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Abstrat. This paper presents a omparative evaluation of tangent es-

timators based on digital line reognition on digital urves. The om-

parison is arried out with a omprehensive set of riteria: auray on

smooth or polygonal shapes, behaviour on onvex/onave parts, om-

putation time, isotropy, aymptoti onvergene. We further propose a

new estimator mixing the qualities of existing ones and outperforming

them on most mentioned points.

1 Introdution

In this paper, we address the problem of tangent estimation along ontours of

digitized 2D objets. Tangent estimation has many appliations in disrete ge-

ometry. For instane, the length of a digital ontour is aurately estimated from

tangents by integration [3, 9℄. Derivating the orientation of the tangent provides

an estimation of the urvature [9, 11, 12℄. The previous geometri parameters

are used in lassial pattern reognition appliations. They also de�ne the in-

ternal energies of disrete deformable models [7℄. When rendering 3D digitized

objets, the normal vetor �eld an be estimated from tangent diretions along

slie ontours [8, 9℄.

When trying to estimate geometri properties of digitized objets, we fae

the issue that in�nitely many shapes have the same digitization: there is no good

approximation sine there is no referene shape. Other hypotheses are thus re-

quired. The ommon assumption is that the original ontinuous objet has some

\natural" properties suh as: ompatness (not a fratal), bounded urvature,

sometimes pieewise linear geometry (i.e. polygon). Therefore we restrit the

lass of shapes we are interested in. Disrete boundaries will ome from the dig-

itization of ontinuous shapes omposed of polygonal parts and of smooth parts

with bounded urvature.

Many tangent estimators are based on a �xed-size window of urve points

around the point of interest [1, 9, 10, 12℄. However these methods annot onverge

asymptotially to the value on the ontinuous shape beause the omputation

sale is not adapted to the loal shape geometry. This is why we take into aount

in this omparative analysis only estimators based on digital straight segment

extration whih use an adaptative window size [6, 8, 11℄.

In Setion 2, we reall the existing de�nitions of disrete tangents and om-

pare qualitatively their advantages and drawbaks. We then propose in Setion 3



a new tangent estimator, alled �-MST, that takes the best out of the existing

ones. This estimator is based on the set of maximal digital straight segments

going through the point of interest. We prove it has two interesting properties:

it identi�es onvex and onave parts of the shape and behaves aordingly, its

omputational omplexity is equivalent to the other existing estimators both lo-

ally and globally for the whole urve. Setion 4 is devoted to an experimental

omparative evaluation of the tangent estimators. We have heked the following

points: tangent estimation on smooth and straight parts of the shape, sharp or-

ner reognition, isotropy, mean and maximal asymptotial error with di�erent

shapes. The �-MST appears to have the best behaviour in most pratial ases.

2 Estimating tangent with digital straight segments

We restrit our study to the geometry of 4-onneted digital urves. Indeed,

a digital objet is a set of pixels and its boundary when seen as a olletion

of pointels and linels is a 4-onneted urve. Besides this work may easily be

adapted to 8-onneted urves. We introdue some notations to get homogeneous

de�nitions of existing tangent estimators based on digital straight lines. In the

remaining of the paper, the digital urve is denoted by C. Its points (C

k

) are

assumed to be indexed from 0 to N � 1. A set of suessive points of C ordered

inreasingly from index i to j will be onveniently denoted by C

i;j

.

2.1 Standard line, digital straight segment, maximal segments

De�nition 1. The set of points (x; y) of the digital plane verifying � � ax�by �

� + jaj + jbj, with a, b and � integer numbers, is alled the standard line with

slope a=b and shift �.

The standard lines are the 4-onneted disrete lines. As we will see later, all

disrete tangents are de�ned as partiular onneted subset of standard lines

inluded in 4-onneted digital urves.

Sine the tangent is a loal property of the urve, we an always assume

that we look at a restrited part of C, where the indies are totally ordered (the

urve an be re-indexed di�erently so that its indies are totally ordered on the

subpart of interest). The following de�nition is thus valid.

