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Abstra
t

This paper proposes a 
on
ise 
oding of the 
ells of n-dimensional �nite regular grids.

It indu
es a simple, generi
 and eÆ
ient framework for implementing 
lassi
al dig-

ital topology data stru
tures and algorithms. Dis
rete subsets of multidimensional

images (e.g. regions, digital surfa
es, 
ubi
al 
ell 
omplexes) have then a 
ommon

and 
ompa
t representation. Moreover, algorithms have a straightforward and eÆ-


ient implementation, whi
h is independent from the dimension or sizes of digital

images. We illustrate that point with generi
 hypersurfa
e boundary extra
tion al-

gorithms by s
anning or tra
king. This framework has been implemented and basi


operations as well as the presented appli
ations have been ben
hmarked.

1 Introdu
tion

Many appli
ations in the image analysis �eld need to represent and manipulate

dis
rete subsets of digital spa
es. As the image data be
ome larger, the data

stru
tures required to represent these sets should be as 
ompa
t as possible.

Moreover, algorithms designed on these stru
tures should be not only eÆ
ient

theoreti
ally, but also eÆ
ient in pra
ti
e. Algorithms de�ned formally should

have a straightforward implementation. Last but not least, 3D and 4D image

datasets are now more and more 
ommon. It be
omes ne
essary to have a

uni�ed framework for programming appli
ations dealing with n-dimensional

data. By this way, algorithms are both generi
ally de�ned and implemented.

There exist several approa
hes to de�ne the topology of multidimensional reg-

ular digital spa
es: (1) adja
en
y graphs as pioneered by Rosenfeld, (2) ori-

ented graphs as proposed by Herman [5℄, (3) 
ellular 
omplexes as proposed

by Kovalevsky [11℄, or equivalently Khalimsky's spa
es [7℄ and interpixel rep-

resentations. This paper deals mostly with the third approa
h, although our

framework 
an express either approa
hes (the two �rst approa
hes manipulate

a restri
ted set of the elements de�ned in the spa
es of the third approa
h).
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The 
ellular de
omposition of the Eu
lidean n-dimensional spa
e R

n

into a

regular grid forms a 
ellular 
omplex C

n

. This stru
ture has been introdu
ed

in digital topology by Kovalevsky [11℄ for 2D and 3D appli
ations. It has been

shown that the topology indu
ed on C

n

is equivalent to a digital topology K

n

,

sometimes 
alled Khalimsky topology [7,8℄. Many authors have explored the

theoreti
al properties of the spa
e C

n

(or equivalently K

n

) [7,8,11℄ appli
ations

[2,3,9,10,14℄. These works show that the de�nition of 
onsistent high level data

stru
ture over images relies on a low-level representation whi
h is the regular


ellular de
omposition of the image support. It is thus 
riti
al to represent

eÆ
iently arbitrary 
ells of C

n

, small subsets of C

n

and spe
i�
 subsets of

C

n

(e.g. 
omplexes, digital surfa
es). However, the litterature does not re
e
t

this observation. Indeed, spels are often 
oded with an array of 
oordinates,

surfels as pairs of adja
ent spels or a spel with a dire
tion, other 
ells are

generally impli
itly represented. Consequently, storing elements or subsets of

C

n

is 
umbersome; algorithms are frequently rewritten at the implementation

stage to avoid any referen
e to non elementary kinds of 
ells.

In this paper, we 
hoose another approa
h, whi
h is �rst to show how to repre-

sent an arbitrary 
ell of C

n

with a binary 
ell 
ode and se
ondly to design data

stru
tures over this representation. Be
ause of the regularity of C

n

, ea
h 
ell


ode holds all the information on the 
ell: the 
ell topology (dimension, open

or 
losed along a 
oordinate, adja
ent and in
ident 
ells) and geometry (
o-

ordinates in Z

n

, 
entroid, normal and tangent ve
tors) 
an be 
omputed from

the 
ode without any other information. The proposed framework is suited

both to formal representation and proofs and to straightforward implementa-

tion in a programming language. The paper is organized as follows: (i) 
oding

of 
ells and implementation of low-level digital topology de�nitions, (ii) de�-

nition of data stru
tures for subsets of C

n

(e.g., digital surfa
es, 
omplexes),

(iii) appli
ation to digital boundaries extra
tion in multidimensional images.

