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Abstra
t. Energy-minimizing te
hniques are an interesting approa
h

to the segmentation problem. They extra
t image 
omponents by de-

forming a geometri
 model a

ording to energy 
onstraints. This pa-

per proposes an extension to these works, whi
h 
an segment arbitrarily


omplex image 
omponents in any dimension. The geometri
 model is a

digital surfa
e with whi
h an energy is asso
iated. The model grows in-

side the 
omponent to segment by following minimal energy paths. The

segmentation result is obtained a posteriori by examining the energies

of the su

essive model shapes. We validate our approa
h on several 2D

images.

1 Introdu
tion

A 
onsiderable amount of litterature is devoted to the problem of image segmen-

tation (espe
ially 2D image segmentation). Image 
omponents are determined

either by examining image 
ontours or by looking at homogeneous regions (and

sometimes using both information). The segmentation problem 
annot generally

be ta
kled without adding to that information some a priori knowledge on image


omponents, e.g., geometri
 models, smoothness 
onstraints, referen
e shapes,

training sets, user intera
tion. This paper deals with the segmentation problem

for arbitrary dimensional images. We are interested in methods extra
ting an

image 
omponent by deforming a geometri
 model. The following paragraphs

present 
lassi
al te
hniques addressing this issue.

Energy-minimizing te
hniques [4℄ have proven to be a powerful tool in this


ontext. They are based on an iterative adaptation pro
ess, whi
h lo
ally deforms

a parametri
 model. The model/image adequation is expressed as an energy,

whi
h is minimal when the model geometry 
orresponds to image 
ontours. The


ontinuity of the geometri
 model and tunable smoothness 
onstraints provide a

robust way to extra
t image 
omponents, even in noisy images. The adaptation

pro
ess is sensitive to initialization sin
e it makes the model 
onverge on lo
al

minima within the image. The parametri
 de�nition of the model also restri
ts

its topology to simple obje
ts. Re
ent works now propose automated topology

adaptation te
hniques to over
ome this issue, both in 2D [10℄ and in 3D [6℄.

However, these te
hniques are diÆ
ult to extend to arbitrary dimensions.
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Front propagation te
hniques have been proposed to avoid the topology re-

stri
tion indu
ed by the model parameterization. Instead of deforming a geo-

metri
 model in the image, they assign a s
alar value to ea
h point of the image

spa
e. The evolution of the points value is governed by partial di�erential equa-

tions, similar to the heat di�usion equation. The model is then impli
itly de�ned

as a level-set of this spa
e, whi
h is 
alled a front. The equations are designed

to make the front slow down on strong 
ontours and to minimize its perimeter

(or area in 3D) [9℄. The impli
it de�nition of the front ensures natural topology


hanges. However, this te
hnique is not designed to integrate a priori knowledge

on the image 
omponent (e.g., other geometri
 
riteria, referen
e shape).

In region growing methods [1℄, the extra
tion of an image 
omponent follows

two steps: (i) seeds are put within the 
omponent of interest and (ii) these seeds

grow by iteratively adding pixels to them a

ording to a merging predi
ate (ho-

mogeneity, simple geometri
 
riterion). These methods are interesting be
ause

on one hand they have a simple dimension independent formulation and on the

other hand they 
an segment obje
ts of arbitrary topology. However, they are

not well adapted to the extra
tion of inhomogeneous 
omponents.

This paper proposes an original approa
h based on a dis
rete geometri
 model

that follows an energy-minimizing pro
ess. The dis
rete geometri
 model is the

digital boundary of an obje
t growing within the image. The model energy is

distributed over all the boundary elements (i.e., the surfels). The energy of

ea
h element depends on both the lo
al shape of the boundary and the sur-

rounding image values. The number of possible shapes within an image grows

exponentially with its size. Therefore, the following heuristi
 is used to extra
t


omponents in an a

eptable time. The model is initialized as an obje
t inside

the 
omponent of interest. At ea
h iteration, a set of 
onne
ted elements (i.e.,

a voxel pat
h) is lo
ally glued to the model shape. The size and position of this

set are 
hosen so that the obje
t boundary energy be minimized. This expansion

strategy asso
iated with proper energy de�nitions indu
e the following model be-

havior: strong image 
ontours forms \wells" in the energy that hold the model,

the growth is at the same time penalized in dire
tions in
reasing the area and

lo
al 
urvature of the obje
t boundary, the model grows without 
onstraints

elsewhere.

