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Abstract. Energy-minimizing techniques are an interesting approach
to the segmentation problem. They extract image components by de-
forming a geometric model according to energy constraints. This pa-
per proposes an extension to these works, which can segment arbitrarily
complex image components in any dimension. The geometric model is a
digital surface with which an energy is associated. The model grows in-
side the component to segment by following minimal energy paths. The
segmentation result is obtained a posteriori by examining the energies
of the successive model shapes. We validate our approach on several 2D
images.

1 Introduction

A considerable amount of litterature is devoted to the problem of image segmen-
tation (especially 2D image segmentation). Image components are determined
either by examining image contours or by looking at homogeneous regions (and
sometimes using both information). The segmentation problem cannot generally
be tackled without adding to that information some a priori knowledge on image
components, e.g., geometric models, smoothness constraints, reference shapes,
training sets, user interaction. This paper deals with the segmentation problem
for arbitrary dimensional images. We are interested in methods extracting an
image component by deforming a geometric model. The following paragraphs
present classical techniques addressing this issue.

Energy-minimizing techniques [4] have proven to be a powerful tool in this
context. They are based on an iterative adaptation process, which locally deforms
a parametric model. The model/image adequation is expressed as an energy,
which is minimal when the model geometry corresponds to image contours. The
continuity of the geometric model and tunable smoothness constraints provide a
robust way to extract image components, even in noisy images. The adaptation
process is sensitive to initialization since it makes the model converge on local
minima within the image. The parametric definition of the model also restricts
its topology to simple objects. Recent works now propose automated topology
adaptation techniques to overcome this issue, both in 2D [10] and in 3D [6].
However, these techniques are difficult to extend to arbitrary dimensions.
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Front propagation techniques have been proposed to avoid the topology re-
striction induced by the model parameterization. Instead of deforming a geo-
metric model in the image, they assign a scalar value to each point of the image
space. The evolution of the points value is governed by partial differential equa-
tions, similar to the heat diffusion equation. The model is then implicitly defined
as a level-set of this space, which is called a front. The equations are designed
to make the front slow down on strong contours and to minimize its perimeter
(or area in 3D) [9]. The implicit definition of the front ensures natural topology
changes. However, this technique is not designed to integrate a prior: knowledge
on the image component (e.g., other geometric criteria, reference shape).

In region growing methods [1], the extraction of an image component follows
two steps: (i) seeds are put within the component of interest and (ii) these seeds
grow by iteratively adding pixels to them according to a merging predicate (ho-
mogeneity, simple geometric criterion). These methods are interesting because
on one hand they have a simple dimension independent formulation and on the
other hand they can segment objects of arbitrary topology. However, they are
not well adapted to the extraction of inhomogeneous components.

This paper proposes an original approach based on a discrete geometric model
that follows an energy-minimizing process. The discrete geometric model is the
digital boundary of an object growing within the image. The model energy is
distributed over all the boundary elements (i.e., the surfels). The energy of
each element depends on both the local shape of the boundary and the sur-
rounding image values. The number of possible shapes within an image grows
exponentially with its size. Therefore, the following heuristic is used to extract
components in an acceptable time. The model is initialized as an object inside
the component of interest. At each iteration, a set of connected elements (i.e.,
a vozel patch) is locally glued to the model shape. The size and position of this
set are chosen so that the object boundary energy be minimized. This expansion
strategy associated with proper energy definitions induce the following model be-
havior: strong image contours forms “wells” in the energy that hold the model,
the growth is at the same time penalized in directions increasing the area and
local curvature of the object boundary, the model grows without constraints
elsewhere.

This model casts the energy-minimizing principle in a discrete framework.
Significant advantages are thus obtained: reduced sensibility to initialization,
modeling of arbitrary objects, arbitrary image dimension. The paper is orga-
nized as follows. Section 2 recalls some necessary digital topology definitions
and properties. Section 3 defines the model geometry and its energy. Section 4
presents the segmentation algorithm. Segmentation results on 2D images are
presented and discussed in Section 5.