We emphasize that all operations and algorithms have the same de�nitions

and implementation whatever the dimension of the spa
e. All experiments

and ben
hmarks presented in this paper were made on a PC with a Celeron

500Mhz pro
essor, 128Mb of memory, 128Kb of 
a
he (whi
h is a basi
 work-

station). The proposed framework was implemented in C++. Due to limited

spa
e, the reader is referred to [12℄ for more details.

2 Coding 
ells of digital spa
es C

n

2.1 Cellular de
omposition C

n

; binary 
oding of unoriented 
ells

We denote by C

n

the set of parts of the n-dimensional Eu
lidean spa
e R

n

su
h that 
 2 C

n

is equivalent to 
 = I

1

� : : :� I

n

where I

i

is a subset of R of
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the form fz

i

g or ℄z

i

; z

i

+ 1[ with z

i

2 Z. The 
omplex C

n

is a partition of R

n

.

We 
all k-
ell an element 
 2 C

n

su
h that 
 has k I

i

of the form ℄z

i

; z

i

+ 1[

(and therefore (n�k) I

i

of the form fz

i

g). The dimension of 
 is k. The 
losure

Cl(
) of a 
ell 
 is the set of 
ells 


0

of C

n

whi
h have the following form: (i) on


oordinate where 
 is a point fz

i

g, the 
ell 


0

must also be the same point, (ii)

on 
oordinate where 
 is an open segment ℄z

i

; z

i

+1[, 


0


an be either the same

open segment or the point fz

i

g or the point fz

i

+ 1g. The open star Op(
)

of a 
ell 
 is the set of 
ells 


0

of C

n

su
h that 


0

2 Op(
) , 
 2 Cl(


0

). The

bounding relation < between two 
ells 
 and 


0

is then de�ned as 
 < 


0

i�


 2 Cl(


0

) n 


0

. With these de�nitions, the set C

n

equipped with the dimension

mapping and the bounding relation is a 
ellular 
omplex. A 
ubi
al 
ell 
omplex

K is then de�ned as any set of 
ells in a �nite image. The dimension of K is

the maximum of the dimensions of its 
ells. Open stars and 
losure of 
ells in

a 
omplex K are de�ned naturally.

It is 
lear that the elements of C

n

represent low-level elements of n-dimensional

digital images: the spels (pixels in 2D and voxels in 3D) are the n-
ells, the

(unoriented) surfels (a pair of adja
ent spels) are the n�1-
ells, the verti
es of

the spels and of the surfels, or pointels, are the 0-
ells. An obje
t is then a set of

n-
ells, a digital surfa
e is a set of n�1-
ells (oriented or not, see Se
tion 2.2),

a 
urve is a set of 
onne
ted 1-
ells. Therefore, all 
lassi
al subsets of digital

spa
es have a natural de�nition as spe
i�
 subsets of C

n

. From now on, we

will assume that we are working in a �nite n-dimensional image forming a

parallelepiped in Z

n

. We denote by M

i

the in
lusive upper bound for the i-th


oordinate of any spel. All 
oordinates have 0 as lower bound.

As shown by Kong et al. [8℄, the topology of C

n

is equivalent to the topology

of the Khalimsky digital spa
e K

n

, whi
h is the 
artesian produ
t of n 
on-

ne
ted ordered topologi
al spa
es (COTS). A COTS 
an be seen as a set of

ordered dis
rete points, like Z, whose topology alternates 
losed points and

open points. If we de�ne even points of Z as 
losed and odd points of Z as

open, ea
h point of K

n

is then identi�ed by its n integer 
oordinates, whose

parities de�ne its topologi
al properties.

