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Abstrat. Energy-minimizing tehniques are an interesting approah

to the segmentation problem. They extrat image omponents by de-

forming a geometri model aording to energy onstraints. This pa-

per proposes an extension to these works, whih an segment arbitrarily

omplex image omponents in any dimension. The geometri model is a

digital surfae with whih an energy is assoiated. The model grows in-

side the omponent to segment by following minimal energy paths. The

segmentation result is obtained a posteriori by examining the energies

of the suessive model shapes. We validate our approah on several 2D

images.

1 Introdution

A onsiderable amount of litterature is devoted to the problem of image segmen-

tation (espeially 2D image segmentation). Image omponents are determined

either by examining image ontours or by looking at homogeneous regions (and

sometimes using both information). The segmentation problem annot generally

be takled without adding to that information some a priori knowledge on image

omponents, e.g., geometri models, smoothness onstraints, referene shapes,

training sets, user interation. This paper deals with the segmentation problem

for arbitrary dimensional images. We are interested in methods extrating an

image omponent by deforming a geometri model. The following paragraphs

present lassial tehniques addressing this issue.

Energy-minimizing tehniques [4℄ have proven to be a powerful tool in this

ontext. They are based on an iterative adaptation proess, whih loally deforms

a parametri model. The model/image adequation is expressed as an energy,

whih is minimal when the model geometry orresponds to image ontours. The

ontinuity of the geometri model and tunable smoothness onstraints provide a

robust way to extrat image omponents, even in noisy images. The adaptation

proess is sensitive to initialization sine it makes the model onverge on loal

minima within the image. The parametri de�nition of the model also restrits

its topology to simple objets. Reent works now propose automated topology

adaptation tehniques to overome this issue, both in 2D [10℄ and in 3D [6℄.

However, these tehniques are diÆult to extend to arbitrary dimensions.
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Front propagation tehniques have been proposed to avoid the topology re-

strition indued by the model parameterization. Instead of deforming a geo-

metri model in the image, they assign a salar value to eah point of the image

spae. The evolution of the points value is governed by partial di�erential equa-

tions, similar to the heat di�usion equation. The model is then impliitly de�ned

as a level-set of this spae, whih is alled a front. The equations are designed

to make the front slow down on strong ontours and to minimize its perimeter

(or area in 3D) [9℄. The impliit de�nition of the front ensures natural topology

hanges. However, this tehnique is not designed to integrate a priori knowledge

on the image omponent (e.g., other geometri riteria, referene shape).

In region growing methods [1℄, the extration of an image omponent follows

two steps: (i) seeds are put within the omponent of interest and (ii) these seeds

grow by iteratively adding pixels to them aording to a merging prediate (ho-

mogeneity, simple geometri riterion). These methods are interesting beause

on one hand they have a simple dimension independent formulation and on the

other hand they an segment objets of arbitrary topology. However, they are

not well adapted to the extration of inhomogeneous omponents.

This paper proposes an original approah based on a disrete geometri model

that follows an energy-minimizing proess. The disrete geometri model is the

digital boundary of an objet growing within the image. The model energy is

distributed over all the boundary elements (i.e., the surfels). The energy of

eah element depends on both the loal shape of the boundary and the sur-

rounding image values. The number of possible shapes within an image grows

exponentially with its size. Therefore, the following heuristi is used to extrat

omponents in an aeptable time. The model is initialized as an objet inside

the omponent of interest. At eah iteration, a set of onneted elements (i.e.,

a voxel path) is loally glued to the model shape. The size and position of this

set are hosen so that the objet boundary energy be minimized. This expansion

strategy assoiated with proper energy de�nitions indue the following model be-

havior: strong image ontours forms \wells" in the energy that hold the model,

the growth is at the same time penalized in diretions inreasing the area and

loal urvature of the objet boundary, the model grows without onstraints

elsewhere.

This model asts the energy-minimizing priniple in a disrete framework.