This model 
asts the energy-minimizing prin
iple in a dis
rete framework.

Signi�
ant advantages are thus obtained: redu
ed sensibility to initialization,

modeling of arbitrary obje
ts, arbitrary image dimension. The paper is orga-

nized as follows. Se
tion 2 re
alls some ne
essary digital topology de�nitions

and properties. Se
tion 3 de�nes the model geometry and its energy. Se
tion 4

presents the segmentation algorithm. Segmentation results on 2D images are

presented and dis
ussed in Se
tion 5.

2 Preliminary de�nitions

A voxel is an element of the dis
rete n-dimensional spa
e Z

n

, for n � 2. Some

authors [11℄ use the term \spel" for a voxel in an n-dimensional spa
e; sin
e we
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feel that no 
onfusion should arise, we keep the term \voxel" for any dimension.

Let M be a �nite \digital parallelepiped" in Z

n

. An image I on Z

n

is a tuple

(M; f) where f is a mapping from the subset M of Z

n

, 
alled the domain of I ,

toward a set of numbers, 
alled the range of I . The value of a voxel u 2M in the

image I is the number f(u). An obje
t is any nonempty subset of the domain

M . The 
omplement of the obje
t O in M is denoted by O




.

Let !

n

be the adja
en
y relation on Z

n

su
h that !

n

(u; v) is true when u

and v di�er of �1 on exa
tly one 
oordinate. Let �

n

be the adja
en
y relation

su
h that �

n

(u; v) is true when u 6= v, and u and v may di�er of either �1, 0, or

1 on any one of their 
oordinates. If � is any adja
en
y relation, a �-path from a

voxel v to a voxel w on a voxel set A is a sequen
e u

0

= v; : : : ; u

m

= w of voxels

of A su
h that, for any 0 � i < m, u

i

is �-adja
ent to u

i+1

. Its length is m+ 1.

For any voxels u and v with !

n

(u; v), we 
all the ordered pair (u; v) a surfel

(for \surfa
e element" [11℄). Any nonempty set of surfels is 
alled a digital sur-

fa
e. For any given digital surfa
e �, the set of voxels fv j (u; v) 2 �g is 
alled

the immediate exterior of � and is denoted by IE(�). The boundary �O of an

obje
t O is de�ned as the set f(u; v) j !

n

(u; v) and u 2 O and v 2 O




g.

Up to now, an obje
t boundary is just viewed as a set. It is 
onvenient to have

a notion of surfel neighbors (i.e., a \topology") in order to de�ne 
onne
ted zones

on an obje
t boundary or to determine an obje
t by tra
king its boundary. In

our 
ase, this notion is 
ompulsory to de�ne a 
oherent model evolution. Besides,

de�ning an obje
t through its boundary is often faster.

De�ning an adja
en
y between surfels is not as straightforward as de�ning

an adja
en
y between voxels (espe
ially for n � 3). The problem lies in the fa
t

that obje
t boundary 
omponents (through surfel adja
en
ies) must separate

obje
t 
omponents from ba
kground 
omponents (through voxel adja
en
ies).

In this paper, we do not fo
us on building surfel adja
en
ies 
onsistent with a

given voxel adja
en
y. Consequently, given an obje
t O 
onsidered with a voxel

adja
en
y �, with either � = !

n

or � = �

n

, we will admit that it is possible

to lo
ally de�ne a 
onsistent surfel adja
en
y relation, denoted by �

O

, for the

elements of �O (3D 
ase, see [3℄; nD 
ase, Theorem 34 of Ref. [7℄). For the 2D


ase, Figure 2 shows how to lo
ally de�ne a surfel adja
en
y on a boundary.

The �

O

-adja
en
y relation indu
es �

O

-
omponents on �O. �

O

-paths on �O


an be de�ned analogously to �-paths on O. The length of a �

O

-path is similarly

de�ned. The �

O

-distan
e between two surfels of �O is de�ned as the length of

the shortest �

O

-path between these two surfels. The �

O

-ball of size r around a

surfel � is the set of surfels of �O whi
h are at a �

O

-distan
e lesser or equal to

r from the surfel �. Let � be a subset of �O. We de�ne the border B(�) of �

on �O as the set of surfels of � that have at least one �

O

-neighbor in �O n�.