Consequently, any k-
ell 
 of C

n

has exa
tly one 
orresponding point in K

n

with 
oordinates (x

0

K

; : : : ; x

n�1

K

). We propose to 
ode 
 as one binary word


ode(
) =

� x

n�1

: : : x

i

: : : x

0

, 
alled the unsigned 
ode of 
, as follows:

� The i-th 
oordinate x

i

K

is 
oded by its binary de
omposition after a right-

shift (x

i

= x

i

K

div 2). We say that x

i

is the i-th digital 
oordinate of 
.

� All 
oordinates are pa
ked as one binary word (from x

n�1

to x

0

). Every


oordinate is allo
ated a �xed number of bits N

i

given by N

i

= log

2

(M

i

)+1.

� The parity of all 
oordinates are also pa
ked as an n-bits word � with

� =

P

i

(x

i

K

mod 2)2

i

. � is 
alled the topology of 
.
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Spels have a topology word 
omposed of 1's, whereas pointels have a topology

word made of 0's. Surfels have one 0 and n�1 1's in their topology word. The


oordinate where a surfel 
 has a 0 in its topology word is 
alled the 
oordinate

orthogonal to the surfel 
 and is denoted by ?(
). This 
oding implies that any


ell of �nite digital images 
an be 
oded as an integer number with �xed size.

Any register of a pro
essor may thus store a 
ell if the image is not too big.

1

We de�ne the adja
en
y between 
ells independently of the 
ell topology.

De�nition 1 Two 
ells p and q with topo(p) = topo(q) are l-adja
ent if their

respe
tive 
oordinates p

i

and q

i

di�er by at most 1 and if the in�nite norm of

the ve
tor (p

n�1

� q

n�1

; : : : ; p

0

� q

0

) is no more than l.

The 1-adja
en
y thus de�nes the 4-adja
en
y (resp. 6-adja
en
y) on pixels in

2D (resp. on voxels in 3D) and the 2-adja
en
y de�nes the 8-adja
en
y (resp.

18-adja
en
y) on pixels in 2D (resp. on voxels in 3D). We de�ne the in
iden
e

relation as below. The proposition that follows shows that all the topologi
al

stru
ture of C

n


an be obtained from the in
iden
e relation.

De�nition 2 Let 
 =

� x

n�1

: : : x

i

: : : x

0

be a 
ell and i any 
oordinate.

Let � = � xor 2

i

. If the i-th bit of � is set to 1, the 
ell 
 has two

low 1-in
ident 
ells along 
oordinate i 
oded by

� x

n�1

: : : x

i

: : : x

0

and

� x

n�1

: : : x

i

+ 1 : : : x

0

. Otherwise, if the i-th bit of � is set to 0, the 
ell 


has two up 1-in
ident 
ells along 
oordinate i 
oded by

� x

n�1

: : : x

i

� 1 : : : x

0

and

� x

n�1

: : : x

i

: : : x

0

. A 
ell p is low in
ident (resp. up in
ident) to a 
ell

q if there is a sequen
e of 
ells 


0

= p; 


1

; : : : ; 


k

= q su
h that 8j, 


j

is low

1-in
ident (resp. up 1-in
ident) to 


j+1

.

Proposition 3 The set of 
ells low in
ident to a 
ell 
 is equal to Cl(
) n 
.

The set of 
ells up in
ident to 
 is equal to Op(
) n 
.

Figure 1 summarizes the number of elementary operations ne
essary to exe
ute

basi
 
ell operations. Their implementation is fully generi
. We have ben
h-

marked these operations and the results show that 
ell 
odes 
ompete with

stati
ally de�ned stru
tures (e.g. �xed size arrays) and are mu
h faster than

dynami
ally allo
ated stru
tures, 
lassi
ally used for generi
 programming.