Signi�ant advantages are thus obtained: redued sensibility to initialization,

modeling of arbitrary objets, arbitrary image dimension. The paper is orga-

nized as follows. Setion 2 realls some neessary digital topology de�nitions

and properties. Setion 3 de�nes the model geometry and its energy. Setion 4

presents the segmentation algorithm. Segmentation results on 2D images are

presented and disussed in Setion 5.

2 Preliminary de�nitions

A voxel is an element of the disrete n-dimensional spae Z

n

, for n � 2. Some

authors [11℄ use the term \spel" for a voxel in an n-dimensional spae; sine we
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feel that no onfusion should arise, we keep the term \voxel" for any dimension.

Let M be a �nite \digital parallelepiped" in Z

n

. An image I on Z

n

is a tuple

(M; f) where f is a mapping from the subset M of Z

n

, alled the domain of I ,

toward a set of numbers, alled the range of I . The value of a voxel u 2M in the

image I is the number f(u). An objet is any nonempty subset of the domain

M . The omplement of the objet O in M is denoted by O



.

Let !

n

be the adjaeny relation on Z

n

suh that !

n

(u; v) is true when u

and v di�er of �1 on exatly one oordinate. Let �

n

be the adjaeny relation

suh that �

n

(u; v) is true when u 6= v, and u and v may di�er of either �1, 0, or

1 on any one of their oordinates. If � is any adjaeny relation, a �-path from a

voxel v to a voxel w on a voxel set A is a sequene u

0

= v; : : : ; u

m

= w of voxels

of A suh that, for any 0 � i < m, u

i

is �-adjaent to u

i+1

. Its length is m+ 1.

For any voxels u and v with !

n

(u; v), we all the ordered pair (u; v) a surfel

(for \surfae element" [11℄). Any nonempty set of surfels is alled a digital sur-

fae. For any given digital surfae �, the set of voxels fv j (u; v) 2 �g is alled

the immediate exterior of � and is denoted by IE(�). The boundary �O of an

objet O is de�ned as the set f(u; v) j !

n

(u; v) and u 2 O and v 2 O
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Up to now, an objet boundary is just viewed as a set. It is onvenient to have

a notion of surfel neighbors (i.e., a \topology") in order to de�ne onneted zones

on an objet boundary or to determine an objet by traking its boundary. In

our ase, this notion is ompulsory to de�ne a oherent model evolution. Besides,

de�ning an objet through its boundary is often faster.

De�ning an adjaeny between surfels is not as straightforward as de�ning

an adjaeny between voxels (espeially for n � 3). The problem lies in the fat

that objet boundary omponents (through surfel adjaenies) must separate

objet omponents from bakground omponents (through voxel adjaenies).

In this paper, we do not fous on building surfel adjaenies onsistent with a

given voxel adjaeny. Consequently, given an objet O onsidered with a voxel

adjaeny �, with either � = !

n

or � = �

n

, we will admit that it is possible

to loally de�ne a onsistent surfel adjaeny relation, denoted by �

O

, for the

elements of �O (3D ase, see [3℄; nD ase, Theorem 34 of Ref. [7℄). For the 2D

ase, Figure 2 shows how to loally de�ne a surfel adjaeny on a boundary.

The �

O

-adjaeny relation indues �

O

-omponents on �O. �

O

-paths on �O

an be de�ned analogously to �-paths on O. The length of a �

O

-path is similarly

de�ned. The �

O

-distane between two surfels of �O is de�ned as the length of

the shortest �

O

-path between these two surfels. The �

O

-ball of size r around a

surfel � is the set of surfels of �O whih are at a �

O

-distane lesser or equal to

r from the surfel �. Let � be a subset of �O. We de�ne the border B(�) of �

on �O as the set of surfels of � that have at least one �

O

-neighbor in �O n�.

