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Abstra
t. This paper presents a 
omparative evaluation of tangent es-

timators based on digital line re
ognition on digital 
urves. The 
om-

parison is 
arried out with a 
omprehensive set of 
riteria: a

ura
y on

smooth or polygonal shapes, behaviour on 
onvex/
on
ave parts, 
om-

putation time, isotropy, aymptoti
 
onvergen
e. We further propose a

new estimator mixing the qualities of existing ones and outperforming

them on most mentioned points.

1 Introdu
tion

In this paper, we address the problem of tangent estimation along 
ontours of

digitized 2D obje
ts. Tangent estimation has many appli
ations in dis
rete ge-

ometry. For instan
e, the length of a digital 
ontour is a

urately estimated from

tangents by integration [3, 9℄. Derivating the orientation of the tangent provides

an estimation of the 
urvature [9, 11, 12℄. The previous geometri
 parameters

are used in 
lassi
al pattern re
ognition appli
ations. They also de�ne the in-

ternal energies of dis
rete deformable models [7℄. When rendering 3D digitized

obje
ts, the normal ve
tor �eld 
an be estimated from tangent dire
tions along

sli
e 
ontours [8, 9℄.

When trying to estimate geometri
 properties of digitized obje
ts, we fa
e

the issue that in�nitely many shapes have the same digitization: there is no good

approximation sin
e there is no referen
e shape. Other hypotheses are thus re-

quired. The 
ommon assumption is that the original 
ontinuous obje
t has some

\natural" properties su
h as: 
ompa
tness (not a fra
tal), bounded 
urvature,

sometimes pie
ewise linear geometry (i.e. polygon). Therefore we restri
t the


lass of shapes we are interested in. Dis
rete boundaries will 
ome from the dig-

itization of 
ontinuous shapes 
omposed of polygonal parts and of smooth parts

with bounded 
urvature.

Many tangent estimators are based on a �xed-size window of 
urve points

around the point of interest [1, 9, 10, 12℄. However these methods 
annot 
onverge

asymptoti
ally to the value on the 
ontinuous shape be
ause the 
omputation

s
ale is not adapted to the lo
al shape geometry. This is why we take into a

ount

in this 
omparative analysis only estimators based on digital straight segment

extra
tion whi
h use an adaptative window size [6, 8, 11℄.

In Se
tion 2, we re
all the existing de�nitions of dis
rete tangents and 
om-

pare qualitatively their advantages and drawba
ks. We then propose in Se
tion 3



a new tangent estimator, 
alled �-MST, that takes the best out of the existing

ones. This estimator is based on the set of maximal digital straight segments

going through the point of interest. We prove it has two interesting properties:

it identi�es 
onvex and 
on
ave parts of the shape and behaves a

ordingly, its


omputational 
omplexity is equivalent to the other existing estimators both lo-


ally and globally for the whole 
urve. Se
tion 4 is devoted to an experimental


omparative evaluation of the tangent estimators. We have 
he
ked the following

points: tangent estimation on smooth and straight parts of the shape, sharp 
or-

ner re
ognition, isotropy, mean and maximal asymptoti
al error with di�erent

shapes. The �-MST appears to have the best behaviour in most pra
ti
al 
ases.

2 Estimating tangent with digital straight segments

We restri
t our study to the geometry of 4-
onne
ted digital 
urves. Indeed,

a digital obje
t is a set of pixels and its boundary when seen as a 
olle
tion

of pointels and linels is a 4-
onne
ted 
urve. Besides this work may easily be

adapted to 8-
onne
ted 
urves. We introdu
e some notations to get homogeneous

de�nitions of existing tangent estimators based on digital straight lines. In the

remaining of the paper, the digital 
urve is denoted by C. Its points (C

k

) are

assumed to be indexed from 0 to N � 1. A set of su

essive points of C ordered

in
reasingly from index i to j will be 
onveniently denoted by C

i;j

.

2.1 Standard line, digital straight segment, maximal segments

De�nition 1. The set of points (x; y) of the digital plane verifying � � ax�by �

� + jaj + jbj, with a, b and � integer numbers, is 
alled the standard line with

slope a=b and shift �.

The standard lines are the 4-
onne
ted dis
rete lines. As we will see later, all

dis
rete tangents are de�ned as parti
ular 
onne
ted subset of standard lines

in
luded in 4-
onne
ted digital 
urves.

