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Abstrat. This paper proposes a set of tools to analyse the geometry

of multidimensional digital surfaes. Our approah is based on several

works of digital topology and disrete geometry: representation of dig-

ital surfaes, bel adjaenies and digital surfae traking, 2D tangent

omputation by disrete line reognition, 3D normal estimation from

slie ontours. The main idea is to notie that eah surfae element is

the rossing point of n�1 disrete ontours lying on the surfae. Eah of

them an be seen as a 4-onneted 2D ontour. We ombine the diretions

of the tangents extrated on eah of these ontours to ompute the nor-

mal vetor at the onsidered surfae element. We then de�ne the surfae

area from the normal �eld. The presented geometri estimators have been

implemented in a framework able to represent subsets of n-dimensional

spaes. As shown by our experiments, this generi implementation is also

eÆient.

1 Introdution

Many appliations in the image analysis �eld need to represent and manipulate

regions de�ned as subsets of n-dimensional images. Moreover, it is often ne-

essary to perform geometri measurements on these regions and on the digital

surfaes that form their boundaries. Classially, geometri estimators are de�ned

over frontiers in 2D or 3D images. In this paper, we present a set of tools for

the analysis of the geometry of arbitrary dimensional digital surfaes. This work

is based on a onise oding of the ells of n-dimensional �nite regular grids

[8℄. This oding indues a generi and eÆient framework for implementing las-

sial digital topology data strutures and algorithms. We show here that this

framework is also suited to de�ning the geometry of digital surfaes, namely by

a areful use of digital surfae traking. Note that we do not ompare our work

with geometri de�nitions based on a ontinuous approximation of digital sets.

Our topologial and geometri de�nitions are purely disrete. Furthermore, they

are muh easier to de�ne and ompute in arbitrary dimension.

Some authors de�ne arbitrary dimensional digital surfaes as set of spels

(pixels in 2D, voxels in 3D, n-ells in nD) with spei� properties [11℄. However,

frontiers of regions in images are generally not digital surfaes in this sense.

Moreover, it is not lear how to extend lassial 2D and 3D disrete geometry

estimators to these surfaes. This paper is onerned with digital surfaes that



are de�ned as subsets of the ellular deomposition of R

n

into a regular grid

(pixel edges in 2D, voxel faes or surfels in 3D). This spae was introdued in

image analysis by Kovalevsky [6℄.

There are several approahes to de�ning disrete geometri estimators on

digitized objets (e.g. see [3℄ for a reent survey). Our approah for tangent and

normal estimation follows the basi idea of \slie" deomposition proposed by

Lenoir et. al. [10℄. Intuitively, there are n � 1 orthogonal 2D planes ontaining

the point of interest. The intersetion of eah of those planes with the digitized

objet forms a ontour on whih a 2D tangent is omputed. Lenoir builds the

3D normal as the vetor produt of the two extrated tangents. Tellier and

Debled{Rennesson [13℄ proposed a similar tehnique where the tangent is de�ned

as a disrete line segment. This paper extends these two works to arbitrary

dimensional digital surfaes. We use the obtained normal estimator to ompute

the area of a digital surfae. This de�nition oinides with the one proposed by

Lenoir [9℄ in 3D.

The paper is organized as follows. First we show how to represent boundaries

of digital objets in arbitrary dimension as a set of surfae elements (surfels) with

a topology. This representation allows the de�nition of n � 1 ontours around

eah surfel. Seondly we de�ne a disrete tangent at a surfel on eah of these

ontours and detail its omputation algorithm. In the last setion we ombine

these 2D information to obtain nD estimators (normal vetor, elementary area,

surfae area). The presented material has been implemented in nD. We show its

eÆieny on some experiments. All the neessary information to reimplement it

are provided.

2 Representation and properties of digital surfaes

In this paper, we are interested in omputing geometri harateristis of (ori-

ented) digital surfaes that are boundaries of sets of spels. However, all the

presented material is adaptable to any kind of digital surfaes (open or not, ori-

entable or not) with little work. In this setion, we assume we are working in a

�nite n-dimensional image forming a parallelepiped in Z

n

. We denote by M

i

the

inlusive upper bound for the i-th oordinate of any spel. All oordinates have

0 as lower bound.