The k-border B

k

(�) of � on �O, 1 � k, is the set of surfels of � whi
h have a

�

O

-distan
e lesser to k from a surfel of B(�).
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voxel surfel of dO

voxel in O surfel adjacency

Fig. 1. Lo
al 
omputation of surfel adja
en
ies in the 2D 
ase. The 4-adja
en
y (resp.

8-adja
en
y) has been 
hosen for the obje
t elements (resp. ba
kground elements).

3 The dis
rete deformable boundaries model

For the purpose of image segmentation, we introdu
e a geometri
 model to �t

image 
omponents. The model geometry (i.e., its shape) is de�ned as an obje
t in

the image. It is equivalently de�ned as the boundary of this obje
t. Note that the

model is not ne
essarily 
onne
ted. The model geometry is aimed to evolve from

an initial shape toward an image 
omponent boundary. This evolution depends

on an energy asso
iated to ea
h possible geometry of the model.

We identify the energy of an obje
t to the energy of its boundary. The energy

of an obje
t boundary �O, denoted by E(�O), is 
omputed by summation of

the energies of ea
h of its surfels. To get �ner estimates, the energy of a surfel

may depend on a small neighborhood around it on the obje
t boundary. That

is why we use the notation E(�)

�O

to designate the energy of the surfel � with

respe
t to �O (� must be an element of �O). By de�nition, we set E(�)

�O

=

P

�2�

E(�)

�O

, where � is any nonempty subset of an obje
t boundary �O.

The surfel energy is the sum of several energy terms. Two types of surfel ener-

gies are distinguished: the surfel energies that only depend on the lo
al geometry

of the boundary around the surfel are 
alled internal energies, the surfel energies

that also depend on external parameters (e.g., lo
al image values) are 
alled ex-

ternal energies. The lo
al geometri
 
hara
teristi
s required for the surfel energy


omputation are based upon a neighborhood of the surfel on the obje
t bound-

ary: it is a �

O

-ball on the obje
t boundary, 
entered on the surfel. To simplify

notations, we assume that this ball has the same size p for the 
omputation of

every surfel energy. The whole surfel energy is thus lo
ally 
omputed.

Internal energies allow a �ner 
ontrol on the model shape (e.g., smoothness).

External energies express the image/model adequation or other external 
on-

straints (e.g., similarity to a referen
e shape). The following paragraphs present

a set of internal and external energies pertinent to our segmentation purpose.

This set is by no way restri
tive. New energies 
an be spe
i�
ally designed for a

parti
ular appli
ation to the extent that the summation property is satis�ed.

Image features are generally not suÆ
ient to 
learly de�ne obje
ts: the bound-

ary 
an be poorly 
ontrasted or even in
omplete. To ta
kle this problem, we use

the fa
t that the shape whi
h most likely mat
hes an image 
omponent is gen-

erally \smooth". In our 
ase, this is expressed by de�ning two internal energies.

The stret
hing energy E

s

(�)

�O

of a surfel � is de�ned as an in
reasing fun
tion

of the area of the surfel �. The bending energy E

b

(�)

�O

of a surfel � is de�ned as

an in
reasing fun
tion of the mean 
urvature of the surfel �. Examples of area

and mean 
urvature 
omputations are given in Se
tion 5. Note that these ener-
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gies 
orrespond to the internal energies of many deformable models [4℄, whi
h

regularize the segmentation problem.

In our 
ontext, we de�ne a unique external energy, based on the image value

information. Sin
e the model evolution is guided by energy minimization, the

image energy E

I

(�)

�O

of a surfel � should be very low when � is lo
ated on a

strong 
ontour. A simple way to de�ne the image energy at a surfel � = (u; v) on

an obje
t boundary is to use the image gradient: E

I

(�)

�O

= �kf(v)� f(u)k

2

,

if I = (M; f). This de�nition is valid for arbitrary n.

The model grows by minimizing its energy at ea
h step. Sin
e the growing

is in
remental, an in
remental 
omputation of the energy would be pertinent.

