have a prefix of the from (001)n01 with n ≥ 1 so
that the shortest one is 00101 with length 5. At the fourth iteration, (c): i = 2, j = 5, p = 3,
q = 5. Since j = q and w[i] = w[j], the word 00101 is not a prefix of w and the only way the
algorithm does not stop is if w starts with at least two copies of w[1 : p] = 001, q is updated
consequently to 8 and the next Christoffel word expected is now 00100101. At the seventh
iteration (d): i = 5, j = 8, p = 3 and q = 8. This time, w[i] 6= w[j] and j = q which means
that the expected Christoffel word 00100101 has been read, p and q are updated consequently
to 8 and 13 respectively. Also, i is reset to 1 since the algorithm will now check if this new
Christoffel word is repeated. Finally, at the tenth iteration, (e): i = 3, j = 11, p = 8 and
q = 13. This algorithm stops since w[i] > w[j]. The tuple returned is simply the vector −→p
with the number of repetitions, in this case 1, and true since this is locally convex.

i : the index of the letter that is one period behind the letter at index j;

p : the period of w[1 : j − 1], it is also the greatest index smaller then j such
that w[1 : p] is a Christoffel word;

q : the expected position of the next upper leaning point, it is also the smallest
index greater or equal to j such that w[1 : q] may be a Christoffel word.

The following lemma formalizes these ideas.

Lemma 36. In Algorithm 4, each time the while condition is tested, either the
word w[1 : j − 1] is written only on one letter (a2 or a3), or the four following
conditions hold:

(1) w[1 : p] = c ∈ C′a2<a3 ,

(2) w[1 : i− 1] = cα · u where α ≥ 0, u ∈ Pref(c) and u 6= c,

(3) w[1 : j − 1] = cα+1 · u,
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(4) q = (m + 1)|c| + |y| where c = (x, y), m ≥ 0 and m|c| + |y| ≤ j − 1 <
(m+ 1)|c|+ |y|.

w

c c c u

x y u
y

p

i− 1
j − 1

q

Figure 10: Illustration of the four conditions of Lemma 36 with m = 2 and alpha = 2.

Proof.
First of all, one may easily check that starting from the value 2, the variable

j is incremented exactly once at every turn of the loop. Also, one verifies that
if the letter w[j] is a1 or a4 then the algorithm immediately stops. We denote
by n the current index of the iteration, starting from 1. We use the convention
that xn refers to the value of some variable x at the beginning of iteration n.
It is clear that jn = n+ 1.

We begin by treating the case where w[1 : n] is written only on one of the
letters a2 or a3. The only non-trivial case is w[1 : n] = an2 and w[n + 1] = a3.
In such case, after one iteration, we have the following situation:

jn+1 = n+ 2, w[1 : n+ 1] = an2a3, in+1 = 1, pn+1 = n+ 1, qn+1 = 2n− 1,

which satisfies the four conditions, with cn+1 = an2a3 = (a2, a
n−1
2 a3), u = ε,

α = 0, m = 0.
We now proceed by induction on n. The case n = 1 induces a one-letter

word w[1 : 1] and is proved by the preceding argument. Assuming the preceding
properties are satisfied for an arbitrary n > 1, we prove they hold also for n+1.

There are only three different branches in this loop. To prove the induction,
we analyse the three scenarios that might occur at the n-th iteration.

1. w[in] = w[jn] and jn < qn (within a periodic pattern, slope is unchanged).
In this case we have:

in+1 = in + 1, jn+1 = jn + 1, pn+1 = pn, qn+1 = qn.

It is trivial that condition (1) still holds. On the other hand, letting a = w[jn],
we have

w[1 : in+1 − 1] = cαn
n una,

w[1 : jn+1 − 1] = cαn+1
n una.

Since w[jn] is also w[in], we have una ∈ Pref(cn). This means that either
αn+1 = αn and un+1 = una ∈ Pref(cn+1) satisfying un+1 6= cn+1, or αn+1 =
αn + 1, and un+1 = ε. This means that (2) and (3) hold. For condition (4),
j has not increased so much as to modify the value of m since jn < qn, thus
mn+1 = mn.
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2. w[in] = w[jn] and jn = qn (one more reversed pattern, slope is unchanged).
In this case we have:

in+1 = in + 1, jn+1 = jn + 1, pn+1 = pn, qn+1 = qn + pn.