De�nition 2. We say that a set of suessive points C

i;j

of the digital urve C

is a digital straight segment (DSS) i� there exists a standard line (a; b; �) on-

taining them. The prediate C

i;j

is a DSS is denoted by S(i; j). When S(i; j), we

denote by D(i; j) the harateristis assoiated with the digital straight segment

[4℄: the harateristis (a; b; �) of the standard line ontaining all the points C

i;j

,

the end points C

i

and C

j

, the prinipal upper and lower leaning points U

m

, U

M

,

L

m

, L

M

.

The �rst index j, i � j, suh that S(i; j) and :S(i; j + 1) is alled the front

of i. The map assoiating any i to its front is denoted by F . Symmetrially, the



�rst index i suh that S(i; j) and :S(i � 1; j) is alled the bak of j and the

orresponding mapping is denoted by B.

The de�nition of maximal segments will be entral for estimating tangents.

They form the longest possible DSS in the urve. They are used for polygonizing

the urve into the minimum number of segments [6℄.

De�nition 3. Any set of points C

i;j

is alled a maximal segment i� any of

the following equivalent haraterizations holds: (1) S(i; j) and :S(i; j +1) and

:S(i� 1; j), (2) B(j) = i and F (i) = j, (3) 9k; i = B(k) and j = F (B(k)), (4)

9k

0

; i = B(F (k

0

)) and j = F (k

0

).

2.2 Disrete tangents

Based on loal DSS reognition, several tangent estimators at a digital urve

point have been proposed. Their quality is to adapt the omputation window to

the loal shape of the urve. Exat tangent estimation for digitizations of straight

lines an thus be ahieved. They all try to make the right balane between longest

and most entered DSS around the point of interest.

De�nition 4. The following DSS may be de�ned around any point C

k

of the

digital urve C. They orrespond to the notion of disrete tangent (see Fig. 1).

{ The DSS C

k�l;k+l

with S(k � l; k + l) and :S(k � l � 1; k + l + 1) is alled

the symmetri tangent (ST) at C

k

[8℄.

{ The maximal segment with biggest indies that inludes the symmetri tan-

gent at C

k

is alled the Feshet-Tougne tangent (FTT) at C

k

[6℄.

{ The extended tangent (ET) at C

k

inludes the symmetri tangent C

k�l;k+l

but may be extended in the two following ases: (i) if S(k�l; k+l+1)^:S(k�

l� 1; k+ l) then it is extended forward as the maximal segment C

k�l;F (k�l)

,

(ii) if S(k � l � 1; k + l) ^ :S(k � l; k + l + 1) then it is extended bakward

as the maximal segment C

B(k+l);k+l

.

{ The forward half-tangent at C

k

is the DSS C

k;F (k)

and the bakward half-

tangent at C

k

is the DSS C

B(k);k

. The median half-tangent (HT) at C

k

is

the arithmetial line median to the two half-tangents.

Any DSS de�nes an angle between its arrying standard line and the x-axis (in

[0; 2�[ sine a DSS is oriented). This angle will be alled later on the diretion

of the DSS and denoted by the symbol �.

The preeding disrete tangent de�nitions, exept for the FTT, are inde-

pendent of the orientation hosen for the urve (Fig. 1de). ET an be seen as

an unambiguous version of FTT. Both FTT and ET are loal longest DSS, to

the expense of a loss of loalization around the point. FTT and ET tend to

polygonalize the digital urve even for underlying smooth shapes.