More pre
isely, the problem is to 
ompute the energy of an obje
t O

0

given the

energy of an obje
t O in
luded in O

0

. In our 
ase, the digital surfa
es �O and

�O

0

generally have mu
h more 
ommon surfels than un
ommon surfels (as the

model is growing, this assertion is more and more true). The set of the 
ommon

surfels is denoted by �. The p-border of � on �O is identi
al to the p-border of

� on �O

0

. We 
an thus denote it uniquely by B

p

(�). The energy of �O and �O

0

is expressed by the two following equations:

E(�O) =

X

�2�O

E(�)

�O

= E(� nB

p

(�))

�O

+E(B

p

(�))

�O

+E(�O n �)

�O

;

E(�O

0

) =

X

�2�O

0

E(�)

�O

0

= E(� nB

p

(�))

�O

0

+E(B

p

(�))

�O

0

+E(�O

0

n �)

�O

0

:

From the surfel energy 
omputation, it is easy to see that the surfels of

� n B

p

(�), 
ommon to both �O and �O

0

, hold the same energy on �O and on

�O

0

. However, the energy of the surfels of B

p

(�) may (slightly) di�er whether

they are 
onsidered on �O or on �O

0

. We dedu
e

E(�O

0

)�E(�O)

| {z }

variation

= E(�O

0

n �)

�O

0

| {z }


reated surfels

�E(�O n �)

�O

| {z }

deleted surfels

+E(B

p

(�))

�O

0

�E(B

p

(�))

�O

| {z }

surfels 
lose to displa
ement

:

To get eÆ
ient energy 
omputations at ea
h step, ea
h surfel of the model

stores its energy. When a model grows from a shape O to a shape O

0

, the energy

of only a limited amount of surfels will have to be 
omputed: (i) the energy of


reated surfels and (ii) the energy of the surfels nearby those surfels.

4 Segmentation algorithm

In the energy-minimizing framework, the segmentation problem is translated into

the minimization of a 
ost fun
tion in the spa
e of all possible shapes. Finding

the minimum of this fun
tion 
annot be done dire
tly in a reasonable time.

Ex
ept for very spe
i�
 problems (e.g., what is the best 
ontour between two

known endpoints), heuristi
s are proposed to extra
t \a

eptable" solutions. For

the snake, an \a

eptable" solution is a lo
al minimum. We propose a heuristi


that builds a set of su

essive shapes likely to 
orrespond to image 
omponents.
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We �rst brie
y outline the segmentation pro
ess. The model is initialized as

a set of voxels lo
ated inside the obje
t to be segmented. At ea
h step, a voxel

pat
h is added to the model. A voxel pat
h of radius k around a surfel � on

the boundary �O is the immediate exterior of the �

O

-ball of size k around �.

To de
ide where a voxel pat
h is \glued" to O, its possible various lo
ations

are enumerated. Among the possible resulting shapes, the one with the smallest

energy is 
hosen. Unlike most segmentation algorithms, this pro
ess does not


onverge on the expe
ted image 
omponent. However, the state of the model at

one step of its evolution is likely to 
orrespond to the expe
ted image 
omponent.

The boundary of the obje
t of interest is hen
e determined a posteriori. This

te
hnique is similar to the dis
rete bubble prin
iple [2℄.

It is then possible to let the user 
hoose the shape pertinent to his problem

among the su

essive states of the model. A more automated approa
h 
an also

be taken. Sin
e the model growing follows a minimal energy path (among all

possible shapes within the image), the image/model adequation 
an be estimated

through the model energy at ea
h step. Consequently, the shape of minimal

energy often delineates an obje
t whi
h is a pertinent 
omponent of the image.

For now, k is a given stri
tly positive integer number. It 
orresponds to the

radius of the voxel pat
h that is added on the model at ea
h step. The following

pro
ess governs the growing evolution of the model and assigns an energy to

ea
h su

essive model state (see Fig. 2):

1. Assign 0 to i. Let O

0

be equal to the initial shape. The initial shape is a

subset of the image domain in
luded in the 
omponent(s) to extra
t. Let E

0

be equal to E(�O

0

).

2. For all surfels � 2 �O

i

, perform the following steps:

(a) Extra
t the �

O

i

-ball V

�

of radius k around �. De�ne O

�

as O

i

[ IE(V

�

).

(b) In
rementally 
ompute E(�O

�

) from E(�O

i

).

3. Sele
t a surfel � with minimal energy E(�O

�

).

4. Let O

i+1

be equal to O

�

. Let E

i+1

be equal to E(�O

�

). In
rement i.

