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Abstract. This paper presents a comparative evaluation of tangent es-
timators based on digital line recognition on digital curves. The com-
parison is carried out with a comprehensive set of criteria: accuracy on
smooth or polygonal shapes, behaviour on convex/concave parts, com-
putation time, isotropy, aymptotic convergence. We further propose a
new estimator mixing the qualities of existing ones and outperforming
them on most mentioned points.

1 Introduction

In this paper, we address the problem of tangent estimation along contours of
digitized 2D objects. Tangent estimation has many applications in discrete ge-
ometry. For instance, the length of a digital contour is accurately estimated from
tangents by integration [3,9]. Derivating the orientation of the tangent provides
an estimation of the curvature [9,11,12]. The previous geometric parameters
are used in classical pattern recognition applications. They also define the in-
ternal energies of discrete deformable models [7]. When rendering 3D digitized
objects, the normal vector field can be estimated from tangent directions along
slice contours [8,9].

When trying to estimate geometric properties of digitized objects, we face
the issue that infinitely many shapes have the same digitization: there is no good
approximation since there is no reference shape. Other hypotheses are thus re-
quired. The common assumption is that the original continuous object has some
“natural” properties such as: compactness (not a fractal), bounded curvature,
sometimes piecewise linear geometry (i.e. polygon). Therefore we restrict the
class of shapes we are interested in. Discrete boundaries will come from the dig-
itization of continuous shapes composed of polygonal parts and of smooth parts
with bounded curvature.

Many tangent estimators are based on a fixed-size window of curve points
around the point of interest [1, 9, 10, 12]. However these methods cannot converge
asymptotically to the value on the continuous shape because the computation
scale is not adapted to the local shape geometry. This is why we take into account
in this comparative analysis only estimators based on digital straight segment
extraction which use an adaptative window size [6,8, 11].

In Section 2, we recall the existing definitions of discrete tangents and com-
pare qualitatively their advantages and drawbacks. We then propose in Section 3



a new tangent estimator, called A-MST, that takes the best out of the existing
ones. This estimator is based on the set of maximal digital straight segments
going through the point of interest. We prove it has two interesting properties:
it identifies convex and concave parts of the shape and behaves accordingly, its
computational complexity is equivalent to the other existing estimators both lo-
cally and globally for the whole curve. Section 4 is devoted to an experimental
comparative evaluation of the tangent estimators. We have checked the following
points: tangent estimation on smooth and straight parts of the shape, sharp cor-
ner recognition, isotropy, mean and maximal asymptotical error with different
shapes. The A-MST appears to have the best behaviour in most practical cases.

2 Estimating tangent with digital straight segments

We restrict our study to the geometry of 4-connected digital curves. Indeed,
a digital object is a set of pixels and its boundary when seen as a collection
of pointels and linels is a 4-connected curve. Besides this work may easily be
adapted to 8-connected curves. We introduce some notations to get homogeneous
definitions of existing tangent estimators based on digital straight lines. In the
remaining of the paper, the digital curve is denoted by C. Its points (C}) are
assumed to be indexed from 0 to NV — 1. A set of successive points of C ordered
increasingly from index ¢ to j will be conveniently denoted by Cj ;.

2.1 Standard line, digital straight segment, maximal segments

Definition 1. The set of points (x,y) of the digital plane verifying p < ax—by <
p+ lal + 0], with a, b and p integer numbers, is called the standard line with
slope a/b and shift p.

The standard lines are the 4-connected discrete lines. As we will see later, all
discrete tangents are defined as particular connected subset of standard lines
included in 4-connected digital curves.

Since the tangent is a local property of the curve, we can always assume
that we look at a restricted part of C, where the indices are totally ordered (the
curve can be re-indexed differently so that its indices are totally ordered on the
subpart of interest). The following definition is thus valid.