2 Preliminary definitions

A wozel is an element of the discrete n-dimensional space Z", for n > 2. Some
authors [11] use the term “spel” for a voxel in an n-dimensional space; since we



feel that no confusion should arise, we keep the term “voxel” for any dimension.
Let M be a finite “digital parallelepiped” in Z™ An image I on Z™ is a tuple
(M, f) where f is a mapping from the subset M of Z", called the domain of I,
toward a set of numbers, called the range of I. The value of a voxel u € M in the
image I is the number f(u). An object is any nonempty subset of the domain
M. The complement of the object O in M is denoted by O°.

Let w, be the adjacency relation on Z™ such that w,(u,v) is true when u
and v differ of +1 on exactly one coordinate. Let «,, be the adjacency relation
such that «,(u,v) is true when u # v, and v and v may differ of either —1, 0, or
1 on any one of their coordinates. If p is any adjacency relation, a p-path from a
voxel v to a voxel w on a voxel set A is a sequence ug = v, ..., U, = w of voxels
of A such that, for any 0 < i < m, u; is p-adjacent to u; 1. Its length is m + 1.

For any voxels v and v with w,(u,v), we call the ordered pair (u,v) a surfel
(for “surface element” [11]). Any nonempty set of surfels is called a digital sur-
face. For any given digital surface X, the set of voxels {v | (u,v) € X'} is called
the immediate exterior of X and is denoted by IE(X). The boundary 0O of an
object O is defined as the set {(u,v) | w,(u,v) and v € O and v € O°}.

Up to now, an object boundary is just viewed as a set. It is convenient to have
a notion of surfel neighbors (i.e., a “topology”) in order to define connected zones
on an object boundary or to determine an object by tracking its boundary. In
our case, this notion is compulsory to define a coherent model evolution. Besides,
defining an object through its boundary is often faster.

Defining an adjacency between surfels is not as straightforward as defining
an adjacency between voxels (especially for n > 3). The problem lies in the fact
that object boundary components (through surfel adjacencies) must separate
object components from background components (through voxel adjacencies).
In this paper, we do not focus on building surfel adjacencies consistent with a
given voxel adjacency. Consequently, given an object O considered with a voxel
adjacency p, with either p = w, or p = a,, we will admit that it is possible
to locally define a consistent surfel adjacency relation, denoted by Bo, for the
elements of 00 (3D case, see [3]; nD case, Theorem 34 of Ref. [7]). For the 2D
case, Figure 2 shows how to locally define a surfel adjacency on a boundary.

The Bo-adjacency relation induces Bo-components on 90O. [o-paths on 00
can be defined analogously to p-paths on O. The length of a fo-path is similarly
defined. The fo-distance between two surfels of 0O is defined as the length of
the shortest So-path between these two surfels. The So-ball of size r around a
surfel o is the set of surfels of 0O which are at a So-distance lesser or equal to
r from the surfel o. Let X' be a subset of 00. We define the border B(X) of X
on 00 as the set of surfels of X' that have at least one fSo-neighbor in 00 \ X.
The k-border Bi(X) of X on 00, 1 < k, is the set of surfels of X' which have a
Bo-distance lesser to k from a surfel of B(X).
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Fig. 1. Local computation of surfel adjacencies in the 2D case. The 4-adjacency (resp.
8-adjacency) has been chosen for the object elements (resp. background elements).

3 The discrete deformable boundaries model

For the purpose of image segmentation, we introduce a geometric model to fit
image components. The model geometry (i.e., its shape) is defined as an object in
the image. It is equivalently defined as the boundary of this object. Note that the
model is not necessarily connected. The model geometry is aimed to evolve from
an initial shape toward an image component boundary. This evolution depends
on an energy associated to each possible geometry of the model.

We identify the energy of an object to the energy of its boundary. The energy
of an object boundary 00, denoted by E(00), is computed by summation of
the energies of each of its surfels. To get finer estimates, the energy of a surfel
may depend on a small neighborhood around it on the object boundary. That
is why we use the notation E(0)so to designate the energy of the surfel o with
respect to 00 (o must be an element of 00). By definition, we set E(X)s0 =
> ocx E(0)s0, where X is any nonempty subset of an object boundary 9O.

