
Resolution Independent Deformable Model

Blinded for Submission

Blinded for Submission

E-mail: Blinded for Submission

Abstract

In this paper we propose a parametric deformable

model that automatically adapts its topology and that

recovers accurately image components with a complex-

ity independent from the resolution of input image. The

main idea is to equip the image space with a metric that

expands interesting features in the image depending on

their geometry.

1 Introduction

In the field of image analysis, recovering image com-
ponents is a difficult task. This turns out to be even
more challenging when objects exhibit large variations
of their shape and topology. Deformable models that
are able to handle that kind of situation can use only
little a priori knowledge concerning image components.
This generally imply heavy computational costs.

In the framework of parametric deformable mod-
els, most authors [5, 11, 12] propose to investigate
the intersections of the deformable model with a grid
that covers the image space. Special configurations of
these intersections characterize the self collisions of the
mesh. Local reconfigurations are then performed to
adapt the topology of the model according to its ge-
ometry. To take advantage of all image details, the
resolution of the grid should be the same as that of the
image. An other method [9] consists in constraining the
lengths of the edges of the model between two bounds.
Self-collisions are then detected when distances be-
tween non-neighbor vertices fall under a given thresh-
old. Topological consistency is recovered using local
operators that reconnect vertices consistently. Using
all image details requires edges to have the same size
as image pixels. The complexities of all these methods
are thus directly determined by the size of input data.

In the framework of level-set methods, boundaries
of objects are implicitly represented as the zero level
set of a function f [2, 3, 10, 16]. Usually f is sampled

over a regular grid that has the same resolution as the
input image. Then f is iteratively updated to make
its zero level-set approach image contours. Even with
optimization methods which reduce computations to a
narrow band around evolving boundaries [1, 14], the
complexity of these methods is determined by the res-
olution of the grid and hence by the resolution of the
input image.

In [6] a method is proposed to adapt the resolution
of a deformable model depending on its position and
orientation in the image. The main idea is to equip
the image space with a Riemannian metric that geo-
metrically expands parts of the image with interesting
features. Then, the length of edges is kept as uniform
as possible with this new metric. In this first attempt
the metric was manually given by a user. Our contribu-
tion is to propose an automated way of building metrics
directly from images. Accuracy of the reconstruction
is determined by the geometry of recovered image com-
ponents: vertices accumulate in highly curved parts of
the images and get sparser elsewhere. By this way the
number of vertices on the mesh is optimized and the
quality of shape representation is maintained. Properly
resampling input images does not affect the geometry
of image components, and the number of vertices is left
invariant. Furthermore, vertices are allowed to travel
faster in places with no image structure. The num-
ber of iterations and hence the time required to reach
convergence are thus reduced.

2 Deformable Model

2.1 General description

Our proposed deformable model follows the classi-
cal energy formulation of active contours [8]: it is the
discretization of a curve that is emdedded in the im-
age space. Each of its vertices undergoes forces that
regularize the shape of the curve, attract them toward
image features and possibly tailor the model behavior
[4, 15] for more specific purposes. In this paper, classi-
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cal parametric snakes are extended with the ability to
(i) dynamically and automatically change their topol-
ogy in accordance with their geometry and (ii) adapt
their resolution to take account of the geometrical com-
plexity of recovered image components.

2.2 Resolution adaptation

During the evolution of the model the vertex den-
sity along the curve is kept as regular as possible by
maintaining length constraints on edges:

δ ≤ LE(u, v) ≤ ζδ , (1)

where LE denotes the length of the line segment that
joins u and v. Parameter δ determines lengths of edges
and hence vertex density along the curve. Parameter
ζ determines the allowed ratio between maximum and
minimum edge lengths.

At every step of the evolution of the model, each
edge is checked. If its length is found to be less than δ
then it is contracted. In contrast, if its length exceeds
the ζδ threshold then it gets split.

Adaptive resolution is achieved by replacing the Eu-
clidean length estimator LE by a position-dependent
length estimator LR in (1). In places where LR under-
estimates distances, estimated lengths of edges tend
to fall under the δ threshold. As a consequence, edges
tend to contract and the resolution of the model locally
decreases. In contrast, the resolution of the model in-
creases in regions where LR overestimates distances.