Definition 2. We say that a set of successive points C; ; of the digital curve C
is a digital straight segment (DSS) iff there exists a standard line (a,b, ) con-
taining them. The predicate C; ; is a DSS is denoted by S(i,j). When S(i, j), we
denote by D(i,j) the characteristics associated with the digital straight segment
[4]: the characteristics (a,b, ) of the standard line containing all the points C; ;,
the end points C; and C;, the principal upper and lower leaning points U,,, Un,
Ly, Ly

The first index j, ¢ < j, such that S(i,j) and =S(i,j + 1) is called the front
of 7. The map associating any i to its front is denoted by F'. Symmetrically, the



first index 7 such that S(i,7) and =S(i — 1, ) is called the back of j and the
corresponding mapping is denoted by B.

The definition of maximal segments will be central for estimating tangents.
They form the longest possible DSS in the curve. They are used for polygonizing
the curve into the minimum number of segments [6].

Definition 3. Any set of points C;; is called a maximal segment iff any of
the following equivalent characterizations holds: (1) S(i,j) and =S(i,j + 1) and
SS(i—1,j), (2) B(j) = i and F(i) = §, (3) 3k,i = B(K) and § = F(B(k)), (4)
Ik',i = B(F(K')) and j = F(K').

2.2 Discrete tangents

Based on local DSS recognition, several tangent estimators at a digital curve
point have been proposed. Their quality is to adapt the computation window to
the local shape of the curve. Exact tangent estimation for digitizations of straight
lines can thus be achieved. They all try to make the right balance between longest
and most centered DSS around the point of interest.

Definition 4. The following DSS may be defined around any point Cy of the
digital curve C. They correspond to the notion of discrete tangent (see Fig. 1).

— The DSS Cy—yjt1 with S(k—1,k+1) and =S(k —1 — 1,k +1+ 1) is called
the symmetric tangent (ST) at Cj [8].

— The maximal segment with biggest indices that includes the symmetric tan-
gent at Cy, is called the Feschet-Tougne tangent (FTT) at Cj [6].

— The extended tangent (ET) at Cy includes the symmetric tangent Cr_; j+
but may be extended in the two following cases: (i) if S(k—1, k+1+1)A=S(k—
[ =1,k +1) then it is extended forward as the mazimal segment Cy_y p(r—i),
(i) if S(k—1—1,k+1) AN=S(k—1,k+1+1) then it is extended backward
as the maximal segment Cp(ry1) kt1-

— The forward half-tangent at Cy is the DSS Cy p(x) and the backward half-
tangent at Cy is the DSS Cp(r),r- The median half-tangent (HT) at Cy is
the arithmetical line median to the two half-tangents.

Any DSS defines an angle between its carrying standard line and the z-azxis (in
[0; 27] since a DSS is oriented). This angle will be called later on the direction
of the DSS and denoted by the symbol 6.

The preceding discrete tangent definitions, except for the FTT, are inde-
pendent of the orientation chosen for the curve (Fig. 1de). ET can be seen as
an unambiguous version of FTT. Both FTT and ET are local longest DSS, to
the expense of a loss of localization around the point. FTT and ET tend to
polygonalize the digital curve even for underlying smooth shapes.

On the other hand, ST and HT have a very good localization around the
point (perfectly centered for ST). However they both may have a bad behavior
on even very regular shapes (e.g. at the points where a circle with integer radii



(@) ST=ET

Fig. 1. Illustration of discrete tangents. (a) ST. (b) ET = FTT (here). (c) forward and
backward HT. Subfigures d-g show specific problem raised by FTT and ST and solved
by ET: (de) balanced tangent for ET and ST versus arbitrarily unbalanced tangent for
FTT, (fg) false concavity detected by ST versus correct straight line for ET and FTT.

touches the axes). They may also not locate accurately convex or concave parts
of the curve (Fig. 1fg). Note HT is also used for computing the curvature [2].
It is thus not clear which definition of discrete tangent is the best suited
to a given application. A comparative evaluation of all tangent definitions is
thus necessary to anticipate their behavior for given shapes and applications.
This evaluation is made in Section 4. Before that, we construct a new tangent
estimator which aims at mixing the qualities of the other ones: related to maxi-
mal segments as FTT and ET; computation window identical to HT; significant
position of the point wrt the DSS surrounding it as ST; unambiguous definition.