The surfel energy is the sum of several energy terms. Two types of surfel ener-
gies are distinguished: the surfel energies that only depend on the local geometry
of the boundary around the surfel are called internal energies, the surfel energies
that also depend on external parameters (e.g., local image values) are called ez-
ternal energies. The local geometric characteristics required for the surfel energy
computation are based upon a neighborhood of the surfel on the object bound-
ary: it is a Sp-ball on the object boundary, centered on the surfel. To simplify
notations, we assume that this ball has the same size p for the computation of
every surfel energy. The whole surfel energy is thus locally computed.

Internal energies allow a finer control on the model shape (e.g., smoothness).
External energies express the image/model adequation or other external con-
straints (e.g., similarity to a reference shape). The following paragraphs present
a set of internal and external energies pertinent to our segmentation purpose.
This set is by no way restrictive. New energies can be specifically designed for a
particular application to the extent that the summation property is satisfied.

Image features are generally not sufficient to clearly define objects: the bound-
ary can be poorly contrasted or even incomplete. To tackle this problem, we use
the fact that the shape which most likely matches an image component is gen-
erally “smooth”. In our case, this is expressed by defining two internal energies.
The stretching energy E®(0)ao of a surfel o is defined as an increasing function
of the area of the surfel o. The bending energy E°(c)so of a surfel o is defined as
an increasing function of the mean curvature of the surfel o. Examples of area
and mean curvature computations are given in Section 5. Note that these ener-



gies correspond to the internal energies of many deformable models [4], which
regularize the segmentation problem.

In our context, we define a unique external energy, based on the image value
information. Since the model evolution is guided by energy minimization, the
image energy E1(0)po of a surfel o should be very low when o is located on a
strong contour. A simple way to define the image energy at a surfel ¢ = (u,v) on
an object boundary is to use the image gradient: Ef(0)s0 = —||f(v) — f(u)]|?,
if I = (M, f). This definition is valid for arbitrary n.

The model grows by minimizing its energy at each step. Since the growing
is incremental, an incremental computation of the energy would be pertinent.
More precisely, the problem is to compute the energy of an object O’ given the
energy of an object O included in O'. In our case, the digital surfaces 00 and
00" generally have much more common surfels than uncommon surfels (as the
model is growing, this assertion is more and more true). The set of the common
surfels is denoted by ®. The p-border of ¢ on 9O is identical to the p-border of
@ on 00'. We can thus denote it uniquely by B,(®). The energy of 00 and 90’
is expressed by the two following equations:

E(90) = Y E(0)so = E(®\ By(®))s0 + E(By(®))s0 + E(90 \ ®)s0,
ocedO
E@0') = Y E(0)sor = E(®\ By(®))sor + E(By(®))so + E(DO' \ $)sor.
ocedo’

From the surfel energy computation, it is easy to see that the surfels of
& \ B,(®), common to both d0 and 00’, hold the same energy on 90 and on
00'. However, the energy of the surfels of B,(®) may (slightly) differ whether
they are considered on 90 or on 90'. We deduce

E(90') = B(90) = E©0' \ $)p0 = B0\ D)oo + E(B,(®))oo = E(B,(®))ao

"

variation created surfels  deleted surfels  surfels close to displacement

To get efficient energy computations at each step, each surfel of the model
stores its energy. When a model grows from a shape O to a shape O', the energy
of only a limited amount of surfels will have to be computed: (i) the energy of
created surfels and (ii) the energy of the surfels nearby those surfels.

4 Segmentation algorithm

In the energy-minimizing framework, the segmentation problem is translated into
the minimization of a cost function in the space of all possible shapes. Finding
the minimum of this function cannot be done directly in a reasonable time.
Except for very specific problems (e.g., what is the best contour between two
known endpoints), heuristics are proposed to extract “acceptable” solutions. For
the snake, an “acceptable” solution is a local minimum. We propose a heuristic
that builds a set of successive shapes likely to correspond to image components.



We first briefly outline the segmentation process. The model is initialized as
a set of voxels located inside the object to be segmented. At each step, a voxel
patch is added to the model. A wvozel patch of radius k£ around a surfel o on
the boundary 00O is the immediate exterior of the So-ball of size k around o.
To decide where a voxel patch is “glued” to O, its possible various locations
are enumerated. Among the possible resulting shapes, the one with the smallest
energy is chosen. Unlike most segmentation algorithms, this process does not
converge on the expected image component. However, the state of the model at
one step of its evolution is likely to correspond to the expected image component.
The boundary of the object of interest is hence determined a posteriori. This
technique is similar to the discrete bubble principle [2].

