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Abstract

Due to their general and robust formulation deformable

models offer a very appealing approach to 3D image seg-

mentation. However there is a trade-off between model

genericity, model accuracy and computational efficiency. In

general, fully generic models require a uniform sampling of

either the space or their mesh. The segmentation accuracy

is thus a global parameter. Recovering small image features

results in heavy computational costs whereas generally only

restricted parts of images require a high segmentation ac-

curacy.

This paper presents a highly deformable model that both

handles fully automated topology changes and adapts its

resolution locally according to the geometry of image fea-

tures. The main idea is to replace the Euclidean metric with

a Riemannian metric that expands interesting parts of the

image. Then, a regular sampling is maintained with this

new metric. This allows to automatically handle topology

changes while increasing the model resolution locally ac-

cording to the geometry of image components. By this way

high quality segmentation is achieved with reduced compu-

tational costs.

1. Introduction

Deformable models are extensively used in the field of

image analysis. Their formulation provides a very robust

and general framework that remains available in a wide

range of applications and many variants have been tailored

to solve efficiently given problems. Since they often use a

priori knowledge on the shape and the topology of recov-

ered objects these models remain very application specific

and are not well suited to general object reconstruction.

In contrast, various models achieve extraction of image

components with arbitrary complex topology. That kind

of models is of great interest in the field of 3D biomedi-

cal image analysis where objects have complex and some-

times unexpected shapes, and where accurate initialization

of models is difficult. As a counterpart to their generic-

ity these solutions come in general with important increases

of the number of shape parameters and hence of time and

space complexity. Of course segmentation is expected to

recover the finest image details. Time and space complexity

is thus fully determined by the image resolution and com-

putational costs become prohibitive due to the steady im-

provements of acquisition devices.

This emphasizes the need for multi-scale approaches.

These methods should be able to recover accurately ob-

jects with arbitrary topology while keeping a restricted set

of shape parameters. The contribution of this paper is to

present an attempt in this direction. The model we propose

is an extension of the model first presented in [7]. It is a

closed oriented triangular mesh designed to reconstruct ob-

jects with an arbitrary topology from large 3D images. Our

model changes its topology in a fully automated way and

has the ability to adapt its resolution according to the ge-

ometry of image features. The computational costs of the

segmentation step and of any subsequent operation are thus

reduced, while object shapes remain accurately represented.

In addition, our model comes with the usual advantages of

parametric models, namely intuitive user interaction as well

as easy introduction of additional constraints through the

definition of new forces [3, 15]. Moreover, coarse to fine

approaches remain available.

The first part of the paper recalls significant previous

works that involve topology and resolution adaptation in

the context of 3D image segmentation. The second part

describes our model and explains how topological changes

are detected and handled and how adaptive resolution is

achieved by changing metrics. The third part shows how

these metrics are computed directly from images. Experi-

mental results are presented and discussed in the last part of

the paper.



2. Previous works

2.1. Topology adaptation

The various models that achieve adaptive topology are

usually classified in two categories.

In the parametric approach, objects are represented ex-

plicitly as polygonal meshes. Topological changes are per-

formed by applying local reconfigurations to the model

mesh [4, 6, 7] or by computing a new topologically consis-

tent parameterization of the model [9]. The main difficulty

consists in detecting self-collisions of the model. McIner-

ney and Terzopoulos [9] investigate the intersections of the

polygonal mesh with a simplicial grid that covers the im-

age. Then they detect special configurations that character-

ize self intersections of the model. Lachaud and Montanvert

[7] keep the sampling of their triangulated surface regular.

This makes it possible to detect self collisions of the de-

formable model by checking distances between non neigh-

bor vertices. With an adapted data structure the complexity

of this algorithm is O(n logn) where n denotes the number

of vertices used to sample the surface.

In the level-set approach [2, 8] object boundaries are no

longer described explicitly: they are represented as the zero

level-set of a mapping f defined over the image space. The

boundary evolution is translated into evolution equations in-

volving f which are solved iteratively to make the model

approach image contours. With these methods topologi-

cal changes do not require additional procedures since they

are embedded in the evolution of f . Theoretically f has to

be computed on the whole image space, which is compu-

tationally expensive. These costs are significantly reduced

by updating only in narrow band around the zero level of f

[1]. This band must however be reset periodically and the

method remains costly.

2.2. Adaptive resolution

This section recalls different extensions to the defor-

mable models described in Sect. 2.1 that were proposed to

achieve an adaptive resolution.

