
Coding ells of digital spaes: a framework to

write generi digital topology algorithms

Jaques-Olivier Lahaud

a

a

LaBRI, Univ. Bordeaux 1, 351 ours de la Lib�eration, 33405 Talene, Frane

Abstrat

This paper proposes a onise oding of the ells of n-dimensional �nite regular grids.

It indues a simple, generi and eÆient framework for implementing lassial dig-

ital topology data strutures and algorithms. Disrete subsets of multidimensional

images (e.g. regions, digital surfaes, ubial ell omplexes) have then a ommon

and ompat representation. Moreover, algorithms have a straightforward and eÆ-

ient implementation, whih is independent from the dimension or sizes of digital

images. We illustrate that point with generi hypersurfae boundary extration al-

gorithms by sanning or traking. This framework has been implemented and basi

operations as well as the presented appliations have been benhmarked.

1 Introdution

Many appliations in the image analysis �eld need to represent and manipulate

disrete subsets of digital spaes. As the image data beome larger, the data

strutures required to represent these sets should be as ompat as possible.

Moreover, algorithms designed on these strutures should be not only eÆient

theoretially, but also eÆient in pratie. Algorithms de�ned formally should

have a straightforward implementation. Last but not least, 3D and 4D image

datasets are now more and more ommon. It beomes neessary to have a

uni�ed framework for programming appliations dealing with n-dimensional

data. By this way, algorithms are both generially de�ned and implemented.

There exist several approahes to de�ne the topology of multidimensional reg-

ular digital spaes: (1) adjaeny graphs as pioneered by Rosenfeld, (2) ori-

ented graphs as proposed by Herman [5℄, (3) ellular omplexes as proposed

by Kovalevsky [11℄, or equivalently Khalimsky's spaes [7℄ and interpixel rep-

resentations. This paper deals mostly with the third approah, although our

framework an express either approahes (the two �rst approahes manipulate

a restrited set of the elements de�ned in the spaes of the third approah).
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The ellular deomposition of the Eulidean n-dimensional spae R

n

into a

regular grid forms a ellular omplex C

n

. This struture has been introdued

in digital topology by Kovalevsky [11℄ for 2D and 3D appliations. It has been

shown that the topology indued on C

n

is equivalent to a digital topology K

n

,

sometimes alled Khalimsky topology [7,8℄. Many authors have explored the

theoretial properties of the spae C

n

(or equivalently K

n

) [7,8,11℄ appliations

[2,3,9,10,14℄. These works show that the de�nition of onsistent high level data

struture over images relies on a low-level representation whih is the regular

ellular deomposition of the image support. It is thus ritial to represent

eÆiently arbitrary ells of C

n

, small subsets of C

n

and spei� subsets of

C

n

(e.g. omplexes, digital surfaes). However, the litterature does not reet

this observation. Indeed, spels are often oded with an array of oordinates,

surfels as pairs of adjaent spels or a spel with a diretion, other ells are

generally impliitly represented. Consequently, storing elements or subsets of

C

n

is umbersome; algorithms are frequently rewritten at the implementation

stage to avoid any referene to non elementary kinds of ells.

In this paper, we hoose another approah, whih is �rst to show how to repre-

sent an arbitrary ell of C

n

with a binary ell ode and seondly to design data

strutures over this representation. Beause of the regularity of C

n

, eah ell

ode holds all the information on the ell: the ell topology (dimension, open

or losed along a oordinate, adjaent and inident ells) and geometry (o-

ordinates in Z

n

, entroid, normal and tangent vetors) an be omputed from

the ode without any other information. The proposed framework is suited

both to formal representation and proofs and to straightforward implementa-

tion in a programming language. The paper is organized as follows: (i) oding

of ells and implementation of low-level digital topology de�nitions, (ii) de�-

nition of data strutures for subsets of C

n

(e.g., digital surfaes, omplexes),

(iii) appliation to digital boundaries extration in multidimensional images.