2.2 Oriented 
ells, boundary operators, bels, boundary of an obje
t

In some appli
ations, it is 
onvenient to orient the 
ells (as positive or neg-

ative). For instan
e, digital surfa
es as proposed by Herman and Udupa are

1

32 bits are suÆ
ient to 
ode every 
ell of a 1024� 1024� 512 3D image, whi
h is

more than enough for 
urrent biomedi
al appli
ations.
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nb ops topo, set is is

required 
ode 
oord == 
oord adj. l-adj.? in
. l-in
.?

bits ops 0 1 0 2 0 � 2n 1 � 3

shifts n 1 0 1 0 0 0 � 6

integer ops n 0 1 0 1 � 2n � 1 � l + 4

lut a

ess n 1 0 2 1 � n � 2 � l + 2


ond. tests 0 0 0 0 1 � 2n 1 � 3l + 1

Fig. 1. Number of elementary operations needed to perform the following tasks: (i)


oding a ve
tor of n Khalimsky 
oordinates as a 
ell, (ii) getting the topology or

one 
oordinate of a 
ell, (iii) 
omparing if two 
ells are identi
al, (iv) setting the


oordinate of a 
ell, (v) 
omputing a 1-adja
ent 
ell, (vi) 
he
king if two 
ells are

l-adja
ent, (vii) 
omputing a 1-in
ident 
ell, (viii) 
he
king if two 
ells are l-in
ident.


omposed of oriented pairs of voxels: one voxel is in the interior of the surfa
e,

the other in the exterior. Orienting a surfel means in this 
ase to de�ne where

are the interior and exterior voxels 1-up-in
ident to the surfel. Digital surfa
e

tra
king algorithms rely on this orientation for a 
onsistent output. Classi-


al 
ombinatorial topology asso
iates an orientation to ea
h 
ell of a 
ellular


omplex. Oriented 
ells are then useful to implement boundary operators over


omplexes and to 
ompute topologi
al invariants.

We therefore de�ne the signed 
ode of a 
ell 
 with orientation bit s (0 is

positive, 1 is negative) by adding the bit s between the topology � of 
 and its

digital 
oordinates x

i

as follows:

� s x

n�1

: : : x

i

: : : x

0

. The opposite 
ell �


of 
 is the same 
ell as 
 but with opposite sign. Boundary operators, whi
h


an be seen informally as an oriented version of in
iden
e, are essential in


ombinatorial topology : for instan
e, they de�ne the topology of polyhedral


omplexes. We have now to \orient" the in
iden
e relation.

De�nition 4 Let 
 =

i

k

: : : i

j

: : : i

0

s x

n�1

: : : x

i

j

: : : x

0

be any 
ell with

topology bits set to 1 on the 
oordinates i

k

; : : : ; i

j

; : : : ; i

0

, n � 1 � i

k

>

: : : > i

j

> � � � > i

0

� 0 and the others bits set to 0. The symbol

^

i

j

means that the bit i

j

is set to 0. Let � = (�1)

(k�j)

. The set �

i

j


 
om-

posed of the two oppositely signed 
ells �

i

k

: : :

^

i

j

: : : i

0

s x

n�1

: : : x

i

j

: : : x

0

and

��

i

k

: : :

^

i

j

: : : i

0

s x

n�1

: : : x

i

j

+ 1 : : : x

0

, is 
alled the lower boundary of the


ell 
 along 
oordinate i

j

. The lower boundary �
 of 
 is then the set of 
ells

[

l=0;:::;k

�

i

l


.

The lower boundary of 
 thus 
orresponds to the set of 
ells 1-low-in
ident to 


with spe
i�
 orientations. The upper boundary r of a 
ell is de�ned symmetri-


ally (the upper boundary is taken on topology bits set to 0). It 
an be shown

that this de�nition of boundary operators indu
es that any 
ubi
al 
ell 
om-

plex is a polyhedral 
omplex. Although this is outside the s
ope of this paper,
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boundary operators along with 
hains are used to de�ne the (
o)homology

groups of 
omplexes, whi
h are well known topologi
al invariants. This topo-

logi
al tool is readily appli
able to 
ubi
al 
ell 
omplexes.