In the framework of level-set the mapping f is usually

computed on a regular grid. In the same way, the grid used

by McInerney and Terzopoulos is also regular. To recover

the finest image features the grid should have the same res-

olution as the image. Similarly in [7] automated topological

changes are made possible through a uniform sampling of

the model triangulated surface. The finest image structures

can only be detected if all the mesh triangles have the same

dimension as image voxels. All these methods have there-

fore heavy computational costs when working with high

resolution images.

One way to reduce computation times is to adopt a

“coarse to fine” approach. Deformable models are initial-

ized with a coarse resolution and then deformed toward

their energy minimum. Then they are globally refined and

their energy is minimized again. This process is repeated

until the expected accuracy is reached. With this method

the costs of the first deformations are significantly reduced.

However algorithms remain expensive when the requested

accuracy increases. In addition, it is not always possible to

recover the image details that are lost or ignored during the

first steps of the algorithm.

In the context of parametric models, an other approach is

to adapt the vertex density on the polygonal mesh depend-

ing on the geometric properties of objects. Delingette [5]

propose to adapt locally the resolution of simplex meshes

according to the model curvature. This is achieved in two

ways. First, an internal force that attracts vertices towards

highly curved parts of the mesh is introduced. Secondly,

faces of the model are checked periodically, and those with

a curvature higher than a given threshold are refined. The

vertex number is optimized without spoiling segmentation

quality. However, automated topological changes of sim-

plex meshes are possible only in the context of 2-D im-

ages [10]: volume image reconstruction requires the help

of a supervisor. In addition, mesh refinement is governed

by quantities that are computed from the deformable model

itself and are thus clearly a posteriori information. As

a consequence, vertex number optimization should only

be performed once an accurate segmentation has been ob-

tained. This requires a uniform high resolution of the model

mesh and implies important computational costs. At last

Delingette explains [5] that this method does not perform

well on noisy images, since outliers and hence noise tend to

be refined.

3. Model description

3.1. Resolution adaptation

As the model presented in [7], our model keeps a regu-

lar sampling. This is achieved by maintaining length con-

straints on the deformable surface edges. Namely, for two

neighbor vertices u and v on the mesh we make sure that

Æ � d

E

(u; v) � �Æ (1)

where d
E

(u; v) denotes the Euclidean distance between u

and v. The parameter Æ determines the global resolution of

the model. The parameter � determines the ratio between

the length of the longest and shortest edges allowed for the

model. After each deformation of the model, each edge is

checked. If one of the constraints no longer holds then the

investigated edge is either split or contracted as shown on

Fig 1.



(a) (b) (c)

Figure 1. Operators used to restore the con
straint on edge lengths. (a) edge inversion,

(b) vertex creation, () vertex merge. Trans
formation in () must be handled in a special

way when the two merged vertices share a

common neighbour (see Fig. 3.b).

In [12, 13], the authors consider their mesh as a spring

mass system. They achieve adaptive resolution by locally

changing the stiffness of the springs according to the fea-

tures found in the image. Instead, we propose to leave

the mechanical properties of the system unchanged and to

change the way distances are estimated.

Namely, the Euclidean distance d
E

is replaced by a Rie-

mannian distance d
R

that geometrically expands area of in-

terest. Informally speaking, d
R

is chosen to overestimate

distances in the vicinity of interesting image features. As a

consequence, the lengths of the model edges tend to over-

run the threshold �Æ. Therefore edges tend to split (Fig 1.a)

and the model mesh gets locally finer. Symmetrically, d
R

underestimates distances in areas with no significant image

information. Therefore, edge lengths decrease under the

threshold Æ and are contracted (Fig 1.c). This results in a

locally coarser resolution.

More precisely, a Riemannian metric is a way to measure

elementary displacements depending on both their origin

and their orientation. The length of a displacement ds =

(dx; dy; dz) starting form (x; y; z) is given by kdsk2
E

=

dx

2

+ dy

2

+ dz

2 in a Euclidean space. In a Riemannian

space, it takes the more general form:

kdsk

2

R

=

T

ds�G(x; y; z)� ds (2)

where G(x; y; z) denotes a symmetrical positive-definite

matrix, namely a dot-product. The mapping G should be

C

1 and is called a Riemannian metric. The geometrical in-

terpretation of metric changes as well as the way metrics are

built from images are discussed in detail in Sect. 4.

Theoretically, computing exact distances between two

vertices u and v requires the minimization of the functional

L() =

Z

1

0

k

0

(t)k

R

dt

over set of the paths that join u and v. Namely, it consists in

finding and measuring a shortest path (a geodesic) between

u and v. However, on the model mesh, neighbor vertices are

close from each other so that G may be considered as con-

stant along edges. With this assumption the shortest path

b

b

b

��Æ

��Æ

��Æ

a

b



b

u

Figure 2. Collision detection method. A ver

tex u cannot cross over a face (a; b; ) of the
deformable model unless it enters one of the

sphere centered in a, b or  with radius ��Æ.

between u and v is a straight line the length of which is

easily and efficiently computed.