More formally, Riemannian geometry provides us
with theoretical tools to build such a distance estima-
tor. In this framework, the length of an elementary dis-
placement ds that starts from point (x, y) is expressed
as:

‖ds‖2
R = t

ds ×G(x, y) × ds, (2)

where G associates a positive-definite symmetrical ma-
trix with each point of the space. The G mapping is
called a Riemannian metric. From (2) follow the defi-
nitions of the Riemannian length of a path as

LR(γ) =

∫ b

a

‖γ̇(t)‖ dt , (3)

and of the Riemannian distance between two points u
and v as

dR(u, v) = inf
γ∈C

LR(γ) , (4)

where C contains all the paths that join u and v. It is
thus easily seen that defining the G mapping is enough
to completely define our new length estimator LR. How
this mapping is built from images to enhance and speed
up shape recovery is discussed in Sect. 3.

2.3 Topology adaptation

During the evolution of the model, care must be
taken to ensure that its interior and exterior are al-
ways well defined: self-collisions are detected and the
topology of the model is updated accordingly.

Since all edges have their length lower than ζδ, a
vertex that crosses over an edge (u, v) must approach
either u or v closer than 1

2 (ζδ + dmax), where dmax is
the largest distance covered by a vertex during one it-
eration. Self-intersections are thus detected by looking
for pairs of non-neighbor vertices (u, v) for which

dE(u, v) ≤ 1

2
(ζδ + dmax) . (5)

It is easily shown that this detection algorithm remains
valid when dE is replaced with a dR distance estimator
as described in Sect. 2.2. With a naive implementation,
the complexity of this method is quadratic. However,
it may be reduced to O(n log n) by storing vertex po-
sitions in an appropriate quadtree structure.

Detected self-intersections are solved using local op-
erators that restore a consistent topology of the mesh
by properly reconnecting the parts of the curve in-
volved in the collision.

2.4 Dynamics

Theoretically, in a space equipped with a Rieman-
nian metric the position x of a vertex that undergoes
a force F follows equation

mẍk = Fk −
∑

i,j

Γk
ij ẋiẋj , (6)

where the Γk
ij coefficients are known as the Christoffel’s

symbols associated with the metric. However, the last
term of (6) has no influence once the model has reached
its rest position and is second order in ẋ. Therefore it is
neglected and we get back the classical Newton’s laws
of motions.

3 Tailoring Metrics to Images

3.1 Geometrical interpretation

For any location (x, y) in the image space, the met-
ric G(x, y) is a positive-definite symmetrical matrix.
Thus, in a orthonormal (for the Euclidean norm) base
(v1,v2) of eigenvectors, G(x, y) is diagonal with co-
efficients (µ1, µ2). Hence, the length of an elemen-
tary displacement ds = x1v1 + x2v2 is expressed as
‖ds‖2

R = µ1x
2
1 + µ2x

2
2. This shows that changing the
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Euclidean metric with a Riemannian metric locally ex-
pands or contracts the space along v1 and v2 with ra-
tios 1/

√
µ1 and 1/

√
µ2. The next paragraph explains

how these eigenvectors and eigenvalues are computed
from input images to enhance shape representation and
to achieve independence from image resolution.

3.2 Required properties

In a place with no contour, vertex density is kept
as low as possible. This reduces the cost of an itera-
tion. Furthermore, this allows larger displacements of
vertices at each iteration. As a consequence, the num-
ber of iterations required for the model to converge is
reduced too.

In the neighborhood of image structures the de-
formable curve either follows image contours or crosses
over it. In the former case, vertex density increases
with both the strength and curvature of the contour.
In the latter case, more degrees of freedom are given to
the deformable model to allow it to get aligned more
easily with the contour. In this case, vertex density is
an increasing function of the strength of the contour.

Of course it is not possible to let edge length fall
to 0 or increase too much. Therefore, eigenvalues of
the metric are constrained between 1 and µm, and the
length of edges remains between δ/

√
µm and ζδ.