It is then possible to let the user choose the shape pertinent to his problem
among the successive states of the model. A more automated approach can also
be taken. Since the model growing follows a minimal energy path (among all
possible shapes within the image), the image/model adequation can be estimated
through the model energy at each step. Consequently, the shape of minimal
energy often delineates an object which is a pertinent component of the image.

For now, k is a given strictly positive integer number. It corresponds to the
radius of the voxel patch that is added on the model at each step. The following
process governs the growing evolution of the model and assigns an energy to
each successive model state (see Fig. 2):

1. Assign 0 to i. Let Og be equal to the initial shape. The initial shape is a
subset of the image domain included in the component(s) to extract. Let Eq
be equal to E(00y).

2. For all surfels o € 00;, perform the following steps:

(a) Extract the Bo,-ball V; of radius &k around o. Define O, as O; UIE(V},).
(b) Incrementally compute E(00,) from E(9O;).

. Select a surfel 7 with minimal energy E(00-).

. Let O;11 be equal to O,. Let E;11 be equal to E(90O;). Increment .

5. Go back to step 2 until an end condition is reached (e.g., O = M, user
interaction, automated minimum detection).

=~ W

In the experiments described in Section 5, the end condition is O = M, which
corresponds to a complete model expansion.

5 2D experiments

In order to validate this segmentation approach, a 2D prototype has been imple-
mented. The experiments emphasize the ability of our model to segment image
components in various contexts: incomplete or weakly contrasted contours, inho-
mogeneous components. In 2D, voxels correspond to pixels and surfels are usually
called pixel edges. We first consider how energies are computed and weighted.
We then highlight the model capabilities on both synthetic and medical images.
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Fig. 2. A step in the model growing. (a) o is a surfel of the model boundary at step i.
(b) The voxel patch of radius 4 around o is added to the object. (c¢) Model shape at
step i 4+ 1 if o is chosen as the best place to make the model grow.

5.1 Energy computation
For our experiments, the energies for a surfel o = (u, v) are computed as follows:

— The stretching energy E*®(0)so is the contribution of the surfel o to the
model perimeter. The boundary 0O can be viewed as one or several 4-
connected paths. We adapt the Rosen-Profitt estimator to measure the con-
tribution of ¢ to the boundary length. On the boundary path, o has two end-
points p; and ps. These points can either be “corner” points or “non-corner”
points. We set E*(0)ao = (¥(p1), ¥ (p=2))/2, where ¢(p) = . = 0.670 if p is
a corner point and ¢ (p) = ¥, = 0.948 otherwise. Note that other perimeter
estimators could be used (e.g., see [5]).

— The bending energy E®(0)so is computed as the ratio of the two distances !
and D, defined as follows. The So-ball of size p around o forms a subpath of
00, which has two endpoints e; and es. Its length [ is computed by the same
Rosen-Profitt estimator as above. The distance D is the Euclidean distance
of e; and es. Many curvature estimation methods could be implemented
(angular measurement, planar deviation, tangent plane variation, etc. [12]).

— The image energy E!(0)s0 is defined as in Section 3 as —||f(v) — f(u)||?. It
is the only external energy used in the presented experiments.

The energy of a surfel o on the boundary 0O is the weighted summation of
the above-defined energies:

E(0)s0 = asE*(0)s0 + apE"(0)s0 + arE' (0)s0,

where ag, ap and ajy are positive real numbers whose sum is one. To handle
comparable terms, internal energies are normalized to [0, 1]. The image energy
is normalized to [—0.5,0.5] to keep in balance two opposite behaviors: (i) should
the image energy be positive, the shape of minimal energy would be empty, (ii)
should the image energy be negative, long and sinuous shape would be favored.
Note that most classical deformable models choose a negative image energy
function. These coefficients allow us to tune more precisely the model behavior



on various kinds of images. A set of coefficients pertinent to an image will be
well adapted to similar images.

