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Abstrat:

The de�nition and extration of objets and their boundaries within an image are essential

in many imaging appliations. Classially, two approahes are followed. The �rst onsiders

the image as a sample of a ontinuous salar �eld: boundaries are impliit surfaes in this

�eld; they are often alled iso-surfaes. The seond onsiders the image as a digital spae with

adjaeny relations and lassi�es elements of this spae as inside or outside: boundaries are

pairs omposed of one inside element and one outside element; they are alled digital boundaries.

In this paper, we show that these two approahes are losely related. This statement holds for

arbitrary dimensions. To do so, we propose a loal method to onstrut a ontinuous analog of a

digital boundary. The ontinuous analog is designed to satisfy properties in the Eulidean spae

that are similar to the properties of its ounterpart in the digital spae (e.g., onnetedness,

loseness, separation). It appears that this ontinuous analog is indeed a pieewise linear

approximation of an iso-(hyper)surfae (i.e., a triangulated iso-surfae in the three-dimensional

ase). Furthermore, we derive signi�ant digital boundary properties from its ontinuous analog

using the Jordan{Brouwer separation theorem: new Jordan pairs, new adjaenies between

boundary elements, new Jordan triples. We onlude this paper by illustrating the 3D ase

more preisely. In partiular, we show that a digital boundary an be transformed diretly

into a triangulated iso-surfae. The implementation of this transformation and its eÆieny

are disussed with a omparison with the lassial marhing-ubes algorithm.





1 Introdution

In many areas of siene and engineering, n-dimensional (nD) data sets representing a sample of

some physial phenomenon at disrete loations (e.g., in spae, in time) are routinely produed.

With a areful study of these samples, it is possible to extrat valuable information on the

harateristis of the analyzed objets. When a sample is taken on the verties of a disrete

grid and is salar valued, the term image is often employed. Many imaging appliations need to

de�ne and extrat boundaries of objets from these images, for instane for visualization, shape

reovery, quantitative analysis, editing, or simulation. The indued issues have been takled in

many ways (e.g., surfae and volume rendering, deformable models, reonstrution from slies,

level-set approahes), but disrete methods for extrating boundaries (i.e., surfaes in the 3D

ase) have appeared to be a good (and fast) trade-o� for this purpose. Although 2D and 3D

images are urrently the most ommon images, higher dimensional images are now available

and are likely to beome more ommon in the near future. Dynami magneti resonane images

(ardia imagery) and spetrosopi magneti resonane images are examples of 4D images.

Five dimensional images have also been reported in the literature [13℄.

Two lasses of disrete methods have been used to takle the boundary extration problem.

One embeds the image into the Eulidean spae to extrat triangulated (hyper)-surfaes in

this spae, the image disreteness providing the resolution of the reonstrution. The other

onsiders the image as a digital spae and extrats digital boundaries. In a �nal phase, the

digital boundaries an be immersed in the spae as a set of squares or retangular elements

(in 3D), e.g., for visualization purposes. Even if many algorithms found in the literature are

3D, arbitrary dimensional methods to extrat boundaries are available, both in the ontinuous

point of view [4℄ and in the digital point of view [41℄).

The methods of the �rst lass onsider the image as a sampling of a salar ontinuous �eld

on the points of a disrete grid. Their objetive is to extrat a pieewise linear approximation

of an impliitly de�ned surfae inside this �eld (i.e., a triangulated surfae in the 3D ase).

Sine the impliit surfae is de�ned as a set of points having the same value in the �eld, these

methods are often alled iso-surfae extration methods. The extrated triangulated surfaes

delineate boundaries of objets in the image. Note that many impliit surfae polygonization

methods, whih are devoted to the tiling of impliit surfaes within an analytially de�ned �eld,
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an be employed to extrat iso-surfaes in most ases. Roughly speaking, these methods an

be divided into two groups (a survey an be found in [8℄): one group sans (either by regular,

irregular or hierarhial subdivision of the spae) the whole domain of the �eld to extrat all

the omponents of the impliitly de�ned surfae [7, 9, 10, 12, 20, 30, 40, 44℄, the other group

traks one onneted omponent of the impliitly de�ned surfae [3, 4, 7, 45℄. These meth-

ods onstrut triangulated surfaes that possess good topologial and geometrial properties

(manifolds in the spae, pieewise linear surfaes), and they an be rendered eÆiently on

modern workstations. Furthermore, these surfaes an easily be reused in other appliations

(e.g., biomedial simulators, CAGD appliations, omputer assisted surgery) for visualization,

analysis or editing.