In the remainder of the paper, the set O is an obje
t of the image I with

an empty interse
tion with the border of I. Assume that all spels of O are

oriented positively. We merge the sets �p with p 2 O with the rule that two

identi
al 
ells ex
ept for their orientation 
an
el ea
h other. The resulting set

of oriented surfels is 
alled the boundary of O, denoted by �O. It is a digital

surfa
e, whose elements are 
alled bels of O. The following result states that

the boundary of O is indeed the digital surfa
e separating the spels of O from

the spels of the 
omplement of O.

Proposition 5 Let 
 be a bel of �O. Then r
 
ontains two spels: one posi-

tively oriented and belonging to O, the other negatively oriented and not be-

longing to O. Any path of 1-adja
ent spels from an element of O to an element

not in O 
rosses �O.

One way to 
ompute the digital surfa
e bordering a set of spels O is by apply-

ing the lower boundary operator on ea
h element of O and removing oppositely

oriented identi
al 
ells. The time 
omplexity of this algorithm is thus linear

with the number of spels of O.

2.3 Followers of surfel, bel adja
en
y, digital surfa
e tra
king

The bel adja
en
y de�nes the 
onne
tedness relations between bels bounding

an obje
t. It has two ni
e 
onsequen
es: (i) the boundary of an obje
t 
an be

extra
ted by tra
king the bels throughout their bel adja
en
ies [1,4℄; (ii) sets of

surfels 
an be 
onsidered as 
lassi
al Eu
lidean surfa
es, where one 
an move

on the surfa
e in di�erent orthogonal dire
tions (2 in 3D). The se
ond reason

is essential for de�ning the geometry of digital surfa
es [12℄. We present here

a de�nition of bel adja
en
ies that is essentially equivalent to the de�nition

of [6℄, but easier to implement in our framework. We start by de�ning whi
h

surfels are potentially adja
ent to a given bel with the notion of follower. We

then de�ne two kinds of bel adja
en
y for ea
h pair of 
oordinates.

De�nition 6 We say that an r-
ell q is a dire
t follower of an r-
ell p, p 6=

�q, if �p and �q have a 
ommon r�1-
ell, 
alled the dire
t link from p to q,

su
h that this 
ell is positively oriented in �p and negatively oriented in �q.

The 
ell p is then an indire
t follower of q.

It is easy to 
he
k that any surfel has 3 dire
t followers and 3 indire
t followers

along all 
oordinates ex
ept the one orthogonal to the surfel. We order the

followers 
onsistently for digital surfa
e tra
king (see Figure 2).
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b

2 �

x

+ p (1)

2 �

x

� q (3)

+b

0

2 �

x

b

2 r

x

+ b

0

(2)

-q

+p

Fig. 2. Dire
t followers of a surfel b along 
oordinate x.

De�nition 7 Let b be an oriented n � 1-
ell, su
h that rb = f+p;�qg. Let

j be a 
oordinate with j 6=? (p). The three dire
t followers of p along j are

ordered as follows: (1) the �rst dire
t follower belongs to �

j

+p, (2) the se
ond

dire
t follower belongs to r

j

+b

0

with +b

0

dire
t link in �

j

b, (3) the third dire
t

follower belongs to �

j

� q.

Intuitively, when tra
king a digital surfa
e, you have 3 di�erent possibilities

for a move along a given 
oordinate. This is true for arbitrary dimension. The

following de�nition shows whi
h one to 
hoose at ea
h step . It is in agreement

with the de�nitions of bel adja
en
ies proposed by Udupa [15℄.

De�nition 8 Let b be a bel of �O, su
h that rb = f+p;�qg (thus p 2 O

and q 62 O). For any 
oordinate j 6=? (b), the bel b has one interior dire
t

adja
ent bel (resp. exterior dire
t adja
ent bel) whi
h is the �rst (resp. last)

of the three ordered dire
t followers of b along 
oordinate j that is a bel of O.

The bel adja
en
y is the symmetri
 
losure of the dire
t bel adja
en
y.