5. Go ba
k to step 2 until an end 
ondition is rea
hed (e.g., O = M , user

intera
tion, automated minimum dete
tion).

In the experiments des
ribed in Se
tion 5, the end 
ondition is O =M , whi
h


orresponds to a 
omplete model expansion.

5 2D experiments

In order to validate this segmentation approa
h, a 2D prototype has been imple-

mented. The experiments emphasize the ability of our model to segment image


omponents in various 
ontexts: in
omplete or weakly 
ontrasted 
ontours, inho-

mogeneous 
omponents. In 2D, voxels 
orrespond to pixels and surfels are usually


alled pixel edges. We �rst 
onsider how energies are 
omputed and weighted.

We then highlight the model 
apabilities on both syntheti
 and medi
al images.
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added surfels

deleted surfels

surfels 
lose to displa
ement

�

O

i

O

i+1

surfel of �O

i

and its �

O

i

-ball

(a) (b) (
)

Fig. 2. A step in the model growing. (a) � is a surfel of the model boundary at step i.

(b) The voxel pat
h of radius 4 around � is added to the obje
t. (
) Model shape at

step i+ 1 if � is 
hosen as the best pla
e to make the model grow.

5.1 Energy 
omputation

For our experiments, the energies for a surfel � = (u; v) are 
omputed as follows:

{ The stret
hing energy E

s

(�)

�O

is the 
ontribution of the surfel � to the

model perimeter. The boundary �O 
an be viewed as one or several 4-


onne
ted paths. We adapt the Rosen-Pro�tt estimator to measure the 
on-

tribution of � to the boundary length. On the boundary path, � has two end-

points p

1

and p

2

. These points 
an either be \
orner" points or \non-
orner"

points. We set E

s

(�)

�O

= ( (p

1

);  (p

2

))=2, where  (p) =  




= 0:670 if p is

a 
orner point and  (p) =  

n


= 0:948 otherwise. Note that other perimeter

estimators 
ould be used (e.g., see [5℄).

{ The bending energy E

b

(�)

�O

is 
omputed as the ratio of the two distan
es l

and D, de�ned as follows. The �

O

-ball of size p around � forms a subpath of

�O, whi
h has two endpoints e

1

and e

2

. Its length l is 
omputed by the same

Rosen-Pro�tt estimator as above. The distan
e D is the Eu
lidean distan
e

of e

1

and e

2

. Many 
urvature estimation methods 
ould be implemented

(angular measurement, planar deviation, tangent plane variation, et
. [12℄).

{ The image energy E

I

(�)

�O

is de�ned as in Se
tion 3 as �kf(v)� f(u)k

2

. It

is the only external energy used in the presented experiments.

The energy of a surfel � on the boundary �O is the weighted summation of

the above-de�ned energies:

E(�)

�O

= �

s

E

s

(�)

�O

+ �

b

E

b

(�)

�O

+ �

I

E

I

(�)

�O

;

where �

s

, �

b

and �

I

are positive real numbers whose sum is one. To handle


omparable terms, internal energies are normalized to [0; 1℄. The image energy

is normalized to [�0:5; 0:5℄ to keep in balan
e two opposite behaviors: (i) should

the image energy be positive, the shape of minimal energy would be empty, (ii)

should the image energy be negative, long and sinuous shape would be favored.

Note that most 
lassi
al deformable models 
hoose a negative image energy

fun
tion. These 
oeÆ
ients allow us to tune more pre
isely the model behavior
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on various kinds of images. A set of 
oeÆ
ients pertinent to an image will be

well adapted to similar images.

5.2 Results

In all presented experiments, we 
onsider the model with the 4-
onne
tedness.

The surfel adja
en
y �

O

is therefore de�ned as shown on Fig. 2. The parameter

p is set to 4.

Sin
e our model sear
hes for 
ontours in images, inhomogeneous 
omponents


an eÆ
iently be segmented. We illustrate this ability on the test image of Fig. 3a.

This test image raises another segmentation issue: 
ontours are weak or even

inexistant on some lo
ations both between the disk and the ring and between the

disk and the ba
kground. Fig. 3b emphasizes three steps in the model evolution:

the initial shape, the iteration when the model lies on the disk{ring boundary

(a lo
al minimum in the energy fun
tion), the iteration when the model lies on

the ring{ba
kground boundary (the minimum of the energy fun
tion). Fig. 3


displays the energy fun
tion. At ea
h iteration, several pat
h radius sizes (i.e., k)

have been tested for ea
h surfel: k was between 0 and 6. The model su

essfully

delineates the two boundaries during its evolution, although the �rst boundary

indu
es a less signi�
ant minimum in the energy fun
tion than the se
ond one:

the �rst boundary is indeed not as well de�ned as the se
ond one.