The k-border B

k

(�) of � on �O, 1 � k, is the set of surfels of � whih have a

�

O

-distane lesser to k from a surfel of B(�).
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voxel surfel of dO

voxel in O surfel adjacency

Fig. 1. Loal omputation of surfel adjaenies in the 2D ase. The 4-adjaeny (resp.

8-adjaeny) has been hosen for the objet elements (resp. bakground elements).

3 The disrete deformable boundaries model

For the purpose of image segmentation, we introdue a geometri model to �t

image omponents. The model geometry (i.e., its shape) is de�ned as an objet in

the image. It is equivalently de�ned as the boundary of this objet. Note that the

model is not neessarily onneted. The model geometry is aimed to evolve from

an initial shape toward an image omponent boundary. This evolution depends

on an energy assoiated to eah possible geometry of the model.

We identify the energy of an objet to the energy of its boundary. The energy

of an objet boundary �O, denoted by E(�O), is omputed by summation of

the energies of eah of its surfels. To get �ner estimates, the energy of a surfel

may depend on a small neighborhood around it on the objet boundary. That

is why we use the notation E(�)

�O

to designate the energy of the surfel � with

respet to �O (� must be an element of �O). By de�nition, we set E(�)

�O

=

P

�2�

E(�)

�O

, where � is any nonempty subset of an objet boundary �O.

The surfel energy is the sum of several energy terms. Two types of surfel ener-

gies are distinguished: the surfel energies that only depend on the loal geometry

of the boundary around the surfel are alled internal energies, the surfel energies

that also depend on external parameters (e.g., loal image values) are alled ex-

ternal energies. The loal geometri harateristis required for the surfel energy

omputation are based upon a neighborhood of the surfel on the objet bound-

ary: it is a �

O

-ball on the objet boundary, entered on the surfel. To simplify

notations, we assume that this ball has the same size p for the omputation of

every surfel energy. The whole surfel energy is thus loally omputed.

Internal energies allow a �ner ontrol on the model shape (e.g., smoothness).

External energies express the image/model adequation or other external on-

straints (e.g., similarity to a referene shape). The following paragraphs present

a set of internal and external energies pertinent to our segmentation purpose.

This set is by no way restritive. New energies an be spei�ally designed for a

partiular appliation to the extent that the summation property is satis�ed.

Image features are generally not suÆient to learly de�ne objets: the bound-

ary an be poorly ontrasted or even inomplete. To takle this problem, we use

the fat that the shape whih most likely mathes an image omponent is gen-

erally \smooth". In our ase, this is expressed by de�ning two internal energies.

The strething energy E

s

(�)

�O

of a surfel � is de�ned as an inreasing funtion

of the area of the surfel �. The bending energy E

b

(�)

�O

of a surfel � is de�ned as

an inreasing funtion of the mean urvature of the surfel �. Examples of area

and mean urvature omputations are given in Setion 5. Note that these ener-
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gies orrespond to the internal energies of many deformable models [4℄, whih

regularize the segmentation problem.

In our ontext, we de�ne a unique external energy, based on the image value

information. Sine the model evolution is guided by energy minimization, the

image energy E

I

(�)

�O

of a surfel � should be very low when � is loated on a

strong ontour. A simple way to de�ne the image energy at a surfel � = (u; v) on

an objet boundary is to use the image gradient: E

I

(�)

�O

= �kf(v)� f(u)k

2

,

if I = (M; f). This de�nition is valid for arbitrary n.

The model grows by minimizing its energy at eah step. Sine the growing

is inremental, an inremental omputation of the energy would be pertinent.

