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Abstract We show in this paper how a digital shape can be efficiently analyzed through
the maximal segments defined along its digital contour. They are efficiently computable.
They can be used to prove the multigrid convergence of several geometric estimators. Their
asymptotic properties can be used to estimate the local amount of noise along the shape,
through a multiscale analysis.
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1 Introduction

It is often interesting to study the geometry of digitization of Euclidean shapes in the plane, and
to establish connections between the discrete geometry computed along the digital contour and
the Euclidean geometry of the initial shape. This task is essential in image analysis, where the
initial Euclidean shape has been lost through various acquisition and segmentation processes.

Maximal segments are the connected pieces of digital straight lines that are contained in the
digital contour and that are not extensible [7, 6] (if they are extended on either side, the formed
set is no more a digital straight segment). Maximal segments appear to hold many interesting
properties for analyzing digital shapes. We will show here that they characterize the convex and
concave parts of the shape [6, 5]. They induce discrete geometric estimators of length and tangent
that are multigrid convergent, with a quantifiable error [11, 12]. These asymptotic properties of
maximal segments [3] are also extremely useful to detect the local meaningful scales at which the
shape should be analyzed: in this sense, they provide an unsupervised method to determine locally
the level of noise that is damaging the shape [9].

2 Digital straightness, maximal segments and convexity

A digital shape is a subset of the digital plane Z2. To simplify the exposition, this shape is simply
connected (i.e. a polyomino). Its interpixel boundary is therefore a 4-connected contour in the
half-integer plane. By translating everything by vector ( 12 ,

1
2 ), we get back that all pointels of the

interpixel boundary have integer coordinates. Let us denote with C the digital contour of size N .
A standard digital straight line (DSL) is a 4-connected digital set {(x, y) ∈ Z2, µ ≤ ax− by <

µ + |a| + |b|}, all parameters being integers [14]. Geometrically, the fraction a/b represents the
slope of the line while parameter µ quantifies its shift at the origin. A digital straight segment
(DSS) is a 4-connected piece of DSL. If we consider the 4-connected path C, a maximal segment
M is a subset of C that is a DSS and which is no more a DSS when adding any other points
of C\M . Fig. 1(a,b) displays the set of all the maximal segments covering the dark pixels. The
sequence of all maximal segments along a digital contour is called the tangential cover [6]. It is
worthy to note that the whole tangential cover of C can be computed in O(N) time complexity
[12]. Indeed, online recognition of DSS takes O(1) time complexity when adding a point [4], while
updating the DSS characteristics when removing a point takes also O(1) [12].
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Figure 1: Maximal segments on (a) an initial contour C and (b) on its subsampled contour ϕ0,0
3 (C).

(c) Function f0,0
5 (represented by lines) associating each pixel of C to its pixel of ϕ0,0

5 (C).

(a) (b) nMS = 24, ne = 16 (c) nMS = 4, ne = 24

Figure 2: (a) Maximal segments and convexity. (b) and (c) number of maximal segments wrt
number of edges of convex hull.

Maximal segments are characteristics of the global convexity, but also give insights to the local
convexity or concavity of the contour (illustrated on Fig. 2):

Theorem 1 ([5]) A polyomino (simply connected subset of Z2) is digitally convex if and only if
the directions of its maximal segments are monotonous.

Inflexion maximal segments, where slope directions are increasing on one side and decreasing
on the other, therefore cut the shape into its convex and concave parts.

3 Multigrid convergence and asymptotic properties

Multigrid convergence is an interesting way of relating digital and Euclidean geometries. The
idea is to ask for discrete geometric estimations to converge toward the corresponding Euclidean
quantity when considering finer and finer shape digitizations (here, Gauss digitization).

Definition 1 (Definition 2.10 of [10]) A discrete geometric estimator Q̂ is multigrid conver-
gent for a family of shapes F and a digitization process Dig· iff for all shape X ∈ F , there exists
a grid step hX > 0 such that the estimate Q̂(Digh(X)) is defined for all 0 < h < hX and

|Q̂(Digh(X))−Q(X)| ≤ τ(h),

where τ : R+ → R+ with null limit at 0. This function is the speed of convergence of the estimator.



For instance, when Q is the area A of the shape, the estimator Â(O) = h2Card(O) is multigrid
convergent for most family of shapes (Gauss, Dirichlet, [8]). Multigrid convergence has also been
established for several length estimators (reported in [10]). The minimum perimeter polygon of
a digital shape is multigrid convergent with speed O(h) [15]. The minimum perimeter polygon
of a digital contour C can be computed in optimal time O(N) from its maximal segments [13].
Therefore, maximal segments are useful to estimate global geometric quantities.

Turning ourselves to evaluate the multigrid convergence for local geometric quantities such as
tangent or curvature, Definition 1 must be adapted. This is formally done in Definition 4.15 of
[11] but not detailed here for space reasons.

As observed in [2] and stated in [12, 3], the slope of maximal segments tend to approximate
the slope of the tangent of the underlying points. This result is achieved by establishing some
asymptotic properties of maximal segments along a digitized shape as the digitization step tends
to 0. Although the number nMS of maximal segments is not obviously related to the number ne

of edges of its convex hull (e.g., see Fig. 2(b,c)), we have:

Theorem 2 ([3]) For a convex shape X with C3 boundary,

ne(Digh(X))

Θ(log 1
h )

≤ nMS(Digh(X)) ≤ 3ne(Digh(X)).