3.2. Topology adaptation

In the Euclidean context, mesh regularity allows to de-

tect self collisions of the model [7], and hence to determine

when topological changes must be performed and how they

must be handled. The main idea is that a vertex u cannot

cross over a face (a; b; )without entering one of the spheres

with well chosen radius �
E

Æ� centered in a, b or  (Fig. 2).

After each iteration of the model, the pairs of vertices (u;w)

such that

d

E

(u;w) � �

E

�Æ: (3)

are detected and the transformation described in Fig. 3.a is

performed. It may be shown that choosing �
E

such that

r

1�

1

�

+

1

�

2

+

v

max

2�Æ

� �

E

(4)

is enough to ensure that no vertex may cross over a face

without being detected. In (4) the parameter v
max

denotes

the length of the largest vertex displacement allowed dur-

ing an iteration. If v
max

is too small, too many iterations

are needed for the model to reach its equilibrium position.

In contrast, if v
max

is too large, collisions are detected and

tunnels are created between too distant parts of the model.

As a consequence, thin objects cannot be recovered prop-

erly. A convenient trade-off is v
max

=

1

2

Æ. By this way

the minimum possible thickness corresponds to edge length

and computation times remain reasonable.

With a naive algorithm, finding vertex pairs that do not

follow (3) would require a complexity of O(n2) for a mesh

containing n vertices. Nevertheless, storing vertices in an

octree structure reduces the complexity to O(n logn).

One may check that this way of detecting the model self

collisions also work in non-Euclidean spaces, provided �
E
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Figure 3. Transforms used to restore the topo

logical consistency of the model. When two
parts of the surface collide the local reconfig

uration of the mesh shown in (a) is performed.
When a tunnel between two parts of the vol

ume becomes too tight, reconfiguration (b) is

performed.

is replaced with a new constant �
R

that takes account of the

metric. This results in the following choice

1 +

v

max

2�Æ

� �

R

:

3.3. Dynamics

As most parametric models our deformable surface is

viewed as a set of vertices, each of which evolves under

the influence of various forces, namely the usual internal

regularizing forces F
int

, a damping force, along with any

additional external force F
ext

.

On a Riemannian manifold, the trajectory of a vertex

submitted to a force F is theoretically described by the fol-

lowing set of equations:

m�x

k

+

2

X

i;j=0

�

k

ij

_x

i

_x

j

= F

k

; k = 0; 1; 2 (5)

where m and x(t) = (x

0

(t); x

1

(t); x

2

(t)) respectively de-

note the vertex mass and position. The �

k

ij

coefficients are

known as the Christoffel’s symbols and are given as

�

k

ij

=

1

2

2

X

l=0

g

kl

�

�g

il

�x

j

+

�g

jl

�x

i

�

�g

ij

�x

l

�

where gkl denotes the coefficient at position (k; l) in the

matrix G�1. Compared with the Newton’s laws of motion,

equation (5) includes the additional term
P

2

i;j=0

�

k

ij

_x

i

_x

j

.

Since G is C1 and is everywhere positive-definite, the

Christoffels symbols and hence the additional term could

easily be computed. However this term is second order in

_x. Therefore it has no influence on the deformable model

equilibrium position and is negligible compared to the force

vector F which includes the damping force � _x. That is

why this term is not taken into account so that we get back

the usual Newton’s laws

m�x = � _x+ F

int

+ F

ext

(6)

Experimentally, ignoring the additional term does not in-

duce any visible change on the model behavior and signif-

icantly reduces computational costs. Equation (6) is classi-

cally discretized in time using the finite difference scheme,

which allows to iteratively approach the model rest position.

4. Riemannian metrics

This section gives an intuitive geometrical interpretation

of metric changes. Then it recalls the definition and proper-

ties of structure tensor and explains how this tool is used to

build metrics from images.

4.1. Geometrical interpretation

This section shows that changing metrics is equivalent

to locally expands or contracts the space along directions

and with ratios determined by the local metric eigenstruc-

ture. This is seen by oberving that small balls are deformed

into ellipsoids when the Eulidean metric is replaced by a

Riemannian metric.