More preisely, the problem is to ompute the energy of an objet O

0

given the

energy of an objet O inluded in O

0

. In our ase, the digital surfaes �O and

�O

0

generally have muh more ommon surfels than unommon surfels (as the

model is growing, this assertion is more and more true). The set of the ommon

surfels is denoted by �. The p-border of � on �O is idential to the p-border of

� on �O

0

. We an thus denote it uniquely by B

p

(�). The energy of �O and �O

0

is expressed by the two following equations:

E(�O) =

X

�2�O

E(�)

�O

= E(� nB

p

(�))

�O

+E(B

p

(�))

�O

+E(�O n �)

�O

;

E(�O

0

) =

X

�2�O

0

E(�)

�O

0

= E(� nB

p

(�))

�O

0

+E(B

p

(�))

�O

0

+E(�O

0

n �)

�O

0

:

From the surfel energy omputation, it is easy to see that the surfels of

� n B

p

(�), ommon to both �O and �O

0

, hold the same energy on �O and on

�O

0

. However, the energy of the surfels of B

p

(�) may (slightly) di�er whether

they are onsidered on �O or on �O

0

. We dedue

E(�O

0

)�E(�O)

| {z }

variation

= E(�O

0

n �)

�O

0

| {z }

reated surfels

�E(�O n �)

�O

| {z }

deleted surfels

+E(B

p

(�))

�O

0

�E(B

p

(�))

�O

| {z }

surfels lose to displaement

:

To get eÆient energy omputations at eah step, eah surfel of the model

stores its energy. When a model grows from a shape O to a shape O

0

, the energy

of only a limited amount of surfels will have to be omputed: (i) the energy of

reated surfels and (ii) the energy of the surfels nearby those surfels.

4 Segmentation algorithm

In the energy-minimizing framework, the segmentation problem is translated into

the minimization of a ost funtion in the spae of all possible shapes. Finding

the minimum of this funtion annot be done diretly in a reasonable time.

Exept for very spei� problems (e.g., what is the best ontour between two

known endpoints), heuristis are proposed to extrat \aeptable" solutions. For

the snake, an \aeptable" solution is a loal minimum. We propose a heuristi

that builds a set of suessive shapes likely to orrespond to image omponents.
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We �rst briey outline the segmentation proess. The model is initialized as

a set of voxels loated inside the objet to be segmented. At eah step, a voxel

path is added to the model. A voxel path of radius k around a surfel � on

the boundary �O is the immediate exterior of the �

O

-ball of size k around �.

To deide where a voxel path is \glued" to O, its possible various loations

are enumerated. Among the possible resulting shapes, the one with the smallest

energy is hosen. Unlike most segmentation algorithms, this proess does not

onverge on the expeted image omponent. However, the state of the model at

one step of its evolution is likely to orrespond to the expeted image omponent.

The boundary of the objet of interest is hene determined a posteriori. This

tehnique is similar to the disrete bubble priniple [2℄.

It is then possible to let the user hoose the shape pertinent to his problem

among the suessive states of the model. A more automated approah an also

be taken. Sine the model growing follows a minimal energy path (among all

possible shapes within the image), the image/model adequation an be estimated

through the model energy at eah step. Consequently, the shape of minimal

energy often delineates an objet whih is a pertinent omponent of the image.

For now, k is a given stritly positive integer number. It orresponds to the

radius of the voxel path that is added on the model at eah step. The following

proess governs the growing evolution of the model and assigns an energy to

eah suessive model state (see Fig. 2):

1. Assign 0 to i. Let O

0

be equal to the initial shape. The initial shape is a

subset of the image domain inluded in the omponent(s) to extrat. Let E

0

be equal to E(�O

0

).

2. For all surfels � 2 �O

i

, perform the following steps:

(a) Extrat the �

O

i

-ball V

�

of radius k around �. De�ne O

�

as O

i

[ IE(V

�

).

(b) Inrementally ompute E(�O

�

) from E(�O

i

).

3. Selet a surfel � with minimal energy E(�O

�

).

4. Let O

i+1

be equal to O

�

. Let E

i+1

be equal to E(�O

�

). Inrement i.

5. Go bak to step 2 until an end ondition is reahed (e.g., O = M , user

interation, automated minimum detetion).