We emphasize that all operations and algorithms have the same de�nitions

and implementation whatever the dimension of the spae. All experiments

and benhmarks presented in this paper were made on a PC with a Celeron

500Mhz proessor, 128Mb of memory, 128Kb of ahe (whih is a basi work-

station). The proposed framework was implemented in C++. Due to limited

spae, the reader is referred to [12℄ for more details.

2 Coding ells of digital spaes C

n

2.1 Cellular deomposition C

n

; binary oding of unoriented ells

We denote by C

n

the set of parts of the n-dimensional Eulidean spae R

n

suh that  2 C

n

is equivalent to  = I

1

� : : :� I

n

where I

i

is a subset of R of
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the form fz

i

g or ℄z

i

; z

i

+ 1[ with z

i

2 Z. The omplex C

n

is a partition of R

n

.

We all k-ell an element  2 C

n

suh that  has k I

i

of the form ℄z

i

; z

i

+ 1[

(and therefore (n�k) I

i

of the form fz

i

g). The dimension of  is k. The losure

Cl() of a ell  is the set of ells 

0

of C

n

whih have the following form: (i) on

oordinate where  is a point fz

i

g, the ell 

0

must also be the same point, (ii)

on oordinate where  is an open segment ℄z

i

; z

i

+1[, 

0

an be either the same

open segment or the point fz

i

g or the point fz

i

+ 1g. The open star Op()

of a ell  is the set of ells 

0

of C

n

suh that 

0

2 Op() ,  2 Cl(

0

). The

bounding relation < between two ells  and 

0

is then de�ned as  < 

0

i�

 2 Cl(

0

) n 

0

. With these de�nitions, the set C

n

equipped with the dimension

mapping and the bounding relation is a ellular omplex. A ubial ell omplex

K is then de�ned as any set of ells in a �nite image. The dimension of K is

the maximum of the dimensions of its ells. Open stars and losure of ells in

a omplex K are de�ned naturally.

It is lear that the elements of C

n

represent low-level elements of n-dimensional

digital images: the spels (pixels in 2D and voxels in 3D) are the n-ells, the

(unoriented) surfels (a pair of adjaent spels) are the n�1-ells, the verties of

the spels and of the surfels, or pointels, are the 0-ells. An objet is then a set of

n-ells, a digital surfae is a set of n�1-ells (oriented or not, see Setion 2.2),

a urve is a set of onneted 1-ells. Therefore, all lassial subsets of digital

spaes have a natural de�nition as spei� subsets of C

n

. From now on, we

will assume that we are working in a �nite n-dimensional image forming a

parallelepiped in Z

n

. We denote by M

i

the inlusive upper bound for the i-th

oordinate of any spel. All oordinates have 0 as lower bound.

As shown by Kong et al. [8℄, the topology of C

n

is equivalent to the topology

of the Khalimsky digital spae K

n

, whih is the artesian produt of n on-

neted ordered topologial spaes (COTS). A COTS an be seen as a set of

ordered disrete points, like Z, whose topology alternates losed points and

open points. If we de�ne even points of Z as losed and odd points of Z as

open, eah point of K

n

is then identi�ed by its n integer oordinates, whose

parities de�ne its topologial properties.

Consequently, any k-ell  of C

n

has exatly one orresponding point in K

n

with oordinates (x

0

K

; : : : ; x

n�1

K

). We propose to ode  as one binary word

ode() =

� x

n�1

: : : x

i

: : : x

0

, alled the unsigned ode of , as follows:

� The i-th oordinate x

i

K

is oded by its binary deomposition after a right-

shift (x

i

= x

i

K

div 2). We say that x

i

is the i-th digital oordinate of .

� All oordinates are paked as one binary word (from x

n�1

to x

0

). Every

oordinate is alloated a �xed number of bits N

i

given by N

i

= log

2

(M

i

)+1.

� The parity of all oordinates are also paked as an n-bits word � with

� =

P

i

(x

i

K

mod 2)2

i

. � is alled the topology of .
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Spels have a topology word omposed of 1's, whereas pointels have a topology

word made of 0's. Surfels have one 0 and n�1 1's in their topology word. The

oordinate where a surfel  has a 0 in its topology word is alled the oordinate

orthogonal to the surfel  and is denoted by ?(). This oding implies that any

ell of �nite digital images an be oded as an integer number with �xed size.