The methods of the seond lass onsider the image as a disrete spae of points with a er-

tain de�nition of adjaeny between these points; these points are lassially alled voxels. They

assume that a preproessing step has lassi�ed these voxels as foreground voxels or bakground

voxels. The objets inside the image are then de�ned as the onneted omponent of foreground

voxels determined by the adjaeny. For visualization and analysis of these objets (espeially

if the dimension of the image is greater than or equal to two), it is more onvenient and more

eÆient to use a boundary desription of these objets in the form of a digital boundary. An

important amount of literature has been devoted to their de�nitions in varied digital spaes

and orresponding properties, and to their omputation [5, 15, 19, 16, 18, 1, 17, 29, 24, 43, 41℄.

Digital boundaries have signi�ant topologial properties in the digital spae (digital analog of

Jordan property) and, to some extent, they an be used for quantitative analysis and objet

editing. Compared to triangulated iso-surfaes, onneted digital boundaries may also repre-

sent an iso-surfae approximation and are more quikly omputed and displayed. However,

their geometrial harateristis are less readily de�ned sine they are lassially embedded

in the Eulidean spae as orthogonal retangular elements. De�ning onsistent geometrial

harateristis to digital sets is urrently an ative area of researh (whih is generally alled

disrete geometry).

Although these two lasses of approahes share the same objetive, they are hardly ever

related. Indeed, �nding an iso-surfae of value s inside a gray-level image is similar to �nding

the boundaries of the same image but thresholded by s. In this paper, we propose a loal
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approah to onstrut a ontinuous analog of any digital boundary in arbitrary dimension.

The ontinuous analog may be seen as an embedding into the Eulidean spae of a digital

boundary, whose topology is dependent on the topology of the digital boundary (the hosen

digital adjaenies), and whose geometry is dependent on an embedding funtion (similar to the

linear interpolation of iso-surfae extration methods). By this way, ontinuous analogs share

many ommon properties with their ounterpart in the digital spae: eah ontinuous analog

is (strongly) onneted and disjoint from other ontinuous analogs of the image, two points

separated by a digital boundary in the digital spae are separated by its ontinuous analog in

the Eulidean spae and onversely, there is a one-to-one orrespondene between the set of

elements of a digital boundary and the set of verties of its ounterpart. The ontinuous analog

is de�ned as a (n � 1)-dimensional polyhedral omplex with manifold properties. Using this

de�nition, the following signi�ant results are demonstrated in this paper:

� Continuous analogs are pieewise linear approximations of an iso-potential set (multidi-

mensional extension of iso-surfae) in a gray-level image. In the 3D spae, we show that

ontinuous analogs orrespond niely to triangulated iso-surfaes.

� New properties of digital boundaries are dedued from lassial results of Eulidean spae

topology (espeially the Jordan{Brouwer separation theorem): new Jordan pairs [16℄ and

Jordan triples [41℄ are exhibited for arbitrary dimensions.

� In the 3D spae, we show that a digital boundary along with the adjaenies between

its elements is losely related to triangulated iso-surfae as onstruted by the marhing-

ubes algorithm [30℄ and its derivatives. Consequently, lassial algorithms of digital

surfae traking [5, 15℄ ould be used to quikly onstrut a onneted ontinuous analog,

hene a omponent of the iso-surfae.

� Contrary to other existing arbitrary dimensional methods whih extrat impliit (hyper)-

surfaes with a simpliial deomposition of the spae [4℄, our approah is based on a

ubial deomposition of the spae. A greater piee of the (hyper)-surfae is thus built

at eah step.

This paper is organized as follows. In Setion 2, we reall useful de�nitions of digital

and ombinatorial topology and we present how a set of voxels onsidered with an adjaeny
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relation an be mapped into the Eulidean spae, so that they possess analog properties. In

Setion 3, we de�ne the ontinuous analog of digital boundaries in arbitrary dimension and

we exhibit several properties of these sets. In Setion 4, di�erent appliations of ontinuous

analogs are presented. Setion 5 is devoted to the 3D ase, where the relationship between

digital boundaries and triangulated iso-surfaes is preisely examined. Setion 6 states some

onluding remarks. Appendies present the notation onventions used throughout the paper

as well as several onvex analyti geometry and ombinatorial topology de�nitions and results.