Sin
e the tangent is a lo
al property of the 
urve, we 
an always assume

that we look at a restri
ted part of C, where the indi
es are totally ordered (the


urve 
an be re-indexed di�erently so that its indi
es are totally ordered on the

subpart of interest). The following de�nition is thus valid.

De�nition 2. We say that a set of su

essive points C

i;j

of the digital 
urve C

is a digital straight segment (DSS) i� there exists a standard line (a; b; �) 
on-

taining them. The predi
ate C

i;j

is a DSS is denoted by S(i; j). When S(i; j), we

denote by D(i; j) the 
hara
teristi
s asso
iated with the digital straight segment

[4℄: the 
hara
teristi
s (a; b; �) of the standard line 
ontaining all the points C

i;j

,

the end points C

i

and C

j

, the prin
ipal upper and lower leaning points U

m

, U

M

,

L

m

, L

M

.

The �rst index j, i � j, su
h that S(i; j) and :S(i; j + 1) is 
alled the front

of i. The map asso
iating any i to its front is denoted by F . Symmetri
ally, the



�rst index i su
h that S(i; j) and :S(i � 1; j) is 
alled the ba
k of j and the


orresponding mapping is denoted by B.

The de�nition of maximal segments will be 
entral for estimating tangents.

They form the longest possible DSS in the 
urve. They are used for polygonizing

the 
urve into the minimum number of segments [6℄.

De�nition 3. Any set of points C

i;j

is 
alled a maximal segment i� any of

the following equivalent 
hara
terizations holds: (1) S(i; j) and :S(i; j +1) and

:S(i� 1; j), (2) B(j) = i and F (i) = j, (3) 9k; i = B(k) and j = F (B(k)), (4)

9k

0

; i = B(F (k

0

)) and j = F (k

0

).

2.2 Dis
rete tangents

Based on lo
al DSS re
ognition, several tangent estimators at a digital 
urve

point have been proposed. Their quality is to adapt the 
omputation window to

the lo
al shape of the 
urve. Exa
t tangent estimation for digitizations of straight

lines 
an thus be a
hieved. They all try to make the right balan
e between longest

and most 
entered DSS around the point of interest.

De�nition 4. The following DSS may be de�ned around any point C

k

of the

digital 
urve C. They 
orrespond to the notion of dis
rete tangent (see Fig. 1).

{ The DSS C

k�l;k+l

with S(k � l; k + l) and :S(k � l � 1; k + l + 1) is 
alled

the symmetri
 tangent (ST) at C

k

[8℄.

{ The maximal segment with biggest indi
es that in
ludes the symmetri
 tan-

gent at C

k

is 
alled the Fes
het-Tougne tangent (FTT) at C

k

[6℄.

{ The extended tangent (ET) at C

k

in
ludes the symmetri
 tangent C

k�l;k+l

but may be extended in the two following 
ases: (i) if S(k�l; k+l+1)^:S(k�

l� 1; k+ l) then it is extended forward as the maximal segment C

k�l;F (k�l)

,

(ii) if S(k � l � 1; k + l) ^ :S(k � l; k + l + 1) then it is extended ba
kward

as the maximal segment C

B(k+l);k+l

.

{ The forward half-tangent at C

k

is the DSS C

k;F (k)

and the ba
kward half-

tangent at C

k

is the DSS C

B(k);k

. The median half-tangent (HT) at C

k

is

the arithmeti
al line median to the two half-tangents.

Any DSS de�nes an angle between its 
arrying standard line and the x-axis (in

[0; 2�[ sin
e a DSS is oriented). This angle will be 
alled later on the dire
tion

of the DSS and denoted by the symbol �.

The pre
eding dis
rete tangent de�nitions, ex
ept for the FTT, are inde-

pendent of the orientation 
hosen for the 
urve (Fig. 1de). ET 
an be seen as

an unambiguous version of FTT. Both FTT and ET are lo
al longest DSS, to

the expense of a loss of lo
alization around the point. FTT and ET tend to

polygonalize the digital 
urve even for underlying smooth shapes.