On the other hand, ST and HT have a very good loalization around the

point (perfetly entered for ST). However they both may have a bad behavior

on even very regular shapes (e.g. at the points where a irle with integer radii
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Fig. 1. Illustration of disrete tangents. (a) ST. (b) ET = FTT (here). () forward and

bakward HT. Sub�gures d-g show spei� problem raised by FTT and ST and solved

by ET: (de) balaned tangent for ET and ST versus arbitrarily unbalaned tangent for

FTT, (fg) false onavity deteted by ST versus orret straight line for ET and FTT.

touhes the axes). They may also not loate aurately onvex or onave parts

of the urve (Fig. 1fg). Note HT is also used for omputing the urvature [2℄.

It is thus not lear whih de�nition of disrete tangent is the best suited

to a given appliation. A omparative evaluation of all tangent de�nitions is

thus neessary to antiipate their behavior for given shapes and appliations.

This evaluation is made in Setion 4. Before that, we onstrut a new tangent

estimator whih aims at mixing the qualities of the other ones: related to maxi-

mal segments as FTT and ET; omputation window idential to HT; signi�ant

position of the point wrt the DSS surrounding it as ST; unambiguous de�nition.

3 Tangent estimation based on maximal segments

We de�ne a new tangent estimator that depends on the set of maximal segments

that goes through a point of the digital urve. This set is alled the penil of

maximal segments around the point of interest. As noted by Feshet and Tougne

[6℄, several suessive points may have the same penil. Therefore the tangent

estimator takes also into aount the position of the point within the penil. More

spei�ally, the point has a given eentriity wrt eah maximal segments. The

tangent diretion is estimated by a ombination of the diretion of eah maximal

segment weighted by the eentriity. In the following subsetions, we formalize

the new tangent estimator, we then show it preserves onvexity/onavity with

minor restritions and we expliit lastly how to ompute it in optimal time.

3.1 Eentriity, maximal segment tangent estimator

We index all the maximal segments of the urve by inreasing indies: M

i

=

C

m

i

;n

i

with F (m

i

) = n

i

and B(n

i

) = m

i

. From haraterizations (3) and (4) of



the de�nition of maximal segment (De�nition 3), any DSS C

i;j

and hene any

point belongs to at least two maximal segments C

B(j);F (B(j))

and C

B(F (i));F (i)

.

Therefore, the penil of maximal segments P(k) = fM

i

; k 2 M

i

g around any

point C

k

is never empty. We denote by �

i

the diretion of the DSS M

i

. In the

remaining of the paper, � is a mapping from [0; 1℄ to R

+

with �(0) = �(1) = 0

and � > 0 elsewhere.

The eentriity of C

k

wrt a maximal segment M

i

is de�ned as

e

i

(k) =

(

kC

k

�C

m

i

k

1

L

i

=

k�m

i

L

i

if i 2 P(k)

0 otherwise

; with L

i

= kC

n

i

� C

m

i

k

1

: (1)

De�nition 5. The �-maximal segment tangent diretion at point C

k

(�-MST)

is de�ned as

^

�(k) =

P

i2P(k)

�(e

i

(k))�

i

P

i2P(k)

�(e

i

(k))

=

P

i

�(e

i

(k))�

i

P

i

�(e

i

(k))

: (2)

Considering the properties of the eentriity and the non-emptyness of penils,

this value is always de�ned and may be omputed loally.

The preeding notion is extended to any real value k in [0; N [. It is enough to

onsider k as the urvilinear parameterization of the 4-onneted ontour. Any

non-integer value of k orresponds to a real point on the straight line linking C

bk

and C

dke

. When � is ontinuous, the angle

^

�(k) is ontinuous too. In appendix,

we show how to derive length and urvature estimators from it.

3.2 Loal onvexity or onavity; haraterization of �

Feshet proposes to use maximal segments for deomposing the urve into onvex

and onave parts [5℄. The following de�nition shares the same idea.

De�nition 6. The digital urve C is oriented ounterlokwise wrt the disrete

objet it bounds. C is loally onvex (resp. onave) at point C

k

i� the angles (�

i

)

of the sorted segments of P(k) is an nondereasing sequene (resp. noninreasing

sequene). (Angles are brought bak in ℄� �; �[ relatively to the �rst one.)