In 3D, the interior (resp. exterior) bel adja
en
y along all 
oordinates indu
es

the 
lassi
al (6,18) bel-adja
en
y (resp. (18,6) bel-adja
en
y). Interior and

exterior bel adja
en
ies 
an be mixed for di�erent 
oordinate pairs. This might

be useful in an appli
ation where the image data are not isotropi
 (e.g., some

CT s
an images, 
onfo
al mi
ros
opy). Computing the bel adja
ent to a given

one is very fast sin
e it required [12℄: � 11 binary or integer operations, � 3

shifts,� 14 lut a

esses, � 9 
onditional tests, and 1 or 2 \is in set" operations.

The next se
tion will show that the \is in set" operation 
an be done in four

elementary operations.

The following theorem, whi
h 
omes from the fa
t that 
ubi
al 
ell 
omplexes

are polyhedral 
omplexes, is interesting to speed up digital surfa
e tra
king

algorithm: as its 
orollary, tra
king only dire
t adja
ent bels is suÆ
ient to

extra
t the whole digital surfa
e 
omponent that 
ontains the seed bel. It is

more 
omplex to show that bel 
omponents 
orrespond to interior and exterior


omponents of spels (see [13,15℄ where this is proven for some bel adja
en
y

relations).

Theorem 9 The transitive 
losure of the dire
t bel adja
en
y from a bel b of

�O 
oin
ides with the transitive 
losure of the bel adja
en
y from b.
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Table 1

This table shows some properties of 
lassi
al set data stru
tures. The symbol +

indi
ates that it is only amortized time 
omplexity.

set stru
ture STL 
lass is in set ? other set ops memory (bytes)

dynami
 array ve
tor O(m) O(m)+ � 4m

linked list list O(m) O(m) � 24m

RB-tree set O(logm)+ O(logm)+ � 32m

hashtable hash set O(1)+ O(1)+ � 4m

0

+ 20m

3 Data stru
tures built over 
ells

Sin
e any kind of 
ell is 
oded as an integer number, data stru
tures 
oding

sets of 
ells are easily derived from standard data types. Table 1 displays

the traditional set data stru
tures, their implementation in C++ as template


lasses, the time 
omplexities of some operations, and the memory 
ost.

2

These data stru
tures are adapted to sets of 
ells of reasonnable size. Very

small sets should be de�ned as ve
tors. lists may be used to represent

medium size 
ontours. Other medium size sets should be represented with

sets or hash sets. If the hash set seems rather eÆ
ient for most operations

(at least from an asymptoti
 point of view), it is memory 
ostly: 28 Mbytes are

ne
essary to represent a digital surfa
e with 1; 000; 000 bels (and m

0

= 2m).

Moreover the memory is very fragmented and the 
a
he is thus not eÆ
ient.

As it is shown later on digital hypersurfa
e tra
king algorithms, amortized


onstant time does not mean very fast.

We present another data stru
ture to represent a set of 
ells, whi
h exploits

the properties of the 
ell 
oding. The size of the data stru
ture is dependent

only on the size of the image. The time 
omplexity of all operations is then

independent from the number of 
ells represented. This data stru
ture, 
alled

the CharSet, is a 
hara
teristi
 fun
tion that assigns one bit to ea
h 
ell of

the spa
e. Sin
e we will often manipulate sets of 
ells that 
ontains spe
i�


kinds of 
ells (e.g.. a digital surfa
e is made of surfels), we present two ways

to de�ne this stru
ture.

De�nition 10 A MinCharSet is an array tbl of s bits, where s is one plus the

di�eren
e between the highest possible 
ell 
ode MAX and the smallest possible


ell 
ode min. Sele
ting the bit 
hara
teristi
 of the presen
e of a given 
ell 


is done with tbl[(
-min)>>5℄&(1<<(
&0x1f)) for 32-bits words.

De�nition 11 A LUTCharSet is an array tbl of s bits and a look-up ta-

ble lut, where s and lut are dependent on the set of 
ells (see Table 2).