On the other hand, ST and HT have a very good lo
alization around the

point (perfe
tly 
entered for ST). However they both may have a bad behavior

on even very regular shapes (e.g. at the points where a 
ir
le with integer radii
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Fig. 1. Illustration of dis
rete tangents. (a) ST. (b) ET = FTT (here). (
) forward and

ba
kward HT. Sub�gures d-g show spe
i�
 problem raised by FTT and ST and solved

by ET: (de) balan
ed tangent for ET and ST versus arbitrarily unbalan
ed tangent for

FTT, (fg) false 
on
avity dete
ted by ST versus 
orre
t straight line for ET and FTT.

tou
hes the axes). They may also not lo
ate a

urately 
onvex or 
on
ave parts

of the 
urve (Fig. 1fg). Note HT is also used for 
omputing the 
urvature [2℄.

It is thus not 
lear whi
h de�nition of dis
rete tangent is the best suited

to a given appli
ation. A 
omparative evaluation of all tangent de�nitions is

thus ne
essary to anti
ipate their behavior for given shapes and appli
ations.

This evaluation is made in Se
tion 4. Before that, we 
onstru
t a new tangent

estimator whi
h aims at mixing the qualities of the other ones: related to maxi-

mal segments as FTT and ET; 
omputation window identi
al to HT; signi�
ant

position of the point wrt the DSS surrounding it as ST; unambiguous de�nition.

3 Tangent estimation based on maximal segments

We de�ne a new tangent estimator that depends on the set of maximal segments

that goes through a point of the digital 
urve. This set is 
alled the pen
il of

maximal segments around the point of interest. As noted by Fes
het and Tougne

[6℄, several su

essive points may have the same pen
il. Therefore the tangent

estimator takes also into a

ount the position of the point within the pen
il. More

spe
i�
ally, the point has a given e

entri
ity wrt ea
h maximal segments. The

tangent dire
tion is estimated by a 
ombination of the dire
tion of ea
h maximal

segment weighted by the e

entri
ity. In the following subse
tions, we formalize

the new tangent estimator, we then show it preserves 
onvexity/
on
avity with

minor restri
tions and we expli
it lastly how to 
ompute it in optimal time.

3.1 E

entri
ity, maximal segment tangent estimator

We index all the maximal segments of the 
urve by in
reasing indi
es: M

i

=

C

m

i

;n

i

with F (m

i

) = n

i

and B(n

i

) = m

i

. From 
hara
terizations (3) and (4) of



the de�nition of maximal segment (De�nition 3), any DSS C

i;j

and hen
e any

point belongs to at least two maximal segments C

B(j);F (B(j))

and C

B(F (i));F (i)

.

Therefore, the pen
il of maximal segments P(k) = fM

i

; k 2 M

i

g around any

point C

k

is never empty. We denote by �

i

the dire
tion of the DSS M

i

. In the

remaining of the paper, � is a mapping from [0; 1℄ to R

+

with �(0) = �(1) = 0

and � > 0 elsewhere.

The e

entri
ity of C

k

wrt a maximal segment M

i

is de�ned as

e

i

(k) =

(

kC

k

�C

m

i

k

1

L

i

=

k�m

i

L

i

if i 2 P(k)

0 otherwise

; with L

i

= kC

n

i

� C

m

i

k

1

: (1)

De�nition 5. The �-maximal segment tangent dire
tion at point C

k

(�-MST)

is de�ned as

^

�(k) =

P

i2P(k)

�(e

i

(k))�

i

P

i2P(k)

�(e

i

(k))

=

P

i

�(e

i

(k))�

i

P

i

�(e

i

(k))

: (2)

Considering the properties of the e

entri
ity and the non-emptyness of pen
ils,

this value is always de�ned and may be 
omputed lo
ally.

The pre
eding notion is extended to any real value k in [0; N [. It is enough to


onsider k as the 
urvilinear parameterization of the 4-
onne
ted 
ontour. Any

non-integer value of k 
orresponds to a real point on the straight line linking C

bk


and C

dke

. When � is 
ontinuous, the angle

^

�(k) is 
ontinuous too. In appendix,

we show how to derive length and 
urvature estimators from it.

3.2 Lo
al 
onvexity or 
on
avity; 
hara
terization of �

Fes
het proposes to use maximal segments for de
omposing the 
urve into 
onvex

and 
on
ave parts [5℄. The following de�nition shares the same idea.