We say that a tangent estimator to a digital urve satis�es the onvex-

ity/onavity property i� the estimated tangent diretion is nondereasing (resp.

noninreasing) on every onneted subset where the urve is loally onvex (resp.

onave). This property holds for ET and FTT but does not hold for ST and HT

(e.g. see Fig. 1). For �-MST, it depends on the funtion � as indiated below.

Theorem 1. If � is di�erentiable on ℄0; 1[, then the �-MST estimator satis�es

the onvexity/onavity property i�

d

dt

(t

�

0

�

(t)) � 0 and

d

dt

((1� t)

�

0

�

(t)) � 0 hold

on this interval.

The proof is given in appendix. It is easy to hek that funtions with a

bell shape satisfy this onstraint (e.g. funtions based on binomials). This is for

instane the ase for the C

2

funtion 64(�x

6

+ 3x

5

� 3x

4

+ x

3

) or for the C

1



funtion exp(4�

1

x

�

1

1�x

) extended by zeroes. One may also �nd funtions not

di�erentiable everywhere whih satis�es the onvexity/onavity. Among them,

we an quote the triangle funtion with a peak at

1

2

.

3.3 Complexity issues

Another interesting riterion for hoosing a tangent estimation is its omputa-

tional ost. Feshet and Tougne [6℄ showed an algorithm that omputes the FTT

to all points of a urve in a time linear with the number of points. We show here

that all maximal segments of a urve an be omputed with the same omplexity.

The �-MST to all points of a urve is thus quikly omputed.

Given a maximal segment M

k

= C

m

k

;n

k

, its next maximal segment an be

de�ned as C

B(n

k

+1);F (B(n

k

+1))

. It is the maximal segment ontaining the point

n

k

+1 and obtained from M

k

with a minimal number of operations (adding and

removing a point). The following algorithm omputes it:

Compute next maximal segment (M

k

= C

m

k

;n

k

)

first m

k

+ 1 last n

k

+ 1

while :S(first; last) first first+ 1

while S(first; last) last last+ 1

return M

k+1

= C

first;last�1

Its priniple is to remove points at the bakward extremity of M

k

until it

beomes possible to extend the resulting segment at the other end. Of ourse,

the harateristis of the intermediate DSS must be updated at eah removal or

addition of a point. The time omplexity of the preeding funtion depends on

the omplexity of the updates, whih are proved to be O(1) by:

Theorem 2. Assume S(i; j), and assume the harateristis D(i; j) of the or-

responding DSS are known. Then,

1. (Addition of point C

i

or C

j

) deiding S(i; j + 1) or S(i � 1; j) are O(1)

operations and, when appropriate, omputing D(i; j + 1) or D(i � 1; j) are

O(1) operations too (proved by Debled-Renesson and R�eveill�es [4℄);

2. (Removal of point C

i

or C

j

) omputing D(i + 1; j) or D(i; j � 1) are O(1)

operations (see below).

An immediate orollary is that all the maximal segments of a given losed

digital urve are omputed with a linear omplexity (eah point of the urve is

added one to a segment and removed one). Remark that the omplexity of

omputing the penil P(k) around C

k

depends on the loal shape of the urve

(O(F (k)�B(k))). We now explain briey how to update a DSS in onstant time

when removing a point.

Let C

i;j

be a DSS of harateristis D(i; j) = (a; b; �; U

m

; U

M

; L

m

; L

M

).

Without any loss in generality this digital segment belongs to the �rst quadrant.

In the following, we denote by (a

0

; b

0

; �

0

; U

0

m

; U

0

M

; L

0

m

; L

0

M

) the harateristis

D(i+1; j) of the DSS C

i+1;j

, whih we wish to ompute. Our algorithm is based
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Fig. 2. Removal of a point from a DSS. (a) DSS C

i;j

. The point C

i

is an upper leaning

point and its removal will inrease the segment slope. (b) Rotation of the leaning lines

around the pivot points (in gray) during the addition/removal of C

i

. () DSS C

i+1;j

.