2.1 Cell oding

There is an isomorphism betwen the ellular deomposition C

n

of R

n

into a

regular grid and the n-dimensional Khalimisky spae K

n

[5℄. This spae is the

artesian produt of n onneted ordered topologial spaes (COTS). A COTS

an be seen as a set of ordered disrete points, like Z, whose topology alter-

nates losed points and open points. If we de�ne even points of Z as losed and

odd points of Z as open, eah point of K

n

is then identi�ed by its n integer

oordinates, whose parities de�ne its topologial properties.



Consequently, any ell  of C

n

has exatly one orresponding point in K

n

with oordinates (x

0

K

; : : : ; x

n�1

K

). We propose to ode any (unoriented) ell  as

one binary word

� x

n�1

: : : x

i

: : : x

0

, alled the unsigned ode of , as follows:

{ The i-th oordinate x

i

K

is oded by its binary deomposition after a rightshift

(x

i

= x

i

K

div 2). We say that x

i

is the i-th digital oordinate of .

{ All oordinates are paked as one binary word (from x

n�1

to x

0

). Every

oordinate is alloated a �xed number of bits N

i

given by N

i

= log

2

(M

i

)+1.

{ The parities of all oordinates are also paked as an n-bits word � with

� =

P

i

(x

i

K

mod 2)2

i

. The word � is alled the topology of .

Aording to the isomorphism, ells of C

n

that are k-dimensional (or k-ells)

have a topology word omposed of k 1's. The oordinate where a surfel  has a

0 in its topology word is alled the oordinate orthogonal to the surfel  and is

denoted by ?().

The ell topology (dimension, open or losed along a oordinate, adjaent

and inident ells) and geometry (oordinates in Z

n

, entroid, trivial normal

and tangent vetors) an be omputed from the ode without any further in-

formation. It has been shown in [7℄ that most basi operations on ells (e.g.

adjaene, inidene) have an eÆient implementation that is independent from

the dimension of spae. All spei� subsets of C

n

(e.g., objets, digital surfaes,

ubial omplexes) have then an eÆient and ompat representation.

2.2 Oriented ells, boundary operators, bels, boundary of an objet

To de�ne some geometri harateristis (e.g. normal vetor), a digital surfae

must be oriented (at least loally). It is thus onvenient to assoiate an orien-

tation to eah ell of C

n

. We therefore de�ne the signed ode of an oriented ell

 by adding an orientation bit s (0 for positive orientation and 1 for negative

orientation) to its unsigned ode as follows:
� s x

n�1

: : : x

i

: : : x

0

. The opposite

ell � of  is the same ell as  but with opposite orientation.

With oriented ells, we an de�ne boundary operators, whih represent at

the same time how ells are inident with eah others and how orientations are

propagated from one ell to another.

De�nition 1. Let  =
i

k

: : : i

j

: : : i

0

s x

n�1

: : : x

i

j

: : : x

0

be any ell with topol-

ogy bits set to 1 on the oordinates i

k

; : : : ; i

j

; : : : ; i

0

, n�1 � i

k

> : : : > i

j

> � � � >

i

0

� 0 and the others bits set to 0. The symbol

^

i

j

means that the bit i

j

is set to

0. Let � = (�1)

(k�j)

. The set �

i

j

 omposed of the two oppositely signed ells

i

k

: : :

^

i

j

: : : i

0

�s x

n�1

: : : x

i

j

: : : x

0

and

i

k

: : :

^

i

j

: : : i

0

��s x

n�1

: : : x

i

j

+ 1 : : : x

0

,

is alled the lower boundary of the ell  along oordinate i

j

. The lower boundary

� of  is then the set of ells [

l=0;:::;k

�

i

l

.