De�nition 6. The digital 
urve C is oriented 
ounter
lo
kwise wrt the dis
rete

obje
t it bounds. C is lo
ally 
onvex (resp. 
on
ave) at point C

k

i� the angles (�

i

)

of the sorted segments of P(k) is an nonde
reasing sequen
e (resp. nonin
reasing

sequen
e). (Angles are brought ba
k in ℄� �; �[ relatively to the �rst one.)

We say that a tangent estimator to a digital 
urve satis�es the 
onvex-

ity/
on
avity property i� the estimated tangent dire
tion is nonde
reasing (resp.

nonin
reasing) on every 
onne
ted subset where the 
urve is lo
ally 
onvex (resp.


on
ave). This property holds for ET and FTT but does not hold for ST and HT

(e.g. see Fig. 1). For �-MST, it depends on the fun
tion � as indi
ated below.

Theorem 1. If � is di�erentiable on ℄0; 1[, then the �-MST estimator satis�es

the 
onvexity/
on
avity property i�

d

dt

(t

�

0

�

(t)) � 0 and

d

dt

((1� t)

�

0

�

(t)) � 0 hold

on this interval.

The proof is given in appendix. It is easy to 
he
k that fun
tions with a

bell shape satisfy this 
onstraint (e.g. fun
tions based on binomials). This is for

instan
e the 
ase for the C

2

fun
tion 64(�x

6

+ 3x

5

� 3x

4

+ x

3

) or for the C

1



fun
tion exp(4�

1

x

�

1

1�x

) extended by zeroes. One may also �nd fun
tions not

di�erentiable everywhere whi
h satis�es the 
onvexity/
on
avity. Among them,

we 
an quote the triangle fun
tion with a peak at

1

2

.

3.3 Complexity issues

Another interesting 
riterion for 
hoosing a tangent estimation is its 
omputa-

tional 
ost. Fes
het and Tougne [6℄ showed an algorithm that 
omputes the FTT

to all points of a 
urve in a time linear with the number of points. We show here

that all maximal segments of a 
urve 
an be 
omputed with the same 
omplexity.

The �-MST to all points of a 
urve is thus qui
kly 
omputed.

Given a maximal segment M

k

= C

m

k

;n

k

, its next maximal segment 
an be

de�ned as C

B(n

k

+1);F (B(n

k

+1))

. It is the maximal segment 
ontaining the point

n

k

+1 and obtained from M

k

with a minimal number of operations (adding and

removing a point). The following algorithm 
omputes it:

Compute next maximal segment (M

k

= C

m

k

;n

k

)

first m

k

+ 1 last n

k

+ 1

while :S(first; last) first first+ 1

while S(first; last) last last+ 1

return M

k+1

= C

first;last�1

Its prin
iple is to remove points at the ba
kward extremity of M

k

until it

be
omes possible to extend the resulting segment at the other end. Of 
ourse,

the 
hara
teristi
s of the intermediate DSS must be updated at ea
h removal or

addition of a point. The time 
omplexity of the pre
eding fun
tion depends on

the 
omplexity of the updates, whi
h are proved to be O(1) by:

Theorem 2. Assume S(i; j), and assume the 
hara
teristi
s D(i; j) of the 
or-

responding DSS are known. Then,

1. (Addition of point C

i

or C

j

) de
iding S(i; j + 1) or S(i � 1; j) are O(1)

operations and, when appropriate, 
omputing D(i; j + 1) or D(i � 1; j) are

O(1) operations too (proved by Debled-Renesson and R�eveill�es [4℄);

2. (Removal of point C

i

or C

j

) 
omputing D(i + 1; j) or D(i; j � 1) are O(1)

operations (see below).

An immediate 
orollary is that all the maximal segments of a given 
losed

digital 
urve are 
omputed with a linear 
omplexity (ea
h point of the 
urve is

added on
e to a segment and removed on
e). Remark that the 
omplexity of


omputing the pen
il P(k) around C

k

depends on the lo
al shape of the 
urve

(O(F (k)�B(k))). We now explain brie
y how to update a DSS in 
onstant time

when removing a point.

Let C

i;j

be a DSS of 
hara
teristi
s D(i; j) = (a; b; �; U

m

; U

M

; L

m

; L

M

).