Its slope and the leaning points U

0

m

and L

0

M

have to be reomputed.

C

i

= U

m

^

���!

C

i

U

M

= (b; a) ^ L

m

= L

M

C

i

= L

m

^

���!

C

i

L

M

= (b; a) ^ U

m

= U

M

a

0

y

L

m

� (y

C

i

� 1) y

U

m

� (y

C

i

+ 1)

b

0

x

L

m

� (x

C

i

+ 1) x

U

m

� (x

C

i

� 1)

�

0

a

0

x

U

M

� b

0

y

U

M

a

0

x

U

m

� b

0

y

U

m

U

0

m

U

M

� (x

U

M

� x

C

i

� 1)=b

0

(b

0

; a

0

) U

m

U

0

M

U

M

U

m

+ ((y

C

j

� y

C

i

� 1)=a

0

� 1)(b

0

; a

0

)

L

0

m

L

m

L

M

� (y

L

M

� y

C

i

� 1)=a

0

(b

0

; a

0

)

L

0

M

L

m

+ ((x

C

j

� x

C

i

� 1)=b

0

� 1)(b

0

; a

0

) L

M

Table 1. Updates of D(i; j) when removing point C

i

.

on the observation that if the addition of the point C

i

to C

i+1;j

has hanged the

harateristis D(i+ 1; j), its removal from C

i;j

should do an inverse modi�a-

tion to D(i; j). After the examination of the inremental algorithm in [4℄, this

situation happens when C

i

is an upper or lower leaning point of the DSS C

i;j

.

Fig. 2 illustrates the ase where C

i

is an upper leaning point.

We detail here the update when C

i

= U

m

and

���!

C

i

U

M

= (b; a) and L

m

=

L

M

. Clearly, the addition of C

i

to C

i+1;j

has dereased the slope of the DSS.

Geometrially, it orresponds to a rotation of the upper leaning line around U

0

M

and of the lower leaning line around L

0

m

. The two leaning points U

M

and L

m

are thus left unhanged by the removal of C

i

. We an also easily state that the

point P = (x

C

i

+ 1; y

C

i

� 1) would have extended C

i+1;j

without modifying

its harateristis D(i + 1; j). The values (a

0

; b

0

; �

0

) are dedued from P . The

updating of U

m

and L

M

is a little more triky and exploits the property that

the vetor linking two suessive upper (or lower) leaning points is (b

0

; a

0

). The

omputation of the harateristis D(i+ 1; j) are sumed up in the �rst olumn

of Table 1. Its seond olumn orresponds to the ase where C

i

is a lower leaning

point and its removal dereases the slope.

4 Experimental evaluation

In this setion, we perform a quantitative evaluation of tangent estimators based

on DSS reognition. For the �-MST estimator the funtion � is the symmetri

triangle funtion with a peak at

1

2

. It �rst gives very good pratial results.

Seondly this funtion estimates the ontinuous underlying urve as a irular
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Fig. 3. Plots of the estimated tangent diretion as a funtion of the polar angle. The

shape is a irle of radius 10 with a sharp orner in the �rst quadrant. Solid lines

orrespond to expeted values, dashed lines to estimations with a grid step of 0.5,

dotted lines to estimations with a �ner grid step of 0.25.

ar when the penil of maximal segments is redued to two maximal segments.

In the omputer implementation, all tangent diretions are estimated wrt linels,

not points (i.e. geometri quantities are omputed at urvilinear absissa k +

1

2

and all DSS inludes k and k + 1).