The lower boundary of a k-ell  thus orresponds to the set of k � 1-ells

low inident to  with spei� orientations (e.g. on Figure 1, +b

0

is the positively

oriented 0-ell low inident to the 1-ell b along oordinate x). The upper bound-

ary r of a ell is de�ned symmetrially (the upper boundary is taken on topology



bits set to 0). It an be shown that this de�nition of boundary operators indues

that any ubial ell omplex is a polyhedral omplex.

In the remainder of the paper, the set O is an objet of the image I with an

empty intersetion with the border of I . Assume that all spels of O are oriented

positively. We merge the sets �p with p 2 O with the rule that two idential

ells exept for their orientation anel eah other. The resulting set of oriented

surfels is alled the boundary of O, denoted by �O. It is an oriented digital

surfae, whose elements are alled bels of O. This surfae separates the objet O

from its omplement [7℄.

2.3 Followers of surfel, bel adjaeny, digital surfae traking

The bel adjaeny de�nes the onnetedness relations between bels bounding

an objet. It has two nie onsequenes: (i) the boundary of an objet an be

extrated by traking the bels throughout their bel adjaenies [1℄; (ii) sets of

surfels an be onsidered as lassial Eulidean surfaes, where one an move on

the surfae in di�erent orthogonal diretions (2 in 3D). The seond property is

thus essential for de�ning the geometry of digital surfaes. We start by de�ning

whih surfels are potentially adjaent to a given bel with the notion of follower.

We then de�ne two kinds of bel adjaeny for eah pair of oordinates.

De�nition 2. We say that an oriented r-ell q is a diret follower of an oriented

r-ell p, p 6= �q, if �p and �q have a ommon r � 1-ell, alled the diret link

from p to q, suh that this ell is positively oriented in �p and negatively oriented

in �q. The ell p is then an indiret follower of q.

It is easy to hek that any surfel has 3 diret followers and 3 indiret followers

along all oordinates exept the one orthogonal to the surfel. We order the

followers onsistently for digital surfae traking (see Figure 1a).

De�nition 3. Let b be an oriented n � 1-ell with rb = f+p;�qg. Let j be

a oordinate with j 6=? (b). The three diret followers of b along j are ordered

as follows: (1) the �rst diret follower belongs to �

j

+ p, (2) the seond diret

follower belongs to r

j

�b

0

with +b

0

diret link in �

j

b, (3) the third diret follower

belongs to �

j

� q.

Intuitively, when traking a digital surfae, you have 3 di�erent possibilities

for a move along a given oordinate. This is true for arbitrary dimension. The

following de�nition shows whih one to hoose at eah step. It is in agreement

with the de�nitions of bel adjaenies proposed by Udupa [14℄, but easier to

implement in our framework.

De�nition 4. Let b be a bel of �O, suh that rb = f+p;�qg (thus p 2 O and

q 62 O). For any oordinate j 6=? (b), the bel b has one interior diret adjaent

bel (resp. exterior diret adjaent bel) whih is the �rst (resp. last) of the three

ordered diret followers of b along oordinate j that is a bel of �O. The bel

adjaeny is the symmetri losure of the diret bel adjaeny.
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Fig. 1. (a) Diret followers of a surfel b along oordinate x. (b) The two diret ontours

rossing at a given surfel in 3D.

In 3D, the interior (resp. exterior) bel adjaeny along all oordinates indues

the lassial (6,18) bel-adjaeny (resp. (18,6) bel-adjaeny). Interior and exte-

rior bel adjaenies an be mixed for di�erent oordinate pairs. This might be

useful in an appliation where the image data are not isotropi (e.g., some CT

san images, onfoal mirosopy).

2.4 Contours over digital surfaes

The following de�nition is onsistent sine a diret follower  of a surfel b along

a oordinate j 6=?(b) satis�es ?() 2 f?(b); jg.

De�nition 5. Let S be a set of oriented surfels and i, j two distint oordinates.

A sequene of distint surfels p

0

; : : : ; p

k

in S is alled a diret fi; jg-ontour over

S i�: (i) 80 � l � k;?(p

l

) 2 fi; jg, and (ii) 80 � l < k, p

l+1

is a diret follower

of p

l

along the oordinate i or j di�erent from ?(p

l

).