Conditions (1), (2) and (3) are shown exactly the same way as in the previous
case. One easily checks that condition (4) still hold with mn+1 = mn + 1.

3. w[in] = a2, w[jn] = a3 and jn = qn (slope is increased).
In this case, we have:

in+1 = 1, jn+1 = jn + 1, pn+1 = jn, qn+1 = 2qn − pn.

Since w[1 : n + 1] = w[1 : pn+1] = cαn+1
n una3 with yn = una3 and una2 ∈

Pref(cn), Lemma 40 (1) (see Appendix A) applies. Thus we have that

cn+1 = cαn+1
n una3 = (cn, c

α
nuna3) = (xn+1, yn+1) ∈ Ca2<a3 ,

so condition (1) is satisfied.

Conditions (2) and (3) trivialy hold with αn+1 = 0 and un+1 = ε.

Finally, condition (4) holds with mn+1 = 0 since

qn+1 = 2qn−pn = 2|cn+1|− |cn| = |cn+1|+ |cαn+1
n yn|− |cn| = |cn+1|+ |yn+1|,

and |yn+1| ≤ jn+1 − 1 < |cn+1|+ |yn+1|.

�
Using these invariants, we may now prove the validity and linearity of Algo-

rithm 4.

Proposition 37. Let w ∈ An where A = {a1 < a2 < a3 < a4}, w is a contour
word with first letter a2, and let (u, k) = FLF(w,A). We have exactly the two
following cases:

(i) If u ∈ Ca2<a3 then a call to Algorithm 4 with (w,A) as input will return
(u, k, true) with time complexity O(k|u|).

(ii) If u 6∈ Ca2<a3 then a call to Algorithm 4 with input (w,A) will return
(ε, 0, false) while a call to Algorithm 4 with input (f(w),A) will return
(u′, k′, true) where (u′, k′) = FLF(f(w),A) and u′ ∈ Ca2<a3 . Moreover,
both calls have time complexity O(k′|u′|).

Proof. First, suppose that Algorithm 4 returns a triplet of the form (u, k, true).
By the validity of the original Duval’s algorithm, it must be that FLF(w,A) =
(u, k) so all that remains to see is that u ∈ Ca2<a3 .

In Lemma 36, conditions (2) and (3) implies that j− i = p at the end of each
iteration and so, by condition (1) of the same lemma, u = w[1 : p] ∈ Ca2<a3 .

In such case, one checks that the time complexity of the algorithm is linear
with the length of its output uk.

On the other hand, suppose that Algorithm 4 returns the output (ε, 0, false).
We show that in such case, FLFone(w,A) 6∈ Ca2<a3 .
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Let xf be the value of the variable x when the algorithm reached the return
on line (∗), also let l = FLFone(w,A) and l′ = FLFone(f(w),A).

Let us first remark that w[jf ] 6= a1, since in this case the algorithm naturally
stops due to the lexical ordering (case above). Clearly, if w[jf ] = a4 then l
contains the letter a4 and l 6∈ Ca2<a3 . The only other possibility is:

l[if ] = a2, l[jf ] = a3 and jf 6= qf .

In such case, by Lemma 36, the word w[1 : jf ] has the following form:

w[1 : jf ] = cα+1ua3, where c ∈ Ca2<a3 , α ≥ 0, ua2 ∈ Pref(c).

By Lemma 40 (3), we have that l 6∈ Ca2<a3 . Moreover, let (u′, k′) =
FLF(f(w),A), Lemma 40 (3) also ensures that u′ ∈ Ca2<a3 and k′|u′| ≥ |w[1 :
jf ]|/2 = jf/2.

Finally, the time complexity of the call to Algorithm 4 with input (w,A)
is O(jf ) which is also a O(k′|u′|), while the time complexity of the call to
Algorithm 4 with input (f(w),A) is O(k′|u′|) according to (i). �

6.4. Computational complexity of CMLP algorithm

We can now complete our analysis of the time complexity of the algorithm
computing the CMLP.

Theorem 38. Algorithm 3 computes the CMLP of a polyomino in linear time
with respect to the size of its contour word.