0

111 292

Iter
787

Eng
(a) (b) (c)

292111

0

Fig. 3. Inhomogeneous 
omponents segmentation. (a) Test image: a 
ir
le �lled with a

shading from gray value 98 (top) to gray value 189 (bottom), a ring en
ir
ling it �lled

with a sharper shading from 0 (top) to 255 (bottom), a homogeneous ba
kground of

gray value 215. (b) Three signi�
ant steps in the model evolution: initial shape, disk{

ring boundary, ring{ba
kground boundary. (
) Energy 
urve for this evolution: the two

extra
ted boundaries 
orrespond to lo
al minima of the energy fun
tion.

The se
ond experiment illustrates the robustness of the segmentation pro
ess


ompared to the initial shape. The test image is a MR image

1

of a human heart

at diastole (Fig. 4a). Our obje
tive is to segment the right ventri
le. This image

1

A
knowledgements to Pr. Du
assou and Pr. Barat, Servi
e de M�ede
ine Nu
l�eaire

Hôpital du Haut Levêque, Bordeaux, Fran
e.
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omponent is inhomogeneous in its lower part and presents weak 
ontours on its

bottom side. The other 
ontours are more distin
t but are somewhat fuzzy. All

these defe
ts 
an be apprehended on Fig. 4b-
, whi
h show the image after edge

dete
tion. The middle row (Fig. 4d-f) presents three evolutions, one per 
olumn,

with three di�erent initial shapes. Ea
h image depi
ts three or four di�erent

boundaries 
orresponding to signi�
ant steps in the model evolution. The bottom

row (Fig. 4g-i) displays the 
orresponding energy 
urve. For this experiment,

only the pat
h radius size 3 is tested for ea
h surfel (i.e., k = 3). Whi
hever is

the initial shape, the model su

eeds in delineating the right ventri
le. The left

ventri
le may also be delineated in a se
ond stage (near the end of the expansion),

but it is more hazardous: the proposed initial shapes are indeed extremely bad

for a left ventri
le segmentation.

0
797 Iter

Eng

16455
0

164 807 Iter

Eng

154 798 Iter

Eng

0

(b) (c)(a)

(d) (e) (f)

(g) (h) (i)

164 797

055

164

0

807

0

154 798

Fig. 4. Robustness of the segmentation to initialization. (a) Test image: a MR image

of a human heart at diastole. (b) Image after Sobel �ltering. (
) Image after Lapla
e

edge dete
tion. The bottom two rows depi
t the model behavior for three di�erent

initial shapes (energy parameters are set to �

s

= 0:25, �

b

= 0:25, �

I

= 1). The middle

row (d-f) shows signi�
ant steps in the model evolution (initialization, important lo
al

minima). The 
orresponding energy 
urves are drawn on the bottom row �gures (g-i).
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Our prototype does not in
lude all the optimizations whi
h 
ould be imple-

mented for the 2D 
ase (e.g., eÆ
ient traversal of surfel adja
en
y graphs, various

pre
omputations). For the heart image, whose size is 68�63, the 
omplete model

evolution takes 349s. The right ventri
le is dete
ted after 40s.

6 Con
lusion

We have presented a dis
rete deformable model for segmenting image 
ompo-

nents. The segmenting pro
ess is 
arried out by expanding a digital surfa
e

within the image under internal and external 
onstraints. The external 
on-

straint (i.e., the image energy) stops the model expansion on strong 
ontours.

At the same time, the internal 
onstraints regularize the model shape. The ro-

bust framework of energy-minimizing te
hniques is thus preserved. The signif-

i
ant advantages of this model are its dimension independen
e and its ability

to naturally 
hange topology. The �rst results on both syntheti
 and real-life

data are very promising. They underline the model abilities to pro
ess images

with poor 
ontours and inhomogeneous 
omponents. Moreover, our segmenta-

tion te
hnique is less sensitive to initialization than 
lassi
al energy-minimizing

te
hniques. Further information 
an be found in [8℄.
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