The next propositions state that ontours an be de�ned over boundaries

of objets for any pair of oordinates and that these ontours an be seen as 4-

onneted paths of pixels in the 2-dimensional plane that \ontains" the ontour

(see Figure 1b for a 3D illustration). Proofs an be found in [7℄.

Proposition 1. Let b be any bel in �O and j any oordinate di�erent from

?(b). The sequene (p

l

)

0�l�k

of diret interior adjaent bels starting from b and

going along either j or ?(b) is a diret f?(b); jg-ontour over �O. Note that p

0

is the diret interior adjaent bel of p

k

.

Proposition 2. Given a diret fi; jg-ontour C over a set of oriented surfels S

with C = (p

l

)

0�l�k

, then the sequene D = (q

l

)

0�l<k

of diret links from p

l

to

p

l+1

has the following properties:

(1) the n� 2-ells q

l

are losed along oordinates i and j,

(2.i) for any oordinate d 62 fi; jg, the d-th oordinates of q

l

and of q

l+1

are equal,

(2.ii) either the i-th oordinates of q

l

and of q

l+1

are equal and their j-th oordi-

nates di�er of �1, or the j-th oordinates of q

l

and of q

l+1

are equal and

their i-th oordinates di�er of �1.

As a orollary, D an be seen as a 4-onneted ontour in Z

2

if we forget all the

oordinates di�erent from i and j in the ells of D.



3 Disrete 2D tangent over a 4-onneted ontour

From the last proposition, we an trae from any bel b n � 1 ontours C

j

(b),

j 6=?(b), on the boundary �O. Eah of these ontours is a 4-onneted ontour

omposed of edges and points in the 2D plane it spans. Bels are then ontour

edges and links are ontour points. For eah ontour C

j

(b), we de�ne a disrete

2D tangent (�

j

(b); �

j

(b)) at b using a disrete line segment reognition algorithm.

3.1 Reognition of a 4-onneted disrete line segment

An inremental algorithm was proposed for reognizing 8-onneted line seg-

ments by Debled-Rennesson and Reveilles [4℄. It was adapted for the reognition

of 8 or 4-onneted disrete tangent lines by Vialard [2℄ and by Tellier and

Debled-Rennesson [13℄. We reall here the priniple of this line reognition algo-

rithm in the ase of 4-onneted ontours.

A 4-onneted disrete line of harateristis (a; b; �) 2 Z

3

an be de�ned as

the following set of disrete points [12℄: f(x; y) 2 Z

2

; � � ax� by < �+ jaj+ jbjg.

The slope of the line is given by

a

b

while � deribes its loation in the 2D plane.

The real lines of equations ax� by = � and ax� by = �+ jaj+ jbj � 1 are alled

the upper and lower leaning lines. A point belonging to the upper (resp. lower)

leaning line is alled an upper (resp. lower) leaning point.

Let us now onsider a disrete line segment. We denote by U (resp. U

0

) the

upper leaning point of minimum (resp. maximum) absissa of this segment. In

the same way, we denote by L (resp. L

0

) the lower leaning point of minimum

(resp. maximum) absissa of this segment.

Given a starting point on the ontour, we orient the x-axis in the diretion

of the following point. The initial harateristis of the line segment are (0; 1; 0)

and U = L = (0; 0) and U

0

= L

0

= (1; 0). Now assume that the harateristis

of the line segment are (a; b; �) after adding m suessive ontour points. When

adding the next ontour point (x; y), we update the harateristis of the line

aording to the value r = ax� by with the rules de�ned in the following table.