Any register of a proessor may thus store a ell if the image is not too big.

1

We de�ne the adjaeny between ells independently of the ell topology.

De�nition 1 Two ells p and q with topo(p) = topo(q) are l-adjaent if their

respetive oordinates p

i

and q

i

di�er by at most 1 and if the in�nite norm of

the vetor (p

n�1

� q

n�1

; : : : ; p

0

� q

0

) is no more than l.

The 1-adjaeny thus de�nes the 4-adjaeny (resp. 6-adjaeny) on pixels in

2D (resp. on voxels in 3D) and the 2-adjaeny de�nes the 8-adjaeny (resp.

18-adjaeny) on pixels in 2D (resp. on voxels in 3D). We de�ne the inidene

relation as below. The proposition that follows shows that all the topologial

struture of C

n

an be obtained from the inidene relation.

De�nition 2 Let  =

� x

n�1

: : : x

i

: : : x

0

be a ell and i any oordinate.

Let � = � xor 2

i

. If the i-th bit of � is set to 1, the ell  has two

low 1-inident ells along oordinate i oded by

� x

n�1

: : : x

i

: : : x

0

and

� x

n�1

: : : x

i

+ 1 : : : x

0

. Otherwise, if the i-th bit of � is set to 0, the ell 

has two up 1-inident ells along oordinate i oded by

� x

n�1

: : : x

i

� 1 : : : x

0

and

� x

n�1

: : : x

i

: : : x

0

. A ell p is low inident (resp. up inident) to a ell

q if there is a sequene of ells 

0

= p; 

1

; : : : ; 

k

= q suh that 8j, 

j

is low

1-inident (resp. up 1-inident) to 

j+1

.

Proposition 3 The set of ells low inident to a ell  is equal to Cl() n .

The set of ells up inident to  is equal to Op() n .

Figure 1 summarizes the number of elementary operations neessary to exeute

basi ell operations. Their implementation is fully generi. We have benh-

marked these operations and the results show that ell odes ompete with

statially de�ned strutures (e.g. �xed size arrays) and are muh faster than

dynamially alloated strutures, lassially used for generi programming.

2.2 Oriented ells, boundary operators, bels, boundary of an objet

In some appliations, it is onvenient to orient the ells (as positive or neg-

ative). For instane, digital surfaes as proposed by Herman and Udupa are

1

32 bits are suÆient to ode every ell of a 1024� 1024� 512 3D image, whih is

more than enough for urrent biomedial appliations.
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nb ops topo, set is is

required ode oord == oord adj. l-adj.? in. l-in.?

bits ops 0 1 0 2 0 � 2n 1 � 3

shifts n 1 0 1 0 0 0 � 6

integer ops n 0 1 0 1 � 2n � 1 � l + 4

lut aess n 1 0 2 1 � n � 2 � l + 2

ond. tests 0 0 0 0 1 � 2n 1 � 3l + 1

Fig. 1. Number of elementary operations needed to perform the following tasks: (i)

oding a vetor of n Khalimsky oordinates as a ell, (ii) getting the topology or

one oordinate of a ell, (iii) omparing if two ells are idential, (iv) setting the

oordinate of a ell, (v) omputing a 1-adjaent ell, (vi) heking if two ells are

l-adjaent, (vii) omputing a 1-inident ell, (viii) heking if two ells are l-inident.

omposed of oriented pairs of voxels: one voxel is in the interior of the surfae,

the other in the exterior. Orienting a surfel means in this ase to de�ne where

are the interior and exterior voxels 1-up-inident to the surfel. Digital surfae

traking algorithms rely on this orientation for a onsistent output. Classi-

al ombinatorial topology assoiates an orientation to eah ell of a ellular

omplex. Oriented ells are then useful to implement boundary operators over

omplexes and to ompute topologial invariants.