3 Tangent estimation based on maximal segments

We define a new tangent estimator that depends on the set of maximal segments
that goes through a point of the digital curve. This set is called the pencil of
mazimal segments around the point of interest. As noted by Feschet and Tougne
[6], several successive points may have the same pencil. Therefore the tangent
estimator takes also into account the position of the point within the pencil. More
specifically, the point has a given eccentricity wrt each maximal segments. The
tangent direction is estimated by a combination of the direction of each maximal
segment weighted by the eccentricity. In the following subsections, we formalize
the new tangent estimator, we then show it preserves convexity/concavity with
minor restrictions and we explicit lastly how to compute it in optimal time.

3.1 Eccentricity, maximal segment tangent estimator

We index all the maximal segments of the curve by increasing indices: M*¢ =
Chnin; With F(m;) = n; and B(n;) = m;. From characterizations (3) and (4) of



the definition of maximal segment (Definition 3), any DSS C; ; and hence any
point belongs to at least two maximal segments CB(]-)7F(B(]~)) and CB(F(i)),F(i)-
Therefore, the pencil of mazimal segments P(k) = {M',k € M"} around any
point C} is never empty. We denote by 6; the direction of the DSS M?*. In the
remaining of the paper, A is a mapping from [0,1] to Rt with A(0) = A(1) =0
and A > 0 elsewhere.

The eccentricity of Cy wrt a maximal segment M is defined as

- (1)

”Ck*omi‘ll _k—m; g -

ei(k) = L; =7 ifie 73.(79) , with L; = ||Cp, — Cy,
0 otherwise

Definition 5. The A-maximal segment tangent direction at point Cy (A\-MST)

is defined as

ZieP(k) Alei(k))8; i Mei(k))o:
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Considering the properties of the eccentricity and the non-emptyness of pencils,
this value is always defined and may be computed locally.

The preceding notion is extended to any real value & in [0, N|. It is enough to
consider k as the curvilinear parameterization of the 4-connected contour. Any
non-integer value of k corresponds to a real point on the straight line linking C'| |

O(k) = (2)

and Crg1. When X is continuous, the angle 6(k) is continuous too. In appendix,
we show how to derive length and curvature estimators from it.

3.2 Local convexity or concavity; characterization of A\

Feschet proposes to use maximal segments for decomposing the curve into convex
and concave parts [5]. The following definition shares the same idea.

Definition 6. The digital curve C is oriented counterclockwise wrt the discrete
object it bounds. C' is locally convex (resp. concave) at point Cy, iff the angles (6;)
of the sorted segments of P (k) is an nondecreasing sequence (resp. nonincreasing
sequence). (Angles are brought back in | — m, 7| relatively to the first one.)

We say that a tangent estimator to a digital curve satisfies the convez-
ity/concavity property iff the estimated tangent direction is nondecreasing (resp.
nonincreasing) on every connected subset where the curve is locally convex (resp.
concave). This property holds for ET and FTT but does not hold for ST and HT
(e.g. see Fig. 1). For A-MST, it depends on the function A as indicated below.

Theorem 1. If A is differentiable on ]0, 1], then the \-MST estimator satisfies
the convexity/concavity property iff %(t)‘%(t)) <0 and L((1- t))‘Tl(t)) <0 hold
on this interval.

The proof is given in appendix. It is easy to check that functions with a
bell shape satisfy this constraint (e.g. functions based on binomials). This is for
instance the case for the C? function 64(—z° + 32° — 32* + 23) or for the C>



function exp(4 — L — 1) extended by zeroes. One may also find functions not
differentiable everywhere which satisfies the convexity/concavity. Among them,

we can quote the triangle function with a peak at %

3.3 Complexity issues

Another interesting criterion for choosing a tangent estimation is its computa-
tional cost. Feschet and Tougne [6] showed an algorithm that computes the FTT
to all points of a curve in a time linear with the number of points. We show here
that all maximal segments of a curve can be computed with the same complexity.
The A-MST to all points of a curve is thus quickly computed.