In the three �rst ases the point (x; y) extends the segment without hanging

its harateristis (a; b; �). The new point may just beome a leaning point of

maximum absissa. In ases (4) and (5) the segment plus the point (x; y) is still

a line segment. In ase (4) (resp. (5)) the slope of the extended line segment is

greater (resp. lower) than the slope of the initial line segment. These two last

ases are illustrated in Figure 2. Any other value of r indiates that the urrent

line segment ompleted by point (x; y) is no longer a line segment.

r = ax� by U U' L L' a b �

(1) � < r < �+ jaj+ jbj � 1

(2) r = � (x; y)

(3) r = �+ jaj+ jbj � 1 (x; y)

(4) r = �� 1 (x; y) L' y

U

0

� y

U

x

U

0

� x

U

ax

U

0

� by

U

0

(5) r = �+ jaj+ jbj U' (x; y) y

L

0

� y

L

x

L

0

� x

L

ax

L

0

� by

L

0

�jaj � jbj+ 1



L

L'

U'

(x; y)

U

L

L'

U'

U'

L

L'

(x; y)

U

U'

L

L'

(a) (b)

U

U

(1, 2, -1) (2, 3, -1) (1, 1, 0) (2, 3, -2)

Fig. 2. Reognition of a 4-onneted line. (a) Slope inrease - (b) Slope derease.

(a) (b)

(e)(d)

(c)

(f)

Fig. 3. Tangent line omputation. (a) Initialization. (b-e) Growth of the tangent line

segment. (f) The ontour piee is no more a disrete line segment. The tangent line is

thus the disrete line segment obtained at the previous step.

3.2 Disrete tangent omputation

The tangent line segment at a ontour edge e an be de�ned as the longest line

segment orresponding to the ontour and entered on e. This de�nition is a

slight adaptation of the one given in [2℄: here the disrete tangent is entered on

a ontour edge instead of a ontour point. Computing the disrete tangent at

e is performed by adding suessively pairs of points, one of negative absissa

and one of positive absissa, to a disrete segment. The preeding line segment

reognition algorithm is therefore slightly adapted so that points are added al-

ternatively to the front and to the bak of the segment. The rules for adding a

point to the bak are very similar to the ones presented in the previous table.

Figure 3 illustrates the tangent omputation algorithm.

De�nition 6. Given a bel b and a oordinate j 6=? (b), the 2D tangent vetor

is de�ned as (�

j

(b); �

j

(b)) = (b; a) where (a; b; �) are the harateristis of the

tangent line segment omputed over the ontour C

j

(b).

4 Geometri measures

In this setion, we de�ne the normal vetor to and the area of a bel from its n�1

2D tangent vetors. We assume that (e

0

; : : : ; e

n�1

) is the trivial orthonormal

basis of R

n

.



4.1 Tangent vetors and plane at a bel; normal vetor at a bel

The orientations of the tangent vetors in the following de�nitions ome from the

de�nition of boundary operators (see omputation of � in De�nition 1) and from

the fat that ontours are impliitly oriented by the sequene of diret links.

De�nition 7. Let b be a bel of �O. Let i =? (b) and j a oordinate dif-

ferent from i. The j-th tangent vetor t

j

(b) at b is the n-dimensional vetor

(�1)

n�1�j

�

j

(b)e

j

+ (�1)

n�i

�

j

(b)e

i

.

Those n� 1 tangent vetors at b span an n� 1-dimensional plane sine they

are linearly independent. We de�ne the tangent plane at b as the aÆne plane

parallel to these vetors and ontaining the entroid of b. It is now easy to de�ne

the normal vetor at b.

De�nition 8. The normal vetor n(b) at bel b on �O is the unit vetor orthog-

onal to any vetor of the tangent plane at b and pointing outside the objet O. It

is easy to �nd that n(b) =

u(b)

ku(b)k

with 8j 6=? (b);u(b) � e

j

= (�1)

n�j

�

j

(b)

�

j

(b)

, and

for i =?(b), u(b) � e

i

= (�1)

n�i�1

.

4.2 Elementary area of a bel; area of a boundary

As the boundary of an objet is made of bels, eah bel has a given ontribution

to the area of the whole boundary.

De�nition 9. The elementary area d�(b) of a bel b is de�ned as d�(b) =

1=(

P

n�1

d=0

jn(b)�e

d

j). The area of the boundary of O is then the sum

P

b2�O

d�(b).

The following theorem justi�es the previous de�nition by examining the ele-

mentary area of eah bel of a 3D plane.