We therefore de�ne the signed ode of a ell  with orientation bit s (0 is

positive, 1 is negative) by adding the bit s between the topology � of  and its

digital oordinates x

i

as follows:

� s x

n�1

: : : x

i

: : : x

0

. The opposite ell �

of  is the same ell as  but with opposite sign. Boundary operators, whih

an be seen informally as an oriented version of inidene, are essential in

ombinatorial topology : for instane, they de�ne the topology of polyhedral

omplexes. We have now to \orient" the inidene relation.

De�nition 4 Let  =

i

k

: : : i

j

: : : i

0

s x

n�1

: : : x

i

j

: : : x

0

be any ell with

topology bits set to 1 on the oordinates i

k

; : : : ; i

j

; : : : ; i

0

, n � 1 � i

k

>

: : : > i

j

> � � � > i

0

� 0 and the others bits set to 0. The symbol

^

i

j

means that the bit i

j

is set to 0. Let � = (�1)

(k�j)

. The set �

i

j

 om-

posed of the two oppositely signed ells �

i

k

: : :

^

i

j

: : : i

0

s x

n�1

: : : x

i

j

: : : x

0

and

��

i

k

: : :

^

i

j

: : : i

0

s x

n�1

: : : x

i

j

+ 1 : : : x

0

, is alled the lower boundary of the

ell  along oordinate i

j

. The lower boundary � of  is then the set of ells

[

l=0;:::;k

�

i

l

.

The lower boundary of  thus orresponds to the set of ells 1-low-inident to 

with spei� orientations. The upper boundary r of a ell is de�ned symmetri-

ally (the upper boundary is taken on topology bits set to 0). It an be shown

that this de�nition of boundary operators indues that any ubial ell om-

plex is a polyhedral omplex. Although this is outside the sope of this paper,
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boundary operators along with hains are used to de�ne the (o)homology

groups of omplexes, whih are well known topologial invariants. This topo-

logial tool is readily appliable to ubial ell omplexes.

In the remainder of the paper, the set O is an objet of the image I with

an empty intersetion with the border of I. Assume that all spels of O are

oriented positively. We merge the sets �p with p 2 O with the rule that two

idential ells exept for their orientation anel eah other. The resulting set

of oriented surfels is alled the boundary of O, denoted by �O. It is a digital

surfae, whose elements are alled bels of O. The following result states that

the boundary of O is indeed the digital surfae separating the spels of O from

the spels of the omplement of O.

Proposition 5 Let  be a bel of �O. Then r ontains two spels: one posi-

tively oriented and belonging to O, the other negatively oriented and not be-

longing to O. Any path of 1-adjaent spels from an element of O to an element

not in O rosses �O.

One way to ompute the digital surfae bordering a set of spels O is by apply-

ing the lower boundary operator on eah element of O and removing oppositely

oriented idential ells. The time omplexity of this algorithm is thus linear

with the number of spels of O.

2.3 Followers of surfel, bel adjaeny, digital surfae traking

The bel adjaeny de�nes the onnetedness relations between bels bounding

an objet. It has two nie onsequenes: (i) the boundary of an objet an be

extrated by traking the bels throughout their bel adjaenies [1,4℄; (ii) sets of

surfels an be onsidered as lassial Eulidean surfaes, where one an move

on the surfae in di�erent orthogonal diretions (2 in 3D). The seond reason

is essential for de�ning the geometry of digital surfaes [12℄. We present here

a de�nition of bel adjaenies that is essentially equivalent to the de�nition

of [6℄, but easier to implement in our framework. We start by de�ning whih

surfels are potentially adjaent to a given bel with the notion of follower. We

then de�ne two kinds of bel adjaeny for eah pair of oordinates.

De�nition 6 We say that an r-ell q is a diret follower of an r-ell p, p 6=

�q, if �p and �q have a ommon r�1-ell, alled the diret link from p to q,

suh that this ell is positively oriented in �p and negatively oriented in �q.

The ell p is then an indiret follower of q.