Proof. Let w be the contour word of the polyomino with |w| = N . We as-
sume first that a call to nextEdge has a complexity in O(l) (when its output is
(x, l,A)). In this case, the overall complexity of Algorithm 3 is O(N). Indeed,
all other operations within the loop at line 3 are in constant time (the copy of
w is only a renumbering). Then w is shortened by l (lines 7 and 8) at each
iteration until it is reduced to the empty word. It is thus obvious that these
complexities sum to the length of the input word, which is N .

We prove now that nextEdge has a complexity in O(l). We already showed
in the proof of Theorem 31 that the first letter of w when calling nextEdge

is a2. Proposition 37 thus holds. In case (i) of this proposition, k|u| = l and
we conclude. In case (ii) of this proposition, the seemingly recursive call to
nextEdge has only depth 1 since u′ ∈ Ca2<a3 . We have k′|u′| = l and the total
complexity is O(l) +O(l), which concludes the argument. �

7. Experimentations and concluding remarks

We have presented two different definitions for the minimum length polygon
of a digital contour: one based on an arithmetic approach, the other based on a
combinatorial one. Both are showed to be the unique MLP of the contour and
linear time algorithms to compute them are provided. Even though we did not
prove it, our notion of MLP has no problem dealing with one pixel wide areas,
i.e. holes or bars of one pixel wide, as illustrated in Figure 13.
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Figure 11: Computation times of AMLP and CMLP as a function of the size N of the shape
contour. For both algorithms, the input shape is an ellipse which may be perturbated by
some noise (n = 0, no noise, otherwise n denotes the probability to flip a pixel around the
initial contour). Both algorithms are clearly linear. The CMLP is between 4 to 5 times faster
than the AMLP in all cases. Experiments were performed on an Intel(R) Core(TM)2 Duo
3.33GHz.

We have implemented both algorithms in C++ and both are available at
[Ima].2 We have run experiments on various shapes with increasing size and
noise level, so as to estimate the respective execution speeds of these algorithms
(see Figure 11). As expected, they are both linear in the size of the contour
word. However, the constant is smaller for the CMLP (about 5 times better). As
one can see, the CMLP takes about 17.5 ns per contour point on this computer.

Figure 12: Perimeter estimation of a digital disk with its MLP. We have plotted the relative
error between the length of the MLP and the perimeter of the Euclidian disk. The parameter
N is the resolution for sampling the disk.

As mentioned in the introduction, the MLP of a digital shape is a good
perimeter estimator of the underlying Euclidean shape [KY00, CK04] and is
proved to be multigrid convergent in O(h) for digitization of convex shapes,
where h = 1/N is the grid step [KR04, SS94, SZ96]. We have checked this
property on finer and finer digitizations of a Euclidean disk. Figure 12 shows
that this estimator is indeed convergent but with a speed even faster than the
theoretical bound. This discrepancy probably comes from arithmetic properties

2Use the executable freeman2polygon with option -dCMLP for CMLP and -dCP for AMLP.
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of smooth shapes digitizations [LdV06].
Finally, note that one could modify the given algorithms in order to remove

aligned points. On the other hand, one might prefer to keep those redundant
points in order to rebuild the original polyomino.

Figure 13: Examples of MLP

Figure 14: Extract of the MLP of a digitized France. The shown area is Brittany.

Appendix A. Technical lemmata

Lemma 39. Given a word w ∈ {a2 < a3}∗ and two letter a ∈ {a2, a3} and
b ∈ A = {a1 < a2 < a3 < a4} such that w = ukp with k ≥ 1, u ∈ LA,
pa ∈ Pref+(u) and pb 6∈ Pref(u), then given z = wbs for any suffix s ∈ A∗:

1. if a > b, then FLF(z,A) = (u, k),

2. if a < b, then |FLFone(z,A)| ≥ |ukpb|.
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Proof. Using Property 25, one can compute the unique Lyndon factorization of
a words z the following way:

– Write z as a list (l1, l2, . . . , ln) of Lyndon words such that l1l2 · · · ln = w. This
is always possible since all letters are Lyndon words.

– If li < li+1 for some i, then replace the pair (li, li+1) by (lili+1) so that the
length of the list is reduced by one.

– Repeat the previous step until no such i can be found.