In the experiments desribed in Setion 5, the end ondition is O =M , whih

orresponds to a omplete model expansion.

5 2D experiments

In order to validate this segmentation approah, a 2D prototype has been imple-

mented. The experiments emphasize the ability of our model to segment image

omponents in various ontexts: inomplete or weakly ontrasted ontours, inho-

mogeneous omponents. In 2D, voxels orrespond to pixels and surfels are usually

alled pixel edges. We �rst onsider how energies are omputed and weighted.

We then highlight the model apabilities on both syntheti and medial images.
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added surfels

deleted surfels

surfels lose to displaement

�

O

i

O

i+1

surfel of �O

i

and its �

O

i

-ball

(a) (b) ()

Fig. 2. A step in the model growing. (a) � is a surfel of the model boundary at step i.

(b) The voxel path of radius 4 around � is added to the objet. () Model shape at

step i+ 1 if � is hosen as the best plae to make the model grow.

5.1 Energy omputation

For our experiments, the energies for a surfel � = (u; v) are omputed as follows:

{ The strething energy E

s

(�)

�O

is the ontribution of the surfel � to the

model perimeter. The boundary �O an be viewed as one or several 4-

onneted paths. We adapt the Rosen-Pro�tt estimator to measure the on-

tribution of � to the boundary length. On the boundary path, � has two end-

points p

1

and p

2

. These points an either be \orner" points or \non-orner"

points. We set E

s

(�)

�O

= ( (p

1

);  (p

2

))=2, where  (p) =  



= 0:670 if p is

a orner point and  (p) =  

n

= 0:948 otherwise. Note that other perimeter

estimators ould be used (e.g., see [5℄).

{ The bending energy E

b

(�)

�O

is omputed as the ratio of the two distanes l

and D, de�ned as follows. The �

O

-ball of size p around � forms a subpath of

�O, whih has two endpoints e

1

and e

2

. Its length l is omputed by the same

Rosen-Pro�tt estimator as above. The distane D is the Eulidean distane

of e

1

and e

2

. Many urvature estimation methods ould be implemented

(angular measurement, planar deviation, tangent plane variation, et. [12℄).

{ The image energy E

I

(�)

�O

is de�ned as in Setion 3 as �kf(v)� f(u)k

2

. It

is the only external energy used in the presented experiments.

The energy of a surfel � on the boundary �O is the weighted summation of

the above-de�ned energies:

E(�)

�O

= �

s

E

s

(�)

�O

+ �

b

E

b

(�)

�O

+ �

I

E

I

(�)

�O

;

where �

s

, �

b

and �

I

are positive real numbers whose sum is one. To handle

omparable terms, internal energies are normalized to [0; 1℄. The image energy

is normalized to [�0:5; 0:5℄ to keep in balane two opposite behaviors: (i) should

the image energy be positive, the shape of minimal energy would be empty, (ii)

should the image energy be negative, long and sinuous shape would be favored.

Note that most lassial deformable models hoose a negative image energy

funtion. These oeÆients allow us to tune more preisely the model behavior
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on various kinds of images. A set of oeÆients pertinent to an image will be

well adapted to similar images.

5.2 Results

In all presented experiments, we onsider the model with the 4-onnetedness.

The surfel adjaeny �

O

is therefore de�ned as shown on Fig. 2. The parameter

p is set to 4.

Sine our model searhes for ontours in images, inhomogeneous omponents

an eÆiently be segmented. We illustrate this ability on the test image of Fig. 3a.

This test image raises another segmentation issue: ontours are weak or even

inexistant on some loations both between the disk and the ring and between the

disk and the bakground. Fig. 3b emphasizes three steps in the model evolution:

the initial shape, the iteration when the model lies on the disk{ring boundary

(a loal minimum in the energy funtion), the iteration when the model lies on

the ring{bakground boundary (the minimum of the energy funtion). Fig. 3

displays the energy funtion. At eah iteration, several path radius sizes (i.e., k)

have been tested for eah surfel: k was between 0 and 6. The model suessfully

delineates the two boundaries during its evolution, although the �rst boundary

indues a less signi�ant minimum in the energy funtion than the seond one:

the �rst boundary is indeed not as well de�ned as the seond one.