It is easy to hek that any surfel has 3 diret followers and 3 indiret followers

along all oordinates exept the one orthogonal to the surfel. We order the

followers onsistently for digital surfae traking (see Figure 2).
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b

2 �

x

+ p (1)

2 �

x

� q (3)

+b

0

2 �

x

b

2 r

x

+ b

0

(2)

-q

+p

Fig. 2. Diret followers of a surfel b along oordinate x.

De�nition 7 Let b be an oriented n � 1-ell, suh that rb = f+p;�qg. Let

j be a oordinate with j 6=? (p). The three diret followers of p along j are

ordered as follows: (1) the �rst diret follower belongs to �

j

+p, (2) the seond

diret follower belongs to r

j

+b

0

with +b

0

diret link in �

j

b, (3) the third diret

follower belongs to �

j

� q.

Intuitively, when traking a digital surfae, you have 3 di�erent possibilities

for a move along a given oordinate. This is true for arbitrary dimension. The

following de�nition shows whih one to hoose at eah step . It is in agreement

with the de�nitions of bel adjaenies proposed by Udupa [15℄.

De�nition 8 Let b be a bel of �O, suh that rb = f+p;�qg (thus p 2 O

and q 62 O). For any oordinate j 6=? (b), the bel b has one interior diret

adjaent bel (resp. exterior diret adjaent bel) whih is the �rst (resp. last)

of the three ordered diret followers of b along oordinate j that is a bel of O.

The bel adjaeny is the symmetri losure of the diret bel adjaeny.

In 3D, the interior (resp. exterior) bel adjaeny along all oordinates indues

the lassial (6,18) bel-adjaeny (resp. (18,6) bel-adjaeny). Interior and

exterior bel adjaenies an be mixed for di�erent oordinate pairs. This might

be useful in an appliation where the image data are not isotropi (e.g., some

CT san images, onfoal mirosopy). Computing the bel adjaent to a given

one is very fast sine it required [12℄: � 11 binary or integer operations, � 3

shifts,� 14 lut aesses, � 9 onditional tests, and 1 or 2 \is in set" operations.

The next setion will show that the \is in set" operation an be done in four

elementary operations.

The following theorem, whih omes from the fat that ubial ell omplexes

are polyhedral omplexes, is interesting to speed up digital surfae traking

algorithm: as its orollary, traking only diret adjaent bels is suÆient to

extrat the whole digital surfae omponent that ontains the seed bel. It is

more omplex to show that bel omponents orrespond to interior and exterior

omponents of spels (see [13,15℄ where this is proven for some bel adjaeny

relations).

Theorem 9 The transitive losure of the diret bel adjaeny from a bel b of

�O oinides with the transitive losure of the bel adjaeny from b.
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Table 1

This table shows some properties of lassial set data strutures. The symbol +

indiates that it is only amortized time omplexity.

set struture STL lass is in set ? other set ops memory (bytes)

dynami array vetor O(m) O(m)+ � 4m

linked list list O(m) O(m) � 24m

RB-tree set O(logm)+ O(logm)+ � 32m

hashtable hash set O(1)+ O(1)+ � 4m

0

+ 20m

3 Data strutures built over ells

Sine any kind of ell is oded as an integer number, data strutures oding

sets of ells are easily derived from standard data types. Table 1 displays

the traditional set data strutures, their implementation in C++ as template

lasses, the time omplexities of some operations, and the memory ost.

2

These data strutures are adapted to sets of ells of reasonnable size. Very

small sets should be de�ned as vetors. lists may be used to represent

medium size ontours. Other medium size sets should be represented with

sets or hash sets. If the hash set seems rather eÆient for most operations

(at least from an asymptoti point of view), it is memory ostly: 28 Mbytes are

neessary to represent a digital surfae with 1; 000; 000 bels (and m

0

= 2m).

Moreover the memory is very fragmented and the ahe is thus not eÆient.

As it is shown later on digital hypersurfae traking algorithms, amortized

onstant time does not mean very fast.

We present another data struture to represent a set of ells, whih exploits

the properties of the ell oding. The size of the data struture is dependent

only on the size of the image. The time omplexity of all operations is then

independent from the number of ells represented. This data struture, alled

the CharSet, is a harateristi funtion that assigns one bit to eah ell of

the spae. Sine we will often manipulate sets of ells that ontains spei�

kinds of ells (e.g.. a digital surfae is made of surfels), we present two ways

to de�ne this struture.