The previous statements entail the following choice
for the metric:

{

v1 = n and µ1 = φ(s)
v2 = n

⊥ and µ2 = ψ(κ, s)
, (7)

where n is a normal to the contour, and s and κ respec-
tively denote the strength and curvature of the contour.
Functions φ and ψ are defined as:

φ(s) =

[

s2

s2m
µm

]

1, µm

ψ(κ, s) =

[

κ2

κ2
m

φ(s)

]

1, φ(s)

(8)

where [·]a,b constrains the values of its argument be-
tween bounds a and b. The parameter sm determines
the minimum strength for which a contour is considered
as reliable. By this way, when the deformable model
crosses over a contour, the length of its edges progres-
sively decreases from δ for a weak contour to δ/

√
µm for

a contour with a strength greater than sm. For a given
strength of the contour, the κm parameter determines
the curvature for which maximal resolution is reached.
When the deformable curve runs along a straight re-
liable contour, the length of its edges is δ. When the
curvature of the contour increases, the length of edges
progressively decreases to δ/

√
µm for contours with a

curvature greater than κm.
The way parameters s and κ are computed directly

from images is discussed in the next paragraph.
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Figure 1. Estimated curvature (9) as a function
of exact curvature. Solid line: ideal estimator.

3.3 Building metrics from images

The gradient structure tensor is a classical tool to in-
vestigate the coherence of image gradient over a neigh-
borhood. It is defined as Jρ,σ = gρ ∗ (∇Iσ × t∇Iσ),
where gρ is the Gaussian filter with standard devia-
tion ρ and Iσ denotes the input image smoothed with a
Gaussian filter gσ. At each point in the image, Jρ,σ is a
positive-definite symmetrical matrix with eigendecom-
position {(w1, ξ1), (w2, ξ2)}. Assuming that ξ2 ≤ ξ1,
the eigenvector w1 corresponds to the average direc-
tion of image gradient in a neighborhood, and w2 is
tangent to image contours. Eigenvalues ξ1 and ξ2 cor-
respond to the contributions of the gradient along these
directions. They are used to assess the strength and
curvature of contours of image components:

s2 ≃ ξ1 + ξ2 and κ2 ≃ 1

ρ2
× ξ2
ξ1

. (9)

The estimator s is equivalent to the average norm of
image gradient within a neighborhood. This curvature
estimator κ is shown to be exact along the y-axis of the
ideal images Iα(x, y) = y−αx2. Moreover, it was tested
on noisy images of ellipsoids with known curvature (see
Fig 1). This approximation provides satisfying results.
However, more elaborate estimators [13] could be used
instead, but they are computationaly more expensive.

4 Experiments

Adaptive vertex density is illustrated in Fig. 2 (left).
As expected, changing the metric increases vertex den-
sity along highly curved parts of image components,
which is also visible in Fig. 3 (left and center).

Independence with respect to the resolution of in-
put images is shown in Fig. 2 (right). Our model was
tested on images of objects sampled at different rates
(see Fig. 3). As expected, the number of vertices is kept
independent from image resolution, as far the sampling

3



 0

 0.025

 0.05

 0.075

 0.1

 0  0.25  0.5  0.75  1  1.25  1.5

100x100

200x200

300x300
 0

 50

 100

 150

 200

 0  100  200  300  400

Figure 2. Left: Edge length as a function of

the radius of curvature and for different reso

lutions of the input images. Solid lines corre
spond to the theoretical bounds. Right: final

number of vertices on the curve depending
on the resolution of input image.

Figure 3. Left, center: reconstruction of iden

tical objects sampled at resolutions 40×40
and 100×100. Right: evolution of the de

formable model every 50 iterations.

rate ensures a proper representation of the highest fre-
quencies in the input signal.

Fig. 3 demonstrates the ability of our model to dy-
namically change its topology. Moreover, it shows that
the curve travels faster in parts of the image without
feature and slows down and refines when approaching
object boundaries. This is a consequence of expanding
the space in the vicinity of image contours only.

5 Conclusion

We presented a deformable model that adapts its
resolution according to the geometrical complexity of
image features. It is therefore able to recover finest
details in images with a complexity almost independent
from the size of input data. All the material used in
our presented deformable model has a straightforward
extension to higher dimensions [7]. Further work will
therefore extend our model for 3D image segmentation.
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