Without any loss in generality this digital segment belongs to the �rst quadrant.

In the following, we denote by (a

0

; b

0

; �

0

; U

0

m

; U

0

M

; L

0

m

; L

0

M

) the 
hara
teristi
s

D(i+1; j) of the DSS C

i+1;j

, whi
h we wish to 
ompute. Our algorithm is based
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Fig. 2. Removal of a point from a DSS. (a) DSS C

i;j

. The point C

i

is an upper leaning

point and its removal will in
rease the segment slope. (b) Rotation of the leaning lines

around the pivot points (in gray) during the addition/removal of C

i

. (
) DSS C

i+1;j

.

Its slope and the leaning points U

0

m

and L

0

M

have to be re
omputed.

C

i

= U

m

^

���!

C

i

U

M

= (b; a) ^ L

m

= L

M

C

i

= L

m

^

���!

C

i

L

M

= (b; a) ^ U

m

= U

M

a

0

y

L

m

� (y

C

i

� 1) y

U

m

� (y

C

i

+ 1)

b

0

x

L

m

� (x

C

i

+ 1) x

U

m

� (x

C

i

� 1)

�

0

a

0

x

U

M

� b

0

y

U

M

a

0

x

U

m

� b

0

y

U

m

U

0

m

U

M

� (x

U

M

� x

C

i

� 1)=b

0

(b

0

; a

0

) U

m

U

0

M

U

M

U

m

+ ((y

C

j

� y

C

i

� 1)=a

0

� 1)(b

0

; a

0

)

L

0

m

L

m

L

M

� (y

L

M

� y

C

i

� 1)=a

0

(b

0

; a

0

)

L

0

M

L

m

+ ((x

C

j

� x

C

i

� 1)=b

0

� 1)(b

0

; a

0

) L

M

Table 1. Updates of D(i; j) when removing point C

i

.

on the observation that if the addition of the point C

i

to C

i+1;j

has 
hanged the


hara
teristi
s D(i+ 1; j), its removal from C

i;j

should do an inverse modi�
a-

tion to D(i; j). After the examination of the in
remental algorithm in [4℄, this

situation happens when C

i

is an upper or lower leaning point of the DSS C

i;j

.

Fig. 2 illustrates the 
ase where C

i

is an upper leaning point.

We detail here the update when C

i

= U

m

and

���!

C

i

U

M

= (b; a) and L

m

=

L

M

. Clearly, the addition of C

i

to C

i+1;j

has de
reased the slope of the DSS.

Geometri
ally, it 
orresponds to a rotation of the upper leaning line around U

0

M

and of the lower leaning line around L

0

m

. The two leaning points U

M

and L

m

are thus left un
hanged by the removal of C

i

. We 
an also easily state that the

point P = (x

C

i

+ 1; y

C

i

� 1) would have extended C

i+1;j

without modifying

its 
hara
teristi
s D(i + 1; j). The values (a

0

; b

0

; �

0

) are dedu
ed from P . The

updating of U

m

and L

M

is a little more tri
ky and exploits the property that

the ve
tor linking two su

essive upper (or lower) leaning points is (b

0

; a

0

). The


omputation of the 
hara
teristi
s D(i+ 1; j) are sumed up in the �rst 
olumn

of Table 1. Its se
ond 
olumn 
orresponds to the 
ase where C

i

is a lower leaning

point and its removal de
reases the slope.

4 Experimental evaluation

In this se
tion, we perform a quantitative evaluation of tangent estimators based

on DSS re
ognition. For the �-MST estimator the fun
tion � is the symmetri


triangle fun
tion with a peak at

1

2

. It �rst gives very good pra
ti
al results.

Se
ondly this fun
tion estimates the 
ontinuous underlying 
urve as a 
ir
ular



(a) HT estimator (b) ST estimator
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Fig. 3. Plots of the estimated tangent dire
tion as a fun
tion of the polar angle. The

shape is a 
ir
le of radius 10 with a sharp 
orner in the �rst quadrant. Solid lines


orrespond to expe
ted values, dashed lines to estimations with a grid step of 0.5,

dotted lines to estimations with a �ner grid step of 0.25.

ar
 when the pen
il of maximal segments is redu
ed to two maximal segments.