De�nition 10 A MinCharSet is an array tbl of s bits, where s is one plus the

di�erene between the highest possible ell ode MAX and the smallest possible

ell ode min. Seleting the bit harateristi of the presene of a given ell 

is done with tbl[(-min)>>5℄&(1<<(&0x1f)) for 32-bits words.

De�nition 11 A LUTCharSet is an array tbl of s bits and a look-up ta-

ble lut, where s and lut are dependent on the set of ells (see Table 2).

2

A ell is stored in a 32-bits word. We suppose that 12 bytes are neessary to store

information about one dynamially alloated memory area (e.g. holds for Linux)
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Table 2

This table de�nes the way LUTCharSets store various spei� sets of ells.

set of ells topologies � lut(�)

size s

(bits)

256

3

image

size (Mb)

set of

spels

1 : : : 1

0 0 : : : 0

P

N

i

bits

2

P

N

i

2

unoriented

digital

surfae

011 : : : 1

101 : : : 1

: : :

1 : : : 110

0 0 : : : 0

1 0 : : : 0

: : :

n� 1 0 : : : 0

P

N

i

bits

n2

P

N

i

6

set of

oriented

r-ells

0 : : : 0011 : : : 1

0 : : : 0101 : : : 1

: : :

1 : : : 1100 : : : 0

0 0 : : : 0

1 0 : : : 0

: : :

�

n

r

�

� 1 0 : : : 0

1 +

P

N

i

bits

2

�

n

r

�

2

P

N

i

12 (r = 1; 2)

Seleting the bit harateristi of the presene of a given ell  is done

with tbl[(lut[topo()℄+sign_oords())>>5℄&(1<<(&0x1f)) for 32-bits

words.

The LUTCharSet is more ompat than the MINCharSet for some sets of ells

(and the higher the dimension the more it is) but the aess to the harater-

isti bit of a ell is a bit slower It is now lear why the bit de�ning the sign

of an oriented ell is inserted between the topology and the oordinates of the

ell: with this oding, both CharSets use exatly twie more memory for sets

of signed ells ompared with sets of unsigned ells.

Knowing if a ell belongs to a CharSet or any other atomi set operation

(add/remove an element) are O(1) operations. All global set operations (like

union, intersetion, di�erene, omplement) between CharSets are imple-

mented as standard bit operations between arrays of binary words. Their time

omplexities are linear in the size of the array. Moreover, the implementation

of set operations for any set of ells (arbitrary dimension, set of spels, oriented

digital surfae, set of r-ells, et) is done only one as bit operations between

arrays of binary words. To give an idea of the eÆieny of this representation,

inverting a set of spels de�ned in a 512

3

image takes 0:40s (134; 217; 728 spels,

3ns per spel), di�erene between two sets of spels in the same image takes

0:80s. Furthermore, an unoriented digital surfae in a 256

3

image an hold up

to 50; 331; 648 surfels for a 8Mb memory ost (or 6Mb for LUTCharSet). To

onlude this setion, unsigned sets are twie less ostly to store. They should

be used when possible. For instane, digital surfaes that are boundaries of a

set of spels are always orientable surfae. Digital surfae traking an thus be

done with unoriented digital surfaes.
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// Trak (B) algorithm.

// �O must be losed.

CharSet

Spae::trak( CharSet O, Cell b,

BelAdj A )

fCharSet S = emptySurfelSet();

queue<Cell> L; // queue of bels

L.push( b ); // starting bel

while ( ! L.empty() ) f

Cell p = L.pop(); // urrent bel

// On all oord where p open

for ( int j = 0; j < dim(); ++j )

if (j != orthDir(p)) f

// Trak diret followers

Cell q = A.diretAdj(O,p,j);

if (! S.isInSet(q)) f

S.add( q );

L.push( q );

g

g

g

return S;

g

// Trak (C) algorithm.

// �O must be losed.