Given a maximal segment M* = Cp,, n,, its next maximal segment can be
defined as Cp(n,+1),F(B(n.+1))- 1t is the maximal segment containing the point
ny, + 1 and obtained from M* with a minimal number of operations (adding and
removing a point). The following algorithm computes it:

Compute next maximal _segment (M* = Cyyy 1)
first+ mp+1 last<+ ng+1
while —=S(first, last) first < first +1
while S(first,last) last < last + 1
return M*1 = Ctirgr 1ass—1

Its principle is to remove points at the backward extremity of M* until it
becomes possible to extend the resulting segment at the other end. Of course,
the characteristics of the intermediate DSS must be updated at each removal or
addition of a point. The time complexity of the preceding function depends on
the complexity of the updates, which are proved to be O(1) by:

Theorem 2. Assume S(i,j), and assume the characteristics D(i,j) of the cor-
responding DSS are known. Then,

1. (Addition of point C; or C;) deciding S(i,j + 1) or S(i — 1,j) are O(1)
operations and, when appropriate, computing D(i,j + 1) or D(i — 1,j) are
O(1) operations too (proved by Debled-Renesson and Réveillés [4]);

2. (Removal of point C; or C;) computing D(i +1,5) or D(i,j — 1) are O(1)
operations (see below).

An immediate corollary is that all the maximal segments of a given closed
digital curve are computed with a linear complexity (each point of the curve is
added once to a segment and removed once). Remark that the complexity of
computing the pencil P(k) around Cj depends on the local shape of the curve
(O(F (k) —B(k))). We now explain briefly how to update a DSS in constant time
when removing a point.

Let C;; be a DSS of characteristics D(i,j) = (a,b, tt, U, Unr, Lin, Las).
Without any loss in generality this digital segment belongs to the first quadrant.
In the following, we denote by (a',0', ', U}, U}, Ll L") the characteristics
D(i+1,7) of the DSS C41,j, which we wish to compute. Our algorithm is based



Fig. 2. Removal of a point from a DSS. (a) DSS C; ;. The point C; is an upper leaning
point and its removal will increase the segment slope. (b) Rotation of the leaning lines
around the pivot points (in gray) during the addition/removal of C;. (c) DSS Ciy1,;.
Its slope and the leaning points U}, and Ly, have to be recomputed.

| |C¢ =Un AN CiUy = (b,a) ALy =Ly|Ci =Ly NCiLy = (b,a) A Un :UM|

a’ Yim — (Yo, — 1) Yo, — (Yo, +1)

b L, — (v, +1) ry,, — (vc; — 1)

' a'zu,, —byuy, a'zu,, —byu,,

U, Umv — (v, —xo, — 1)V (Y, a") Un

Uy Uwm Un + ((ycj — Yo, — 1)/0', - 1)(bl7al)

L:n Ly, Ly — (yLM — Yo, — 1)/a’(b,aa,)
| Lm + ((wc; —wc, — 1)/ —1)(',a") Ly

Table 1. Updates of D(i, j) when removing point C;.

on the observation that if the addition of the point C; to Cjy1,; has changed the
characteristics D(i + 1, j), its removal from C; ; should do an inverse modifica-
tion to D(i, 7). After the examination of the incremental algorithm in [4], this
situation happens when C; is an upper or lower leaning point of the DSS Cj ;.
Fig. 2 illustrates the case where C; is an upper leaning point.

We detail here the update when C; = U, and C;Uy = (b,a) and L,, =
L. Clearly, the addition of C; to Cyy1,; has decreased the slope of the DSS.
Geometrically, it corresponds to a rotation of the upper leaning line around U},
and of the lower leaning line around L!,. The two leaning points Uy and L,
are thus left unchanged by the removal of C;. We can also easily state that the
point P = (z¢;, + 1,yc;, — 1) would have extended Cj;;1 ; without modifying
its characteristics D(i + 1,7). The values (a’,b', u') are deduced from P. The
updating of U, and Ly is a little more tricky and exploits the property that
the vector linking two successive upper (or lower) leaning points is (b',a’). The
computation of the characteristics D(i + 1,7) are sumed up in the first column
of Table 1. Its second column corresponds to the case where C; is a lower leaning
point and its removal decreases the slope.