2 Preliminary de�nitions

In this setion, we reall useful de�nitions of digital topology and of ombinatorial topology.

After that, we propose a method to map voxels into the Eulidean spae aording to their

adjaenies; i.e., we build a ontinuous analog of a set of voxels. This mapping will be ritial

to dedue properties on digital boundaries in Setion 4. In order to have a ontinuous analog, a

digital boundary must be de�ned by adjaenies that follow some properties: these properties

are desribed at the end of this setion.

2.1 Digital topology de�nitions

2.1.1 Voxel, image, binary image

In this paper, we assume that n is an integer number with n � 2. We will interpret Z

n

as

the set of points with integer oordinates in the Eulidean n-dimensional spae R

n

. A voxel

is an element of Z

n

; it is thus a point in R

n

with integer oordinates. (Some authors [41℄ use

the term \spel" for a voxel in a n-dimensional spae; sine we feel that no onfusion should

arise, we keep the term \voxel" for any dimension.) If u is a voxel of Z

n

, its i-th oordinate,

1 � i � n, is denoted by u

(i)

.

Let E be a \digital parallelepiped," i.e., E = fu 2 Z

n

j �e

(i)

� u

(i)

� e

(i)

g for some voxel e

in the stritly positive orthant of Z

n

. An image I on Z

n

is a tuple (E; f) where f is a mapping

from the subset E of Z

n

, alled the domain of I, toward a set of numbers, alled the range of

I. An image whose range is f0; 1g is alled a binary image. The value of a voxel u 2 E in the

image I is the number f(u). The domain is �nite by de�nition. Furthermore we onsider only
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images where all voxels on the border of the domain have the same value. (The image I is a

sene over Z

n

as de�ned in [41℄.)

When I � (E; f) is a binary image, we de�ne the foreground of I as the subset of E

U(I) � f 2 E j f() = 1g. We similarly de�ne its omplement in E, the bakground of I, as

N(I) � f 2 E j f() = 0g. The elements of U(I) are alled 1-voxels (of I) and the elements

of N(I) are alled 0-voxels (of I).

2.1.2 Digital m-ubes, open and losed m-ubes

The following subsets of Z

n

or R

n

will help us to loalize the onstrution of ontinuous

analogs. For any two voxels  and d, we set k � dk

1

=

P

n

i=1

j

(i)

� d

(i)

j and k � dk

1

=

max

i=1;:::;n

j

(i)

� d

(i)

j. For 0 � m � n, a digital m-ube A is a subset of Z

n

suh that two of

its elements  and d satisfy both k � dk

1

= 1 and k � dk

1

= m and, for any u 2 A, the

statement 81 � i � n; 

(i)

� u

(i)

� d

(i)

holds. A digital m-ube ontains 2

m

elements. In the

following, digital m-ubes will onveniently be denoted by C

m

(and when several are needed,

by C

m

1

, C

m

2

, et). The losed onvex hull (in R

n

) of the voxels of a digital m-ube is alled

a losed m-ube. This onvex set is learly m-dimensional. The interior of a losed m-ube is

alled an open m-ube or more simply a m-ube (it is equal to the open onvex hull of the voxels

of the same digital m-ube). There is a one-to-one orrespondene between digital m-ubes

and (losed or open) m-ubes. Therefore, for a given digital m-ube C

m

, its orresponding

m-ube (respetively, losed m-ube) will be denoted by C

m

(respetively, C

m

). The reiproal

notations also hold. The set of all open m-ubes of R

n

, for 0 � m � n, partitions the spae R

n

into points, edges, squares, ubes, hyperubes, et.

If we follow the analogy with a lassial iso-surfae extration tehnique [30℄, the digital

3-ubes are exatly the \ubes" of the \marhing ube" algorithm.

2.1.3 Voxel adjaeny, digital onnetedness

Let !

n

be the binary relation on Z

n

suh that the statement !

n

(u; v) is true when ku�vk

1

= 1.

Let �

n

be the binary relation on Z

n

suh that the statement �

n

(u; v) is true when ku�vk

1

= 1.