CharSet

Spae::trak( CharSet O, Cell b,

BelAdj A )

fCharSet S = emptySurfelSet();

queue<Cell> L; // queue of bels

list<Cell> T; // "tail" of bdry

L.push( b ); // starting bel

T.multipleInsert( b, dim() - 1 );

while ( ! L.empty() ) f

Cell p = L.pop(); // urrent bel

for ( int j = 0; j < dim(); ++j )

if ( j != orthDir( p ) ) f

Cell q = A.diretAdj( O, p, j );

if ( T.�nd( q ) ) // already

T.remove( q ); // extrated

else f

S.add( q ); L.push( q );

T.multipleInsert(q,dim()-2);

g gg

return S; // T is empty at loop end

g

Fig. 3. Two digital hypersurfae traking algorithm: the Trak (B) algorithm re-

quires an eÆient \is in set" operation, the Trak (C) algorithm stores the list of

ells that will be hit again by the traking. For the set T in (b), we have tried both

list and multiset. The former was muh faster than the later in our experiments.

4 Digital boundary extration by sanning and traking

We have implemented several digital hyper-surfae extration algorithms whih

build the digital surfae that is the boundary of a given objet O. Sanning

algorithms examine every spel neighborhood to detet the presene of a bel.

They only require the set O as input. Digital surfae traking algorithms re-

quire an initial bel b and a bel adjaeny A to extrat the omponent of the

boundary of O that ontains b. As desribed in Setion 2.3, de�ning the bel

adjaeny A is deiding for eah pair of oordinates whether A is interior or

exterior along this plane. Figure 3 shows how to write generi digital surfae

traking algorithms with our framework. The implementation in C++ is very

lose to the formal spei�ation of the algorithm (see [6℄).

In the experiments, the objet O was a digital volumi ball. Table 3 lists the

running times neessary to extrat �O for balls of various radii and dimen-

sions. The San (A) algorithm sans the whole image to �nd boundaries. The
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Table 3

Running times for several boundary extration algorithms (see text).

Spae

size

Rad. Nb spels Nb surf.

San

(A)

San

(B)

Trak

(A)

Trak

(B)

Trak

(C)

4096

2

2000 12566345 16004

2.07s 2.00s < 0:01s < 0:01s 0.01s

128

3

30 113081 16926

0.38s 0.03s 0.01s 0.01s 0.06s

128

3

60 904089 67734

0.39s 0.34s 0.07s 0.05s 0.57s

256

3

120 7236577 271350

3.15s 2.70s 0.36s 0.32s 5.24s

512

3

240 57902533 1085502

25.1s 21.2s 1.88s 1.85s 50.6s

64

4

30 4000425 904648

4.26s 4.00s 1.91s 1.37s 4748s

San (B) algorithm sans the parallelepipedi subspae ontaining the ball.

The Trak (A) algorithm extrats open or losed boundaries from a starting

bel (it follows both diret and indiret bel adjaenies). Trak (B) and (C)

algorithms extrat only losed boundaries from a starting bel (they follow

only diret bel adjaenies). All these algorithms are written generially and

make no assumption on the dimension of the image. The benhmarks show

that sanning algorithms depend on the size of the sanned subspae and that

traking algorithms depend on the number of surfels in �O. Running times

are exellent sine eah bel is traked in � 1:7�s in 3D (and � 1:5�s in 4D).

Note that Trak (B) algorithm is muh faster than Trak (C) algorithm. This

is beause CharSets are eÆient for the query \is a ell in a given set ?".

5 Conlusion

We have presented a binary oding of every ell of the digital spae C

n

. This

oding ontains all the topologial and geometri information on the ell. It

allows the design and implementation of generi low-level algorithms that deals

with subsets of C

n

. Compat and eÆient data strutures an be built with this

oding. We illustrated the potential of this framework with a lassial digital

topology appliation: boundary extration. Arbitrary dimensional algorithms

are readily implemented in this framework and benhmarks have proved that

the resulting ode is surprisingly eÆient in pratie. Other digital topology

and geometry appliations may be found in [12℄.
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