2

A 
ell is stored in a 32-bits word. We suppose that 12 bytes are ne
essary to store

information about one dynami
ally allo
ated memory area (e.g. holds for Linux)
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Table 2

This table de�nes the way LUTCharSets store various spe
i�
 sets of 
ells.

set of 
ells topologies � lut(�)

size s

(bits)

256

3

image

size (Mb)

set of

spels

1 : : : 1

0 0 : : : 0

P

N

i

bits

2

P

N

i

2

unoriented

digital

surfa
e

011 : : : 1

101 : : : 1

: : :

1 : : : 110

0 0 : : : 0

1 0 : : : 0

: : :

n� 1 0 : : : 0

P

N

i

bits

n2

P

N

i

6

set of

oriented

r-
ells

0 : : : 0011 : : : 1

0 : : : 0101 : : : 1

: : :

1 : : : 1100 : : : 0

0 0 : : : 0

1 0 : : : 0

: : :

�

n

r

�

� 1 0 : : : 0

1 +

P

N

i

bits

2

�

n

r

�

2

P

N

i

12 (r = 1; 2)

Sele
ting the bit 
hara
teristi
 of the presen
e of a given 
ell 
 is done

with tbl[(lut[topo(
)℄+sign_
oords(
))>>5℄&(1<<(
&0x1f)) for 32-bits

words.

The LUTCharSet is more 
ompa
t than the MINCharSet for some sets of 
ells

(and the higher the dimension the more it is) but the a

ess to the 
hara
ter-

isti
 bit of a 
ell is a bit slower It is now 
lear why the bit de�ning the sign

of an oriented 
ell is inserted between the topology and the 
oordinates of the


ell: with this 
oding, both CharSets use exa
tly twi
e more memory for sets

of signed 
ells 
ompared with sets of unsigned 
ells.

Knowing if a 
ell belongs to a CharSet or any other atomi
 set operation

(add/remove an element) are O(1) operations. All global set operations (like

union, interse
tion, di�eren
e, 
omplement) between CharSets are imple-

mented as standard bit operations between arrays of binary words. Their time


omplexities are linear in the size of the array. Moreover, the implementation

of set operations for any set of 
ells (arbitrary dimension, set of spels, oriented

digital surfa
e, set of r-
ells, et
) is done only on
e as bit operations between

arrays of binary words. To give an idea of the eÆ
ien
y of this representation,

inverting a set of spels de�ned in a 512

3

image takes 0:40s (134; 217; 728 spels,

3ns per spel), di�eren
e between two sets of spels in the same image takes

0:80s. Furthermore, an unoriented digital surfa
e in a 256

3

image 
an hold up

to 50; 331; 648 surfels for a 8Mb memory 
ost (or 6Mb for LUTCharSet). To


on
lude this se
tion, unsigned sets are twi
e less 
ostly to store. They should

be used when possible. For instan
e, digital surfa
es that are boundaries of a

set of spels are always orientable surfa
e. Digital surfa
e tra
king 
an thus be

done with unoriented digital surfa
es.

9



// Tra
k (B) algorithm.

// �O must be 
losed.

CharSet

Spa
e::tra
k( CharSet O, Cell b,

BelAdj A )

fCharSet S = emptySurfelSet();

queue<Cell> L; // queue of bels

L.push( b ); // starting bel

while ( ! L.empty() ) f

Cell p = L.pop(); // 
urrent bel

// On all 
oord where p open

for ( int j = 0; j < dim(); ++j )

if (j != orthDir(p)) f

// Tra
k dire
t followers

Cell q = A.dire
tAdj(O,p,j);

if (! S.isInSet(q)) f

S.add( q );

L.push( q );

g

g

g

return S;

g

// Tra
k (C) algorithm.

// �O must be 
losed.

CharSet

Spa
e::tra
k( CharSet O, Cell b,

BelAdj A )

fCharSet S = emptySurfelSet();

queue<Cell> L; // queue of bels

list<Cell> T; // "tail" of bdry

L.push( b ); // starting bel

T.multipleInsert( b, dim() - 1 );

while ( ! L.empty() ) f

Cell p = L.pop(); // 
urrent bel

for ( int j = 0; j < dim(); ++j )

if ( j != orthDir( p ) ) f

Cell q = A.dire
tAdj( O, p, j );

if ( T.�nd( q ) ) // already

T.remove( q ); // extra
ted

else f

S.add( q ); L.push( q );

T.multipleInsert(q,dim()-2);

g gg

return S; // T is empty at loop end

g

Fig. 3. Two digital hypersurfa
e tra
king algorithm: the Tra
k (B) algorithm re-

quires an eÆ
ient \is in set" operation, the Tra
k (C) algorithm stores the list of


ells that will be hit again by the tra
king. For the set T in (b), we have tried both

list and multiset. The former was mu
h faster than the later in our experiments.