In the 
omputer implementation, all tangent dire
tions are estimated wrt linels,

not points (i.e. geometri
 quantities are 
omputed at 
urvilinear abs
issa k +

1

2

and all DSS in
ludes k and k + 1).

We �rst 
ompare the behavior of tangent estimators on smooth and 
at parts

and on 
orners. The shape is a 
ir
le in three quadrants and a right angle in the

fourth (see \rsquare" in Table 2). Fig. 3 displays (a subset of) the estimations of

the tangent dire
tion. Estimators that satis�es the 
onvexity/
on
avity property,

i.e. ET and �-MST, 
reate a non-de
reasing sequen
e of dire
tions. ST and HT


learly fail, espe
ially at points where the digital 
ontour meets a quadrant


hange. Most estimators behave 
orre
tly at 
orners. �-MST slightly smoothes

the 
orner at low resolution. The tenden
y to polygonalize the 
urve of ET (and

thus FTT) appears 
learly on Fig. 3
.

We then evaluate the anisotropy of the estimators with the experiment de-

s
ribed in Fig. 4. The �-MST is more isotropi
 than the others, with a steady

and low mean and maximal error.

We �nally examine the asymptoti
 behavior of the absolute error for di�erent

shapes on Table 2. Both �-MST and ET have an asymptoti
 
onvergen
e in mean

and in maximum. It is however un
lear whether the maximum error of ST and
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Fig. 4. Isotropy of tangent estimators measured with absolute error j

^

�(t)� �(t)j (thi
k

solid line: �-MST, thin solid line: HT, dashed line: ST, dotted line: ET). Left: mean of

absolute error. Right: Maximum of absolute error. For ea
h estimator, 100 experiments

are run on a 
ir
le of radius 50 with a 
enter arbitrarily shifted in its pixel. The absolute

error is drawn as a fun
tion of the polar angle and gathered by se
tors of

5

180

�.

HT 
onverges toward 0 or not for arbitrary shapes. Although the �-MST is

not always the best in mean at 
oarse resolution, it has the fastest asymptoti



onvergen
e in mean and in maximum whatever is the shape.

As a 
on
lusion, we have 
ompared several tangent estimators based on DSS

re
ognition. After a �rst qualitative analysis, we have proposed a new estimator

whi
h takes the best out of the existing ones. We have 
he
ked that it satis�es the


onvexity/
on
avity property and we have shown how to 
ompute it eÆ
iently.

After experimental evaluation, the �-MST appears to be the most robust tangent

estimator and very often the most a

urate. The results are summed up in the

following table.

tangent straight smooth 
orners 
onvexity isotropy mean maximal

estimator parts parts /
on
avity error error

�-MST + + = Yes

�

+ ++ ++

HT = +=� + No � + �

ET + = + Yes = + +

ST = +=� = No � + �

(*) For � fun
tions satisfying 
onditions of Theorem 1.
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A Curvature and elementary length estimators

When � is di�erentiable on ℄0; 1[, we derive a 
urvature estimator �̂(k) and a

elementary length estimator

^

l(k) at point C

k

from the tangent dire
tion

^

�(k) of

�-MST:

^

l(k) =

h

j
os(

^

�(k))j+ jsin(

^

�(k))j

and �̂(k) =

d

^

�

dk

dk

ds

=

^

�

0

(k)

^

l(k)

; (3)

with

^

�

0

(k) =

P

j

�(e

j

(k))

P

i

�

0

(e

i

(k))

�

i

��

j

L

i

(

P

j

�(e

j

(k)))

2

and h is the grid step: (4)

The length of the 
urve 
an be estimated by simple integration of

^

l(k). Coeur-

jolly and Klette have reported that this method of length evaluation gives very

good results [3℄. The 
urvature estimation is 
ontinuous if the derivative of � is


ontinuous. First experiments show it is a very promising 
urvature estimator.

Further studies are 
urrently made to 
ompare its performan
e with existing

ones.

B Proof of Theorem 1

We show here a ne
essary and suÆ
ient 
ondition for the � fun
tion to de�ne a

�-MST tangent estimator satisfying the 
onvexity/
on
avity property.

Theorem 1. If � is di�erentiable on ℄0; 1[, then the �-MST estimator satis�es

the 
onvexity/
on
avity property i�

d

dt

(t

�

0

�

(t)) � 0 and

d

dt

((1� t)

�

0

�

(t)) � 0 hold

on this interval.