We �rst ompare the behavior of tangent estimators on smooth and at parts

and on orners. The shape is a irle in three quadrants and a right angle in the

fourth (see \rsquare" in Table 2). Fig. 3 displays (a subset of) the estimations of

the tangent diretion. Estimators that satis�es the onvexity/onavity property,

i.e. ET and �-MST, reate a non-dereasing sequene of diretions. ST and HT

learly fail, espeially at points where the digital ontour meets a quadrant

hange. Most estimators behave orretly at orners. �-MST slightly smoothes

the orner at low resolution. The tendeny to polygonalize the urve of ET (and

thus FTT) appears learly on Fig. 3.

We then evaluate the anisotropy of the estimators with the experiment de-

sribed in Fig. 4. The �-MST is more isotropi than the others, with a steady

and low mean and maximal error.

We �nally examine the asymptoti behavior of the absolute error for di�erent

shapes on Table 2. Both �-MST and ET have an asymptoti onvergene in mean

and in maximum. It is however unlear whether the maximum error of ST and
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Fig. 4. Isotropy of tangent estimators measured with absolute error j

^

�(t)� �(t)j (thik

solid line: �-MST, thin solid line: HT, dashed line: ST, dotted line: ET). Left: mean of

absolute error. Right: Maximum of absolute error. For eah estimator, 100 experiments

are run on a irle of radius 50 with a enter arbitrarily shifted in its pixel. The absolute

error is drawn as a funtion of the polar angle and gathered by setors of

5

180

�.

HT onverges toward 0 or not for arbitrary shapes. Although the �-MST is

not always the best in mean at oarse resolution, it has the fastest asymptoti

onvergene in mean and in maximum whatever is the shape.

As a onlusion, we have ompared several tangent estimators based on DSS

reognition. After a �rst qualitative analysis, we have proposed a new estimator

whih takes the best out of the existing ones. We have heked that it satis�es the

onvexity/onavity property and we have shown how to ompute it eÆiently.

After experimental evaluation, the �-MST appears to be the most robust tangent

estimator and very often the most aurate. The results are summed up in the

following table.

tangent straight smooth orners onvexity isotropy mean maximal

estimator parts parts /onavity error error

�-MST + + = Yes

�

+ ++ ++

HT = +=� + No � + �

ET + = + Yes = + +

ST = +=� = No � + �

(*) For � funtions satisfying onditions of Theorem 1.
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A Curvature and elementary length estimators

When � is di�erentiable on ℄0; 1[, we derive a urvature estimator �̂(k) and a

elementary length estimator

^

l(k) at point C

k

from the tangent diretion

^

�(k) of

�-MST:

^

l(k) =

h

jos(

^

�(k))j+ jsin(

^

�(k))j

and �̂(k) =

d

^

�

dk

dk

ds

=

^

�

0

(k)

^

l(k)

; (3)

with

^

�

0

(k) =

P

j

�(e

j

(k))

P

i

�

0

(e

i

(k))

�

i

��

j

L

i

(

P

j

�(e

j

(k)))

2

and h is the grid step: (4)

The length of the urve an be estimated by simple integration of

^

l(k). Coeur-

jolly and Klette have reported that this method of length evaluation gives very

good results [3℄. The urvature estimation is ontinuous if the derivative of � is

ontinuous. First experiments show it is a very promising urvature estimator.

Further studies are urrently made to ompare its performane with existing

ones.

B Proof of Theorem 1

We show here a neessary and suÆient ondition for the � funtion to de�ne a

�-MST tangent estimator satisfying the onvexity/onavity property.

Theorem 1. If � is di�erentiable on ℄0; 1[, then the �-MST estimator satis�es

the onvexity/onavity property i�

d

dt

(t

�

0

�

(t)) � 0 and

d

dt

((1� t)

�

0

�

(t)) � 0 hold

on this interval.

These two onditions one put together entail � is neessarily log-onave

(i.e. ln� is a onave funtion or

d

2

dt

2

(ln �(t)) � 0). Furthermore, it is enough to

hek

d

dt

(t

�

0

�

(t)) � 0 for funtions symmetri around

1

2

.