0

111 292

Iter
787

Eng
(a) (b) (c)

292111

0

Fig. 3. Inhomogeneous omponents segmentation. (a) Test image: a irle �lled with a

shading from gray value 98 (top) to gray value 189 (bottom), a ring enirling it �lled

with a sharper shading from 0 (top) to 255 (bottom), a homogeneous bakground of

gray value 215. (b) Three signi�ant steps in the model evolution: initial shape, disk{

ring boundary, ring{bakground boundary. () Energy urve for this evolution: the two

extrated boundaries orrespond to loal minima of the energy funtion.

The seond experiment illustrates the robustness of the segmentation proess

ompared to the initial shape. The test image is a MR image

1

of a human heart

at diastole (Fig. 4a). Our objetive is to segment the right ventrile. This image

1

Aknowledgements to Pr. Duassou and Pr. Barat, Servie de M�edeine Nul�eaire

Hôpital du Haut Levêque, Bordeaux, Frane.
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omponent is inhomogeneous in its lower part and presents weak ontours on its

bottom side. The other ontours are more distint but are somewhat fuzzy. All

these defets an be apprehended on Fig. 4b-, whih show the image after edge

detetion. The middle row (Fig. 4d-f) presents three evolutions, one per olumn,

with three di�erent initial shapes. Eah image depits three or four di�erent

boundaries orresponding to signi�ant steps in the model evolution. The bottom

row (Fig. 4g-i) displays the orresponding energy urve. For this experiment,

only the path radius size 3 is tested for eah surfel (i.e., k = 3). Whihever is

the initial shape, the model sueeds in delineating the right ventrile. The left

ventrile may also be delineated in a seond stage (near the end of the expansion),

but it is more hazardous: the proposed initial shapes are indeed extremely bad

for a left ventrile segmentation.

0
797 Iter

Eng

16455
0

164 807 Iter

Eng

154 798 Iter

Eng

0

(b) (c)(a)

(d) (e) (f)

(g) (h) (i)

164 797

055

164

0

807

0

154 798

Fig. 4. Robustness of the segmentation to initialization. (a) Test image: a MR image

of a human heart at diastole. (b) Image after Sobel �ltering. () Image after Laplae

edge detetion. The bottom two rows depit the model behavior for three di�erent

initial shapes (energy parameters are set to �

s

= 0:25, �

b

= 0:25, �

I

= 1). The middle

row (d-f) shows signi�ant steps in the model evolution (initialization, important loal

minima). The orresponding energy urves are drawn on the bottom row �gures (g-i).
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Our prototype does not inlude all the optimizations whih ould be imple-

mented for the 2D ase (e.g., eÆient traversal of surfel adjaeny graphs, various

preomputations). For the heart image, whose size is 68�63, the omplete model

evolution takes 349s. The right ventrile is deteted after 40s.

6 Conlusion

We have presented a disrete deformable model for segmenting image ompo-

nents. The segmenting proess is arried out by expanding a digital surfae

within the image under internal and external onstraints. The external on-

straint (i.e., the image energy) stops the model expansion on strong ontours.

At the same time, the internal onstraints regularize the model shape. The ro-

bust framework of energy-minimizing tehniques is thus preserved. The signif-

iant advantages of this model are its dimension independene and its ability

to naturally hange topology. The �rst results on both syntheti and real-life

data are very promising. They underline the model abilities to proess images

with poor ontours and inhomogeneous omponents. Moreover, our segmenta-

tion tehnique is less sensitive to initialization than lassial energy-minimizing

tehniques. Further information an be found in [8℄.
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