Consider the Riemannian ball B
R

(0; �). For small

enough values of � , B
R

(0; �) is contained in a neighbor-

hood over whichGmay be considered as constant. Thus the

following approximation holds for any point P inB
R

(0; �):

kOPk

2

R

=

T

OP�G�OP ' d

2

R

(O;P ) = �

2

: (7)

If (x
0

; x

1

; x

2

) denote the coordinates of P in an orthonor-

mal basis (v
0

;v

1

;v

2

) of eigenvectors of G, equation (7) is

rewritten as

�

0

x

2

0

+ �

1

x

2

1

+ �

2

x

2

2

= �

2

where �
0

, �
1

and �
2

denote the eigenvalues of G. This is

the equation of an ellipsoid oriented along v
0

, v
1

and v
2

and with the length of its semi axes given as �=
p

�

0

, �=
p

�

1

and �=
p

�

2

.

As a consequence, changing the Euclidean metric with a

Riemannian metric is equivalent to locally expand or shrink

the space along the local eigendirections of the new metric.

Expansion ratio are given as 1=
p

�

0

along v
0

, 1=
p

�

1

along

v

1

and 1=

p

�

2

along v
2

.

4.2. Metric choice

As explained in Sect 3.1 a regular sampling of the model

mesh is maintained with the deformed metric. In addition,

this metric locally expand or contract the space according



to its eigenstructure. As a result resolution is locally multi-

plied by
p

�

0

,
p

�

1

or
p

�

2

depending on the relative orien-

tation of the mesh and the vectors v
1

, v
2

and v
3

.

Classically, deformable models detect high norms of the

image gradient to track object boundaries. In the following

these places are called contours and are used to determine

how metrics are built.

In a place with weak contours, resolution should remain

coarse. This is achieved by choosing

�

0

' �

1

' �

2

' �

min

where �
min

denotes the minimum allowed metric eigen-

value. We choose �
min

= 1. By this way the Euclidean

length of the longest edge on the surface is directly given by

Æ. The mesh orientation has no importance in this context,

the only constraint on v
0

, v
1

and v
2

is thus orthonormality.

In contrast, in the vicinity of contours the metric should

reflect their geometrical properties. Let S and N denote

the contour strength and normal. Let also v
K

1

and v
K

2

and K
1

and K
2

denote the contour principal directions and

curvatures. With these notations the local metric eigende-

composition is chosen as

8

<

:

v

0

= N and �
0

= �(S)

v

1

= v

K

1

and �
1

=  (S;K

1

)

v

2

= v

K

2

and �
2

=  (S;K

2

)

where � and  denote increasing functions of their argu-

ments. With these choices, resolution is adapted according

to the local geometry of object boundaries, the relative posi-

tions of the deformable surface and the image contour, and

the confidence we have in this contour (i.e. its strength).

When the model crosses over an image contour, the ver-

tex density on its mesh increases. The maximum resolution

is determined by �
0

and is reached when the deformable

surface is tangent to N (i.e. when it is orthogonal to im-

age component boundaries). The model is thus given more

degrees of freedom to adapt its geometry and fit the con-

tour. In addition, the thickness of thin flat objects is over-

estimated. This prevents collisions from being detected be-

tween parts of the model located on both sides of these ob-

jects. As a result, thin surfaces are properly recovered while

edges remain significantly longer than the surface thickness.

In contrast, on its rest position the model has the same

geometry as the contour so that its principal directions

match the metric eigendirectionsv
1

and v
2

. As a result, the

mesh resolution is determined by the curvaturesK
1

andK
2

:

resolution remains coarse in both direction along plane con-

tours (K
1

' K

2

' 0), increases in the direction of v
1

only

along sharp edges or tubular structures (0 ' K

2

� K

1

),

and increases in both directions in the vicinity of object cor-

ners (0� K

1

' K

2

).

no contour �

0

' �

1

' �

2

' 0

flat contour 0 ' �

1

' �

2

� �

0

sharp edges, tubular structures 0 ' �

2

� �

0

' �

1

corner 0� �

0

' �

1

' �

2

Table 1. Eigenvalues of the structure tensor

in the vicinity of different image features

4.3. Structure tensor

As pointed out by Weijer et al. [14], the contour prin-

cipal curvatures and directions are difficult to estimate di-

rectly from images. The structure tensor provides a estima-

tion of local structure orientations, and is often used to build

robust curvature estimators [11, 14].

The structure tensor is a positive-definite matrix J
�;�

that

is evaluted at each point of the image. It represents the map-

ping

v 2 R

3

�!

T

v � J

�;�

� v = G

�

� (r

�

I � v)

2

;

where G
�

and r
�

I respectively denote the Gaussian filter

with standard deviation � and the gradient of the image I

smoothed with the Gaussian filterG
�

. This mapping clearly

characterizes the gradient orientation as well as its variation

in a neighborhood.