Proof. We �rst rewrite

^

�

0

(k) as

P

i<j

(�

i

� �

j

)

�

�(e

j

(k))�

0

(e

i

(k))

L

i

�

�(e

i

(k))�

0

(e

j

(k))

L

j

�

(

P

j

�(e

j

(k)))

2

: (5)

We assume for instane that the angles (�

i

) of the segment in the penil around

k are nondereasing. We must thus prove

^

�

0

(k) is nonnegative, whatever is the

urve under examination. Sine some urves have points with exatly two max-

imal segments going through, Eq. (5) may be redued to one pair. It is thus

neessary to show that eah term of this sum is nonnegative. It is also a suÆ-

ient ondition. Otherwise said, we have to prove for any i < j,

8k;m

j

< k < n

i

;

�(e

j

(k))�

0

(e

i

(k))

L

i

�

�(e

i

(k))�

0

(e

j

(k))

L

j

� 0: (6)



Let R

ij

= n

i

�m

j

be the size of the ommon part of both segments. Setting

t =

k�m

j

R

ij

, we de�ne two analogs of the eentriities e

i

(k) and e

j

(k) as �

i

(t) =

e

i

(k) = 1�

R

ij

L

i

(1� t) and �

j

(t) = e

j

(k) =

R

ij

L

j

t. Eq. (6) is then equivalent to

8t 2℄0; 1[; �(�

j

(t))

�

0

(�

i

(t))

L

i

� �(�

i

(t))

�

0

(�

j

(t))

L

j

(7)

,

R

ij

L

i

�

0

�

(�

i

(t)) �

R

ij

L

j

�

0

�

(�

j

(t)) (8)

,

d

dt

(ln�(�

i

(t))) �

d

dt

(ln�(�

j

(t))) (9)

It is easy to see that �

i

(t) > t > �

j

(t) whih gives the idea to break Eq. (9) in

two parts as follows, for all t 2℄0; 1[:

d

dt

(ln�(�

i

(t))) �

d

dt

(ln�(t)) and

d

dt

(ln�(t)) �

d

dt

(ln �(�

j

(t))) (10)

Eq. (10) learly implies Eq. (9), but the onverse is also true by letting L

i

or L

j

tend toward R

ij

.

We fous on the right part of Eq. (10). Letting Æ =

R

ij

L

j

and f = ln�, we get

8Æ; 0 < Æ < 1;

d

dt

(f(t)) �

d

dt

(f(Æt)); otherwise said f

0

(t) � Æf

0

(Æt): (11)

We now show that Eq. (11) is equivalent to

d

dt

(tf

0

(t)) � 0: (12)

Indeed, integrating both terms of the last inequality between Æt and t shows

suÆieny. It is also neessary sine Eq. (11) an be rewritten with h = (1� Æ)t

as:

f

0

(t) � (1�

h

t

)f

0

(t� h) (13)

f

0

(t)� f

0

(t� h)

h

+

f

0

(t� h)

t

� 0 (14)

Getting the limit when h tends toward 0 and multiplying both sides by t give

tf

00

(t) + f

0

(t) � 0, whih is exatly Eq. (12).

We now fous on the left part of Eq. (10). Letting Æ

0

=

R

ij

L

i

and g(t) = f(1�t),

we get

8Æ

0

; 0 < Æ

0

< 1;

d

dt

(f(1� Æ

0

(1� t))) �

d

dt

(f(t)); (15)

with u = 1� t; we have �

d

du

(f(1� Æ

0

u)) � �

d

du

(f(1� u)); (16)

or

d

du

(g(u)) �

d

du

(g(Æ

0

u)); otherwise said g
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(u) � Æ

0

g

0

(Æ
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u): (17)



From the preeding paragraph, we dedue that

d

du

(ug

0

(u)) � 0. Sine g

0

(u) =

�f

0

(1� u), we get

d

dt

((1� t)f

0

(t)) � 0; (18)

whih onludes the proof. ut