Consider the following factorization of z = ws:

z = (u, . . . , u︸ ︷︷ ︸
k times

, p1, p2, . . . , pnp
, b, s1, s2, . . . , sns

) (A.1)

where (p1, p2, . . . , pnp
) is the Lyndon factorization of p and (s1, s2, . . . , sns

) is
the Lyndon factorization of s. Since all words in this factorization are Lyndon
words, the previous algorithm can be used to compute the Lyndon factorization
of w starting from there.

Since p1 ∈ Pref(p) and p ∈ Pref(u), the following inequalities hold:

u ≥ p1 ≥ p2 ≥ · · · ≥ pnp
and s1 ≥ s2 ≥ · · · ≥ sns

On the first iteration of the algorithm, the only possible merges are the pair
(b, s1) if b < s1, or (pnp

, b) if pnb
> b. Clearly, when the algorithm stops, either

all factors u were merged together among with p1 · · · pnp
b, or none of the factors

u have been merged.
Now, consider the case a > b. In such case, it impossible that any of the

factors u is merged. By contradiction, suppose it is the case. The first factor l1
of the Lyndon factorization of z would be of the form ukpbs′ for some suffix s′.
But pbs′ < ukpbs′ which contradicts the definition of a Lyndon word. It must
be that FLF(w) = (u, k).

In the other case, that is a < b, again by contradiction, suppose the above
algorithm stops and none of the factors u were merged. In such case, the Lyndon
factorization of z is

(u, . . . , u︸ ︷︷ ︸
k times

, p1, p2, . . . , pi, p
′bs′, sj , . . . , sn)

where 0 ≥ i ≥ np, 0 ≥ j ≥ nz, p
′ = pi+1pi+2 · · · pnp

and s′ = s1s2 · · · sj−1. Let
α be the word such that w = paα. Since u is a Lyndon word, u < p′aα, but
u ≥ p′bs′ > p′aα. Contradiction.

�
A similar but more precise result is needed in the case of Christoffel words.

In order to lighten the presentation, in this section, we only consider words
written on the two letter alphabet A = {0 < 1}.

Lemma 40. Given a word w of the form w = ckpa where k ≥ 1, c = (x, y) is
a non-trivial Christoffel word, p ∈ Pref+(c), a ∈ A and pa 6∈ Pref(c), then given
z = ws for any suffix s ∈ A∗:
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(1) if |pa| = |y| then a = 1, pa = y and w = ckpa = (c, ck−1y) ∈ C,

(2) if |pa| 6= |y| and a = 0 then FLF(z) = (c, k),

(3) if |pa| 6= |y| and a = 1 then FLFone(w) 6∈ C and given (u,m) = FLF(f(z))
then u ∈ C and |um| ≥ |w|/2.

Proof. Through this proof, we use the following notation: given a non-trivial
Christoffel word X, its central is noted X, so that X = 0X1, and its comple-
mentary Christoffel word is X̂ = 0X1. Similarly, we also write p = 0p.

(1) By Property 35 (c), p0 ∈ Pref(c) so that pa = y and

c

0 y 0

w = c c c p 1
x y x yx y x y y

ckpa = (xy)ky = Gk−1 ◦D(x, y) = (xy, (xy)k−1y)

By Theorem 33, ckpa is a valid Christoffel word.

(2) Since all Christoffel words are Lyndon words, lemma Lemma 39 applies
proving the result.

(3) Again, Lemma 39 applies so l1 = FLFone(w) is such that |l1| ≥ |ckpa|.
On the other hand, Corollary 34 implies that if l1 ∈ C then it must admit

a prefix of the form cny with n ≥ k. Note that y cannot be a trivial Christoffel
word since in such case |p| = 0 implying a = 0. Since 0y is a prefix of c while
y = 0y1 is not, |pa| 6= |y| and |pa| < |c| implies that l1 is not a Christoffel word.

It remains to show that (u,m) = FLF(f(w)) is such that u ∈ C and |um| ≥
|w|/2.

In a first time, we consider the case where one of the word x is the trivial
Christoffel word 0. One checks that in such case y = 0n1 for some n ≥ 1,
FLF(f(wz)) = 01n(01n+1)k−1 proving the result.