Theorem 1. Let U = (b; 0; 0); V = (0; a; 0);W = (0; 0; ab) be three points of

R

3

with a; b;  positive integer numbers. The ontinuous plane P ontaining the

triangle UVW follows the equation ax+ by + z = ab and its normal vetor n

is thus

1

p

a

2

+b

2

+

2

(a; b; ). The digital plane Q, digitized version of P , follows the

equation ab � ax + by + z < ab + a + b + , and forms the verties of a set

of bels in C

3

. Then the elementary ontribution to the area of eah bel of Q is

1=(n � e

0

+ n � e

1

+ n � e

2

).

Proof. Eah bel of Q an be projeted onto the plane parallel to it and going

through the origin. We restrit Q to the bels inluded in the positive otant.

The number of bels m of Q is therefore obtained by ounting the projeted bels

on eah of the three planes of projetion. There are aab=2 bels projeted on

x = 0, bab=2 bels on y = 0 and ba=2 bels on z = 0 so that m =

ab

2

(a+ b+ ).

Now this subset of Q orresponds exatly to the triangle UVW . The elementary

area of eah bel of Q is equal to the total area of the triangle UVW divided

by the number of bels of Q that are part of the digitization of UVW . The area

of UVW is given by the identity UV ^ UW = ab(a; b; ) = 2area(UVW)n. A

short omputation onludes the proof. ut



Objet 2D ball 3D ball 4D ball

r=50 r=1250 r=20 r=50 r=100 r=10 r=30

nb surfels 404 10004 7542 47070 188502 33352 904648

normal omputation time (ms) 0 380 170 1230 6210 1070 29960

mean value of � 2:24

Æ

0:22

Æ

3:82

Æ

2:19

Æ

1:51

Æ

6:75

Æ

3:98

Æ

std. dev. of � from 0 6:47

Æ

1:30

Æ

5:76

Æ

3:46

Æ

2:34

Æ

8:09

Æ

5:15

Æ

area / expeted area 1.011 1.000 0.994 0.997 0.998 1.042 1.042

Table 1. Comparison between disrete geometri estimators and expeted geometri

measures. The objet under onsideration is a ball of inreasing radius. For eah bel b,

we measure the positive angle � in degree between the expeted normal vetor to the

sphere and the disrete normal n(b). Mean value and standard deviation of � from 0

are listed for 2D, 3D and 4D balls of inreasing radii. The estimated area of the disrete

balls, their number of surfels, and the omputation time of the normal vetor �elds are

also listed (tests made on a Celeron 400Mhz with 128Mbytes of memory).

(a) (b) ()

Fig. 4. 3D exemples of normal vetor omputations. Surfaes are rendered with at

shading. (a) Sphere of radius 30 with trivial normals of bels. (b) Same objet but with

disrete normals. () Cube minus sphere with disrete normals.

This theorem an be extended to arbitrary dimension using the n-dimensional

external produt, sine it also provides an area mesurement of n�1-dimensional

parallelograms. The preeding exposition is suÆient to understand the link

between normal vetor and elementary area of a bel without too umbersome

notations.

A orollary to this theorem is that if the disrete objet of interest is the dig-

itization of a ontinuous objet with good properties (boundary C

1

), then the

area of the disrete objet tends toward the area of the ontinuous objet as the

disretization resolution inreases. Our experiments have on�rmed this theoret-

ial result. Table 1 shows that the proposed disrete estimators of normal and

area are onsistent with expeted values. Figure 4 illustrates the omputation of

normal vetor �eld for two di�erent objets.



5 Conlusion

We have de�ned several geometri measures (tangent plane, normal vetor, ele-

mentary area, surfae area) for boundaries of n-dimensional objets and we have

shown how to ompute them eÆiently. An immediate extension of this work is

the de�nition and omputation of the mean urvature �eld of n� 1-dimensional

digital surfaes. Our main motivation is the development of a multidimensional

disrete deformable model for image segmentation. Loal area and urvature

measurements are used so as to maintain a regular and smooth shape during the

evolution of the model towards boundaries of image omponents.
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