te deformable boundaries for the
Itation of multi-dimensional images

J.-O. Lachaud and A. Vialard (LaBRI, Bordeaux)

Discret segment

Introduction

Context

- Energy-minimizing techniques in image segmentation
- Classical framework: deformable models
 - Space of all possible shapes
 - An energy is associated to each shape
 - Segmentation = find shape of minimal energy
 - \Rightarrow Optimization problem
 - \Rightarrow Minimum extraction through progressive shape deformation

Our approach

- Shape geometry is a digital surface
 - \Rightarrow Multi-dimensional segmentation framework
 - \Rightarrow Highly deformable shape: complex topology modeling, natural topology changes
- Optimization by expansion strategy: a posteriori extraction of shape of minimal energy
 - \Rightarrow Avoid non significant local minima
 - \Rightarrow Provide knowledge of image/model adequation

Discrete deformable model

Model = **1** discrete shape + energy

- The model has a discrete geometry:

Possible shapes = subsets of the discrete image space

- \Rightarrow A shape is a set of voxels in the image
- Equivalent definition with a digital surface, i.e. a set of voxels $O \Leftrightarrow$ its boundary ∂O (surfels between O and O^c)

Discrete geometry terminology

- An adjacency between surfels on a boundary can always be defined
 - \Rightarrow Definition of a *k*-ball around a surfel σ on ∂O

Discrete deformable model

Model = discrete shape + 2 energy

- The energy is tailored for the segmentation problem:
 Low energy ⇔ model close to image component
- Local formulation: $E(O) = E(\partial O) = \sum_{\sigma \in \partial O} E(\sigma)$ $E(\sigma)$ depends on a neighborhood of σ over ∂O
 - \Rightarrow Efficient energy computation
- The energy measures the shape smoothness (internal energy) and the image/shape adequation (image energy)

$$E(\mathbf{\sigma}) = \alpha_{\text{int}} E_{\text{int}}(\mathbf{\sigma}) + \alpha_{\text{img}} E_{\text{img}}(\mathbf{\sigma})$$

- Example of 2D energy definitions
 - Internal energy $E_{int}(\sigma)$ = stretching energy + bending energy (Computed with discrete perimeter and curvature estimators)
 - Image energy $E_{img}(\sigma) = ||I(u) I(v)||$, where $\sigma = (u, v)$

Expansion Strategy For Segmentation

Segmentation: progressive growth in the minimal energy direction At each step, a voxel patch is added to the model. Among the possible resulting shapes, the one with the smallest energy is chosen.

Algorithm

(i) Initialization by user inside the component \Rightarrow object O_0

(ii) $\forall \sigma \in \partial O_i$

- (a) Extract V_{σ} the *k*-ball around σ
- (b) $Voxelpatch(\sigma) = immediate exterior of V_{\sigma}$
- (c) Compute the energy of $O_i \cup Voxel patch(\sigma)$
- (iii) Select the surfel τ inducing the shape of minimal energy
- (iv) $O_{i+1} = O_i \cup Voxelpatch(\tau)$. Go back to (ii)

Validation on synthetic images

1. Recovering fragmented contours

by increasing internal energy ($\alpha_{int} \nearrow$) \Rightarrow

- 2. Segmentation of inhomogeneous components
 - $\alpha_{int} = 0.5$, $\alpha_{img} = 1.0$

Robustness to Gaussian noise 3.

- $\alpha_{int} = 0.5$, $\alpha_{img} = 1.0$, Gaussian noise with variance 12.8

Results on medical data

- Test image: MR image of human heart at diastole
- Component to segment: right ventricle
 - \Rightarrow robustness to shape initialization

82

157

 \Rightarrow extraction of weak contours (bottom of right ventricle)

592

807

798

()

MR image

Sobel filter

Laplacian filter

Current works

- Development of a 3D prototype
- Multi-resolution approach
- Optimization of energy computations