We now assume that both words x and y are non trivial Christoffel words:
x = 0x1 and y = 0y1.
Case 1, k > 1:

w = c c c p 1

0 x 10 y 10 x 10 y 10 x 10 y 10 p 1

f(w) = 0 1 1x 01 y 0 x 01 y 0 x 01 y 01 p 0

0 y 10 x 01 y 10 x 01 y 10 x 01 y 1 q

ŷ ĉ ĉ ĉ
α
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By Property 35 (b), the central words of Christoffel words are palindromes,
so that:

c = 0x10y1 = 0y01x1 and ĉ = 0x01y1 = 0y10x1.

Using this property, we have f(w) = ŷ(ŷx̂)k−1p. Moreover, by the unicity of
the standart factorization of Christoffel words and Property 35 (a), we have:

c = (x, y) ∈ C ⇐⇒ ĉ = (ŷ, x̂) ∈ C.

There are two cases to consider:

1. If |p| < |y|.
One checks that α = ŷ(ŷx̂)k−1 =

(
ŷ(ŷx̂)k−2, ŷx̂

)
∈ C ⊂ L and 0x0p ∈

Pref+(α) while 0x0p0 6∈ Pref(α).

2. If |p| ≥ |y|.
In such case, let q be the suffix of p of length |p| − |y|. Since p is prefix of
c = 0y01x1, we have that p = 1y1q. Let α = ŷĉk ∈ C, one checks that
f(w) can be written as: f(w) = αq0 where q ∈ Pref+(α) and q0 6∈ Pref(α).

In both cases, Lemma 39 applies and we have FLF(f(z)) = (α, 1) with |α| >
|w|/2.

Case 2, k = 1.
We assume that |x| > |y|, the case where |x| < |y| is shown in a similar way.
Note that c = (x, y) forces that |x| 6= |y|.

In such case, Theorem 33 implies that there exist a Christoffel word v, |v| <
|y|, such that x = vyn = (vyn−1, y) for some n ≥ 1. Thus w can be written as
w = vyn+1p1.

In the case where v is the trivial Christoffel word 0 then y = 0m1 for some
m ≥ 1 and one checks that FLF(f(ws)) = (01m)n+1 proving the result.

Now consider the case where v = 0v1.

c

w = x y p 1

0 v 10 y 10 y 10 y 10 y 10 p

f(w) = 0 v 01 y 01 y 01 y 01 y 01 p 0

0 y 10 y 10 y 10 y 10 v 01 y 1 q

y 10 v 1
ŷ ŷ ŷ ŷ ŷ v̂

The fact that c,y and v are palindromes implies that

c = v(01y)n+1 = (y10)n+1v.

Now, depending on the length of p, there are three cases to consider.

i. If |p|+ |v| < |y|.
We have f(w) = ŷn+10v0p where ŷ ∈ C ⊂ L, 0v0p ∈ Pref+(ŷ) and 0v0p0 6∈
Pref(ŷ). Lemma 39 applies and FLF(f(z)) = (ŷ, n + 1) where |ŷn+1| ≥
|w|/2.
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ii. If |y| ≤ |p|+ |v| < |y|+ |v|.
In such case, we have that p is a prefix of y. Moreover, p is long enough
so that ŷ is a prefix of 0v01p In such case, let q be such that 0v01p = ŷq.
Consequently, f(w) may be written has f(w) = ŷn+2q0 where q is a proper
prefix of ŷ but q0 6∈ Pref(ŷ). We conclude that FLF(f(z)) = (ŷ, n+ 2) and
|ŷn+2| > |w|/2.

iii. If |p| ≥ |y|.
In this case, let q be such that p = 1y1q. Again the palindromic structure
of central words allows us to write v01y = y10v so that:

f(w) = ŷn+10v01y1q0 = ŷn+10y10v1q0 = ŷn+2v̂q0.

One checks that α = ŷn+2v̂ ∈ C ⊂ L and q ∈ Pref+(α) while q0 6∈ Pref(α).
By Lemma 39, FLF(f(z)) = (α, 1) with |α| > |w|/2.

�

[BdL97] Jean Berstel and Aldo de Luca. Sturmian words, Lyndon words and trees. Theoret.
Comput. Sci., 178(1-2):171–203, 1997.

[BL93] J.-P. Borel and F. Laubie. Quelques mots sur la droite projective réelle. J. Théor.
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