5.2 Results

In all presented experiments, we consider the model with the 4-connectedness.
The surfel adjacency fo is therefore defined as shown on Fig. 2. The parameter
p is set to 4.

Since our model searches for contours in images, inhomogeneous components
can efficiently be segmented. We illustrate this ability on the test image of Fig. 3a.
This test image raises another segmentation issue: contours are weak or even
inexistant on some locations both between the disk and the ring and between the
disk and the background. Fig. 3b emphasizes three steps in the model evolution:
the initial shape, the iteration when the model lies on the disk-ring boundary
(a local minimum in the energy function), the iteration when the model lies on
the ring—background boundary (the minimum of the energy function). Fig. 3c
displays the energy function. At each iteration, several patch radius sizes (i.e., k)
have been tested for each surfel: £ was between 0 and 6. The model successfully
delineates the two boundaries during its evolution, although the first boundary
induces a less significant minimum in the energy function than the second one:
the first boundary is indeed not as well defined as the second one.

(a) (b) 0 || (0

|
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Iter
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Fig. 3. Inhomogeneous components segmentation. (a) Test image: a circle filled with a
shading from gray value 98 (top) to gray value 189 (bottom), a ring encircling it filled
with a sharper shading from 0 (top) to 255 (bottom), a homogeneous background of
gray value 215. (b) Three significant steps in the model evolution: initial shape, disk—
ring boundary, ring—background boundary. (c) Energy curve for this evolution: the two
extracted boundaries correspond to local minima of the energy function.

The second experiment illustrates the robustness of the segmentation process
compared to the initial shape. The test image is a MR image' of a human heart
at diastole (Fig. 4a). Our objective is to segment the right ventricle. This image

! Acknowledgements to Pr. Ducassou and Pr. Barat, Service de Médecine Nucléaire
Hopital du Haut Levéque, Bordeaux, France.



component is inhomogeneous in its lower part and presents weak contours on its
bottom side. The other contours are more distinct but are somewhat fuzzy. All
these defects can be apprehended on Fig. 4b-c, which show the image after edge
detection. The middle row (Fig. 4d-f) presents three evolutions, one per column,
with three different initial shapes. Each image depicts three or four different
boundaries corresponding to significant steps in the model evolution. The bottom
row (Fig. 4g-i) displays the corresponding energy curve. For this experiment,
only the patch radius size 3 is tested for each surfel (i.e., k& = 3). Whichever is
the initial shape, the model succeeds in delineating the right ventricle. The left
ventricle may also be delineated in a second stage (near the end of the expansion),
but it is more hazardous: the proposed initial shapes are indeed extremely bad
for a left ventricle segmentation.

T T o : :
(h 164 g7 lter (1) 154 798 Iter

(g

Fig. 4. Robustness of the segmentation to initialization. (a) Test image: a MR image
of a human heart at diastole. (b) Image after Sobel filtering. (c¢) Image after Laplace
edge detection. The bottom two rows depict the model behavior for three different
initial shapes (energy parameters are set to as = 0.25, ap = 0.25, @y = 1). The middle
row (d-f) shows significant steps in the model evolution (initialization, important local
minima). The corresponding energy curves are drawn on the bottom row figures (g-i).
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Our prototype does not include all the optimizations which could be imple-
mented for the 2D case (e.g., efficient traversal of surfel adjacency graphs, various
precomputations). For the heart image, whose size is 68 x 63, the complete model
evolution takes 349s. The right ventricle is detected after 40s.

6 Conclusion

We have presented a discrete deformable model for segmenting image compo-
nents. The segmenting process is carried out by expanding a digital surface
within the image under internal and external constraints. The external con-
straint (i.e., the image energy) stops the model expansion on strong contours.
At the same time, the internal constraints regularize the model shape. The ro-
bust framework of energy-minimizing techniques is thus preserved. The signif-
icant advantages of this model are its dimension independence and its ability
to naturally change topology. The first results on both synthetic and real-life
data are very promising. They underline the model abilities to process images
with poor contours and inhomogeneous components. Moreover, our segmenta-
tion technique is less sensitive to initialization than classical energy-minimizing
techniques. Further information can be found in [8].
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