4 Digital boundary extra
tion by s
anning and tra
king

We have implemented several digital hyper-surfa
e extra
tion algorithms whi
h

build the digital surfa
e that is the boundary of a given obje
t O. S
anning

algorithms examine every spel neighborhood to dete
t the presen
e of a bel.

They only require the set O as input. Digital surfa
e tra
king algorithms re-

quire an initial bel b and a bel adja
en
y A to extra
t the 
omponent of the

boundary of O that 
ontains b. As des
ribed in Se
tion 2.3, de�ning the bel

adja
en
y A is de
iding for ea
h pair of 
oordinates whether A is interior or

exterior along this plane. Figure 3 shows how to write generi
 digital surfa
e

tra
king algorithms with our framework. The implementation in C++ is very


lose to the formal spe
i�
ation of the algorithm (see [6℄).

In the experiments, the obje
t O was a digital volumi
 ball. Table 3 lists the

running times ne
essary to extra
t �O for balls of various radii and dimen-

sions. The S
an (A) algorithm s
ans the whole image to �nd boundaries. The

10



Table 3

Running times for several boundary extra
tion algorithms (see text).

Spa
e

size

Rad. Nb spels Nb surf.

S
an

(A)

S
an

(B)

Tra
k

(A)

Tra
k

(B)

Tra
k

(C)

4096

2

2000 12566345 16004

2.07s 2.00s < 0:01s < 0:01s 0.01s

128

3

30 113081 16926

0.38s 0.03s 0.01s 0.01s 0.06s

128

3

60 904089 67734

0.39s 0.34s 0.07s 0.05s 0.57s

256

3

120 7236577 271350

3.15s 2.70s 0.36s 0.32s 5.24s

512

3

240 57902533 1085502

25.1s 21.2s 1.88s 1.85s 50.6s

64

4

30 4000425 904648

4.26s 4.00s 1.91s 1.37s 4748s

S
an (B) algorithm s
ans the parallelepipedi
 subspa
e 
ontaining the ball.

The Tra
k (A) algorithm extra
ts open or 
losed boundaries from a starting

bel (it follows both dire
t and indire
t bel adja
en
ies). Tra
k (B) and (C)

algorithms extra
t only 
losed boundaries from a starting bel (they follow

only dire
t bel adja
en
ies). All these algorithms are written generi
ally and

make no assumption on the dimension of the image. The ben
hmarks show

that s
anning algorithms depend on the size of the s
anned subspa
e and that

tra
king algorithms depend on the number of surfels in �O. Running times

are ex
ellent sin
e ea
h bel is tra
ked in � 1:7�s in 3D (and � 1:5�s in 4D).

Note that Tra
k (B) algorithm is mu
h faster than Tra
k (C) algorithm. This

is be
ause CharSets are eÆ
ient for the query \is a 
ell in a given set ?".

5 Con
lusion

We have presented a binary 
oding of every 
ell of the digital spa
e C

n

. This


oding 
ontains all the topologi
al and geometri
 information on the 
ell. It

allows the design and implementation of generi
 low-level algorithms that deals

with subsets of C

n

. Compa
t and eÆ
ient data stru
tures 
an be built with this


oding. We illustrated the potential of this framework with a 
lassi
al digital

topology appli
ation: boundary extra
tion. Arbitrary dimensional algorithms

are readily implemented in this framework and ben
hmarks have proved that

the resulting 
ode is surprisingly eÆ
ient in pra
ti
e. Other digital topology

and geometry appli
ations may be found in [12℄.
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