4 Experimental evaluation

In this section, we perform a quantitative evaluation of tangent estimators based
on DSS recognition. For the A-MST estimator the function A is the symmetric
triangle function with a peak at % It first gives very good practical results.
Secondly this function estimates the continuous underlying curve as a circular



(a) HT estimator 7 |(b) ST estimator

Fig. 3. Plots of the estimated tangent direction as a function of the polar angle. The
shape is a circle of radius 10 with a sharp corner in the first quadrant. Solid lines
correspond to expected values, dashed lines to estimations with a grid step of 0.5,
dotted lines to estimations with a finer grid step of 0.25.

arc when the pencil of maximal segments is reduced to two maximal segments.
In the computer implementation, all tangent directions are estimated wrt linels,
not points (i.e. geometric quantities are computed at curvilinear abscissa k + %
and all DSS includes k and k + 1).

We first compare the behavior of tangent estimators on smooth and flat parts
and on corners. The shape is a circle in three quadrants and a right angle in the
fourth (see “rsquare” in Table 2). Fig. 3 displays (a subset of) the estimations of
the tangent direction. Estimators that satisfies the convexity /concavity property,
i.e. ET and A-MST, create a non-decreasing sequence of directions. ST and HT
clearly fail, especially at points where the digital contour meets a quadrant
change. Most estimators behave correctly at corners. A-MST slightly smoothes
the corner at low resolution. The tendency to polygonalize the curve of ET (and
thus FTT) appears clearly on Fig. 3c.

We then evaluate the anisotropy of the estimators with the experiment de-
scribed in Fig. 4. The A-MST is more isotropic than the others, with a steady
and low mean and maximal error.

We finally examine the asymptotic behavior of the absolute error for different
shapes on Table 2. Both A-MST and ET have an asymptotic convergence in mean
and in maximum. It is however unclear whether the maximum error of ST and



Fig. 4. Isotropy of tangent estimators measured with absolute error |§(t) — 6(t)| (thick
solid line: A-MST, thin solid line: HT, dashed line: ST, dotted line: ET). Left: mean of
absolute error. Right: Maximum of absolute error. For each estimator, 100 experiments
are run on a circle of radius 50 with a center arbitrarily shifted in its pixel. The absolute
error is drawn as a function of the polar angle and gathered by sectors of T‘i’ow.

HT converges toward 0 or not for arbitrary shapes. Although the A-MST is
not always the best in mean at coarse resolution, it has the fastest asymptotic
convergence in mean and in maximum whatever is the shape.

As a conclusion, we have compared several tangent estimators based on DSS
recognition. After a first qualitative analysis, we have proposed a new estimator
which takes the best out of the existing ones. We have checked that it satisfies the
convexity/concavity property and we have shown how to compute it efficiently.
After experimental evaluation, the A-MST appears to be the most robust tangent
estimator and very often the most accurate. The results are summed up in the
following table.

tangent ||straight|smooth|corners| convexity |isotropy|mean|maximal
estimator|| parts | parts /concavity error| error
A-MST + + = Yes™ + ++ ++
HT = +/— + No - + —
ET + = + Yes = + +
ST = +/- = No — + —

(*) For X functions satisfying conditions of Theorem 1.
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A Curvature and elementary length estimators

When A is differentiable on ]0,1[, we derive a curvature estimator &(k) and a
elementary length estimator [(k) at point Cj from the tangent direction 6(k) of

A-MST:
- h R do dk  0'(k)
k) = - - nd (k) = —— = —, 3
: |lcos(0(k))| + |sin(6(k))| ) = s I(k) )
. e bi—0;
with 0’ (k) = 2 A (R) 2 A ’(,k)) Li and his the grid step.  (4)

(225 Alej(k)))?