By relating this result to Theorem 2 of Balog et Bárány [1], we get results on the digital length
of maximal segments, for shapes X as above and strictly positive curvature:

Theorem 3 (Theorem 5.1 of [3] and Theorem 5.26 of [11]))

average length of maximal segments LMS: Θ(h− 1
3 ) ≤ LMS(Digh(X)) ≤ Θ(h− 1

3 log
1

h
)(1)

shortest maximal segment Lmin
MS: Θ(h− 1

3 ) ≤ Lmin
MS(Digh(X)) (2)

longest maximal segment Lmax
MS : Lmax

MS (Digh(X)) ≤ Θ(h− 1
2 ) (3)

As one can see, the digital length of maximal segments grows as the resolution gets finer.
Therefore, estimating the tangent direction at some point as the direction of any maximal segment
covering it leads to a discrete tangent estimator that is uniformly convergent in O(h

1
3 ) (from (2)

and Taylor expansion [11, 12]). The convergence speed is experimentally O(h
2
3 ) nearly everywhere.

Furthermore, the length of any digital path can be estimated by integrating at each linel the
scalar product of its tangent estimation and the linel direction. The preceding result induces a
multigrid convergent length estimator with speed O(h

1
3 ). It is also interesting to notice that (1)

refutes the hypothesis used in the proof of the multigrid convergence of the curvature estimator
by circumscribed circle (Theorem B.4, [2]). This estimator is also not convergent experimentally.

4 Meaningful scales and noise detection

The preceding asymptotic properties can be used to detect the meaningful scales at which a shape
should be locally considered [9]. Indeed, let P be some point on ∂X. We denote by (Lh

j ) the
discrete lengths of the maximal segments, defined along ∂Digh(X), and which cover P . If U is an
open connected neighborhood of P on X, Theorem3 induces

if U is strictly convex or concave, then Ω(1/h1/3) ≤ Lh
j ≤ O(1/h1/2) (4)

if U has null curvature everywhere, then Ω(1/h) ≤ Lh
j ≤ O(1/h). (5)

Since in practice, it is not possible to obtain the asymptotic digitizations of the initial shape O
with finer and finer grid steps h, a solution is to consider the subsampling ϕx0,y0

i (O) with increasing
covering pixel sizes i× i for i = 2, .., n and with shift x0, y0. Several subsampling processes can be
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Figure 3: Illustration of multiscale profile (b) on several points of the contour (a). (c) shows the
resulting noise level estimation represented by a centered box of size ν(P ) + 1.

considered at this stage, but it is necessary to maintain a surjective map fx0,y0

i which associates
any point P of C to its image point in the subsampled contour ϕx0,y0

i (C). Such a function is

illustrated on Fig. 1(c). Then, we can consider the discrete lengths (Lhi,x0,y0

j ) of the maximal
segments on the subsampled shapes ϕx0,y0

i (C) containing fx0,y0

i (P ) with the increasing sequence
of digitization grid steps hi = ih (see Fig. 1(a,b)). For a given subsampling size i, the average

discrete length of all the maximal segments containing the subsampled pixel is denoted as L
hi
.

The multiscale profile Pn(P ) at point P is defined as the sequence of samples (Xi, Yi) =

(log(i), log(L
hi
))i=1..n (see Fig. 3(a,b)). According to (4) (resp. (5)), if P is located on a curved

(resp. flat) part, the slope of an affine approximation of the multiscale profile should be in [− 1
2 ,− 1

3 ]
(resp. [−1,− 1

2 ]). Since for noisy contour parts the preceding properties are not valid, an invalid
slope detects them directly. A threshold tm is given to determine the meaningful scale defined as
a pair (i1, i2), 1 ≤ i1 < i2 ≤ n, such that for all i, i1 ≤ i < i2,

Yi+1−Yi

Xi+1−Xi
≤ tm. For the example of

Fig. 3, the meaningful scales of the points P1 and P2 are respectively equal to (1, 15) and (3, 15).
The noise level ν(P ) of a point P is the integer i1 − 1, where (i1, i2) is the first meaningful

scale at P . Experimentally the threshold value tm = 0 gives best results both on curved or flat
noisy parts. Fig. 4 shows some results obtained on various shapes. The noise detection appears to
be well linked to the amount of noise, an is accurate and fast to compute.

Further details on maximal segments and their applications can be found in [11, 3, 12, 13, 9].
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box of size ν(P ) + 1). The contour in (a) is a thresholding of the background image (Gaussian
noise of variances σ = 0, 50, 100, 150 added by quadrant). (b) Noise detection on a synthetic object
with noise added locally to the curve. (c) Experiments on a photography of a letter. Timings
obtained on an Intel Pentium 4, 3GHz, 1Go with a maximal scale n equal to 15.
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[13] X. Provençal and J.-O. Lachaud. Two linear-time algorithms for computing the minimum
length polygon of a digital contour. In Proc. Int. Conf. Discrete Geometry for Computer
Imagery (DGCI2009), volume 5810 of LNCS, pages 104–117. Springer, 2009.
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