These two 
onditions on
e put together entail � is ne
essarily log-
on
ave

(i.e. ln� is a 
on
ave fun
tion or

d

2

dt

2

(ln �(t)) � 0). Furthermore, it is enough to


he
k

d

dt

(t

�

0

�

(t)) � 0 for fun
tions symmetri
 around

1

2

.

Proof. We �rst rewrite

^

�

0

(k) as

P

i<j

(�

i

� �

j

)

�

�(e

j

(k))�

0

(e

i

(k))

L

i

�

�(e

i

(k))�

0

(e

j

(k))

L

j

�

(

P

j

�(e

j

(k)))

2

: (5)

We assume for instan
e that the angles (�

i

) of the segment in the pen
il around

k are nonde
reasing. We must thus prove

^

�

0

(k) is nonnegative, whatever is the


urve under examination. Sin
e some 
urves have points with exa
tly two max-

imal segments going through, Eq. (5) may be redu
ed to one pair. It is thus

ne
essary to show that ea
h term of this sum is nonnegative. It is also a suÆ-


ient 
ondition. Otherwise said, we have to prove for any i < j,

8k;m

j

< k < n

i

;

�(e

j

(k))�

0

(e

i

(k))

L

i

�

�(e

i

(k))�

0

(e

j

(k))

L

j

� 0: (6)



Let R

ij

= n

i

�m

j

be the size of the 
ommon part of both segments. Setting

t =

k�m

j

R

ij

, we de�ne two analogs of the e

entri
ities e

i

(k) and e

j

(k) as �

i

(t) =

e

i

(k) = 1�

R

ij

L

i

(1� t) and �

j

(t) = e

j

(k) =

R

ij

L

j

t. Eq. (6) is then equivalent to

8t 2℄0; 1[; �(�

j

(t))

�

0

(�

i

(t))

L

i

� �(�

i

(t))

�

0
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(t))

L

j

(7)

,

R

ij

L

i

�

0

�

(�

i

(t)) �

R

ij

L

j

�

0

�

(�

j

(t)) (8)

,

d

dt

(ln�(�

i

(t))) �

d

dt

(ln�(�

j

(t))) (9)

It is easy to see that �

i

(t) > t > �

j

(t) whi
h gives the idea to break Eq. (9) in

two parts as follows, for all t 2℄0; 1[:

d

dt

(ln�(�

i

(t))) �

d

dt

(ln�(t)) and

d

dt

(ln�(t)) �

d

dt

(ln �(�

j

(t))) (10)

Eq. (10) 
learly implies Eq. (9), but the 
onverse is also true by letting L

i

or L

j

tend toward R

ij

.

We fo
us on the right part of Eq. (10). Letting Æ =

R

ij

L

j

and f = ln�, we get

8Æ; 0 < Æ < 1;

d

dt

(f(t)) �

d

dt

(f(Æt)); otherwise said f

0

(t) � Æf

0

(Æt): (11)

We now show that Eq. (11) is equivalent to

d

dt

(tf

0

(t)) � 0: (12)

Indeed, integrating both terms of the last inequality between Æt and t shows

suÆ
ien
y. It is also ne
essary sin
e Eq. (11) 
an be rewritten with h = (1� Æ)t

as:

f

0

(t) � (1�

h

t

)f

0

(t� h) (13)

f

0

(t)� f

0

(t� h)

h

+

f

0

(t� h)

t

� 0 (14)

Getting the limit when h tends toward 0 and multiplying both sides by t give

tf

00

(t) + f

0

(t) � 0, whi
h is exa
tly Eq. (12).

We now fo
us on the left part of Eq. (10). Letting Æ

0

=

R

ij

L

i

and g(t) = f(1�t),

we get

8Æ

0

; 0 < Æ

0

< 1;

d

dt

(f(1� Æ
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(1� t))) �

d

dt

(f(t)); (15)

with u = 1� t; we have �

d

du
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0
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du
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From the pre
eding paragraph, we dedu
e that

d

du

(ug

0

(u)) � 0. Sin
e g

0

(u) =

�f

0

(1� u), we get

d

dt

((1� t)f

0

(t)) � 0; (18)

whi
h 
on
ludes the proof. ut