Let �
0

� �

1

� �

2

denote the eigenvalues of J
�;�

and let

w

0

, w
1

and w
2

denote the corresponding eigenvectors. It

is easily seen than the average gradient direction in a neigh-

borhood, namely the normal to the contour, is given by w
0

.

The eigenvectors w
1

and w
2

form a basis of the contour

tangent plane and respectively characterize the directions of

maximum and minimum curvature on the contour. All the

eigenvalues are increasing functions of the contour strength

and �
1

and �
2

also increase with the contour principal cur-

vatures K
1

and K
2

. This is summarized in Table 1.

With these properties, the structure tensor is conve-

niently used to compute metrics well suited to achieve adap-

tive resolution. Its eigenvectors are used directly to define

the metric eigendirections. Its eigenvalues are rescaled and

thresholded, so as to vary between �
min

= 1 and �
max

.

The parameter �
max

determines the allowed range of vari-

ation for the mesh resolution over the whole image.

The parameter � required to compute image structure

tensor determines how much the image is smoothed before

estimating its gradient. It is thus chosen according to the

noise level in the image. The parameter � determines the

size of the window over which gradient variations are in-

vestigated. It should therefore correspond to the size of the

structures to be detected in images.



5. Experimental results

In this section, we investigate and compare segmentation

accuracy and efficiency of (i) our model, (ii) the Euclidean

model [7] with a fine uniform resolution (iii) the Euclidean

model with a coarse uniform resolution. From one model

to another only the metric and the edge length (i.e. the pa-

rameter Æ in (1)) are changed. The set of forces applied to

the model vertices as well as their balancing are left strictly

identical for the three models. The mesh resolutions of the

Euclidean models are chosen so as to correspond to the min-

imal and maximal edge lengths achieved by our Riemannian

model.

For both examples, initialization is performed manualy

outside objects. The model vertices evolve under the action

of the classical regularizing forces, a damping force and a

inflation/deflation force that attracts vertices toward a given

image isosurface. The model is considered to have reached

its rest position when its average kinetic energy stabilizes

(see Fig. 5 and Fig. 9).

In the first example (Fig. 4-5), the image is composed of

a cube with a spherical cavity. The cavity is connected to

the outside through a small hole in one of the cube faces.

The object to recover is therefore characterized by large flat

surfaces as well as sharp edges and corners. As shown on

Fig. 4.a the image is spoiled with a strong additive Gaussian

noise. In the second example (Fig. 7-9), the 3D image is a

cranial CT scan. The object is characterized by a complex

topology, large flat and thin structures (e.g. on the upper

part of the skull) and sharp edges (e.g. arround the orbits).

As expected, the mesh of our model is refined in highly

curved parts of object boundaries. In contrast, resolution

remains coarse along flat parts of objects. By this way,

fewer vertices are used and shape description is enhanced.

Furthermore, along flat contours, the resolutions of both

the coarse and the Riemannian model are approximately

the same. Since the Riemannian metric overestimates dis-

tances in the direction normal to these contours, constraint

(3) holds and object topology is preserved. In contrast, with

the coarse model topology changes are performed and tun-

nels are spuriously created through thin flat structures (see

for example the holes in all cube faces in Fig. 4.d).

Of course, changing the metric requires additional pre-

computations and makes distances computations more ex-

pensive. However, during the model evolution, the mesh

is coarser and vertices are thus allowed to travel faster in

the image. The number of iterations required to achieve

convergence is therefore reduced (see Fig. 5 and Fig. 9).

Furthermore, for a given segmentation quality, the required

number of vertices is reduced. Therefore, the time required

to compute the vertex new positions and to check the model

topological consistency at each iteration is reduced. For a

given segmentation accuracy, this results in significantly re-

a

d

b

c

Figure 4. Results on a computer generated
image. (a) three orthogonal slices of the 3D

image, (b): segmentation with our model, (c)

and (d) segmentation result with a euclidean
metric and fine and coarse model resolutions.

duced computation times. This is summarized in Table 2

and Table 3.

6. Conclusion

We presented a highly deformable model that is able to

recover objects with an arbitrary topology and adapts its res-

olution according to object geometry. Experimental results

show that our model provides both enhanced segmentation

quality and significantly reduced computation times.

Further works will focus on the model initialization

through marching cubes like techniques. Indeed, these algo-

rithms inherently produce meshes with a regular resolution.

This of course results in heavy computational and memory

costs. We expect that working with grids that are kept regu-

lar in a Riemannian space with an appropriate metric would

allow to significantly reduce these costs.
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