The length of the curve can be estimated by simple integration of I(k). Coeur-
jolly and Klette have reported that this method of length evaluation gives very
good results [3]. The curvature estimation is continuous if the derivative of A is
continuous. First experiments show it is a very promising curvature estimator.
Further studies are currently made to compare its performance with existing
ones.

B Proof of Theorem 1

We show here a necessary and sufficient condition for the A function to define a
A-MST tangent estimator satisfying the convexity/concavity property.

Theorem 1. If X is differentiable on |0, 1], then the A\-MST estimator satisfies
the convexity/concavity property iff %(t)‘yl(t)) <0 and %((1 - t))‘%(t)) <0 hold
on this interval.
These two conditions once putztogether entail A is necessarily log-concave
d

(i.e. In A is a concave function or %= (In A(¢)) < 0). Furthermore, it is enough to

check %(t)‘%(t)) < 0 for functions symmetric around 1.

Proof. We first rewrite 6'(k) as

Ei<j (6; — 6;) ()\(ej(k)))\'(ei(k)) _ A(ei(k))Al'(ej(k)))

L; L;

(225 Alej (k)

We assume for instance that the angles (6;) of the segment in the pencil around
k are nondecreasing. We must thus prove §'(k) is nonnegative, whatever is the
curve under examination. Since some curves have points with exactly two max-
imal segments going through, Eq. (5) may be reduced to one pair. It is thus
necessary to show that each term of this sum is nonnegative. It is also a suffi-

cient condition. Otherwise said, we have to prove for any i < j,

Alej (k)N (ei(k)) — Ales(k)) N (e (k))
! I - T ! <0. (6)

(5)

Vk,m; < k < ng,



Let R;; = n; —mj be the size of the common part of both segments. Setting

t= k};?j” , we define two analogs of the eccentricities e;(k) and e;(k) as €;(t) =

ei(k)y=1- Izj (1 —1t) and €;(t) = ¢;(k) = i—’:t. Eq. (6) is then equivalent to

vt €10, 16 Ay () 8D <z XD -
%%@Wéﬁ§wm ®)
& T a@) < &) o)

It is easy to see that €;(t) > ¢t > €;(t) which gives the idea to break Eq. (9) in
two parts as follows, for all ¢ €]0, 1[:

d

(0 Mei(®) < S A®) and S (0A®) < TanAg @) (10)

Eq. (10) clearly implies Eq. (9), but the converse is also true by letting L; or L;
tend toward R;;.

We focus on the right part of Eq. (10). Letting § = ’J’ and f =InA, we get

V9,0 <0 <1, %(f(t)) < (Z(f(ét)), otherwise said f'(t) <4&f'(6t). (11)

We now show that Eq. (11) is equivalent to

Lrn <o (12)

Indeed, integrating both terms of the last inequality between 0t and ¢ shows
sufficiency. It is also necessary since Eq. (11) can be rewritten with h = (1 — §)t
as:

fiie) < (1=2)f'(t=h) (13)
h)

f'@t) = f'(t—h)
3 + = <0 (14)

Getting the limit when h tends toward 0 and multiplying both sides by ¢ give
tf"(t) + f'(t) <0, which is exactly Eq. (12).

h
t
f't -

We now focus on the left part of Eq. (10). Letting 6’ = 7 and g(t) = f(1-1),
we get
Vo',0<d <1, i(f(l—&’(l—t))) i(f(t)) (15)
T dt dt ’
with u =1 — ¢, we have —di(f(l—é'u))<——( f(1—uw)), (16)
u

or %( (u)) < di( (6'u)), otherwise said g'(u) < 8¢’ (8'u). (17)



From the preceding paragraph, we deduce that == (ug'(u)) < 0. Since g'(u) =
—f'(1 —u), we get
d

S(a=nrw) <o, (18)

which concludes the proof. ad