Following Herman [16℄ and Udupa [41℄, a binary relation � on Z

n

is said to be an adjaeny

between voxels i� all of the following onditions are satis�ed: (i) � is irreexive and symmetri;
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(ii) !

n

� �; (iii) � � �

n

; (iv) for every three distint voxels , d, and e, if �(; d) and, for eah

1 � j � n, e

j

lies between 

j

and d

j

then �(; e); (v) � is translation invariant, i.e., �(; d)

implies �( + x; d + x) for any voxels , d and any integer translation vetor x. When � is

an adjaeny relation on Z

n

and two voxels  and d are suh that �(; d), we say that  is

�-adjaent to d. Any voxel u is �-adjaent to a �nite number of voxels.

We note that the relation !

3

is the lassial 6-adjaeny and that the relation �

3

is the

lassial 26-adjaeny [22℄. We will use two other adjaeny relations in this paper. The �

n

-

adjaeny is de�ned as the binary relation on Z

n

suh that �

n

(u; v) if �

n

� �

n

and ku�vk

1

� 2.

The �

n

-adjaeny is de�ned as the binary relation on Z

n

suh that �

n

(u; v) if �

n

� �

n

and

ku� vk

1

� n� 1. In Z

3

, �

3

and �

3

oinide with the lassial 18-adjaeny.

Let � be a voxel adjaeny on Z

n

. For any  and d in A � Z

n

, a sequene u

0

; : : : ; u

j

of elements of A is said to be a �-path in A onneting  to d if u

0

= , u

j

= d, and, for

1 � i < j, �(u

i

; u

i+1

). In this ase, we say that  is �-onneted in A to d. We note that the

�-onnetedness in A is an equivalene relation and it partitions A into �-omponents. A is

said to be �-onneted when it has exatly one omponent. When no onfusion may arise, we

will use the terms �-onneted instead of �-onneted in A.

2.1.4 Surfel, digital surfae, boundary, ��-boundary

For any voxel  and d with !

n

(; d), we all the ordered pair (; d) a surfel (for \surfae element"

[16, 41℄). Any nonempty set of surfels is alled a digital surfae. The boundary �(A;B) between

two disjoint subsets A and B of Z

n

is de�ned as the set �(A;B) = f(; d) j !

n

(; d) and  2

A and d 2 Bg. When not empty, it is a digital surfae.

Let I be a binary image. A surfel (; d) is alled a boundary surfel of I if  2 U(I) and

d 2 N(I). The set of all boundary surfels of I is denoted by B (I). Let � and � be two

adjaenies between voxels and let O be any �-omponent of U(I) and Q any �-omponent of

N(I). The set �(O;Q) is alled a ��-boundary of I, provided it is not empty. It is easy to see

that any boundary surfel of B (I) is ontained in a unique ��-boundary of I.

Note that digital surfaes may also be de�ned as sets of voxels [21, 23, 31, 33℄ or as a set

of squares and triangles in R

3

[11℄. In the following, digital surfaes are always sets of surfels.

6



2.1.5 Jordan pairs for n

As it was emphasized in the introdution, the extration of objets and boundaries from n-

dimensional images is a fundamental issue. A ��-boundary is a suitable de�nition for a bound-

ary in a digital spae. In the 3D spae, it an be visualized as a set of losed squares parallel to

axis planes. Ideally, these squares should separate 1-voxels from 0-voxels. Unfortunately, this

is not always the ase for arbitrary � and � adjaenies. This is why we need to reall other

de�nitions and properties linked to ��-boundaries.

For any digital surfae �, its immediate interior II(�) is de�ned as the set f 2 Z

n

j

9d; (; d) 2 �g, and its immediate exterior IE(�) is de�ned as the set fd 2 Z

n

j 9; (; d) 2 �g.

A digital surfae � is said to be near-Jordan if every !

n

-path from an element of II(�) to an

element of IE(�) exits through � (i.e., there exist two onseutive voxels u

i

and u

i+1

of the

!

n

-path suh that (u

i

; u

i+1

) 2 �). If every ��-boundary of every binary image in Z

n

is near

Jordan, then (�; �) is alled a Jordan pair for n. It has been demonstrated in [16℄ that (�; �)

is a Jordan pair for n i� (�; �) is a Jordan pair for n. We will thus use the unordered notation

f�; �g for Jordan pairs.

If f�; �g is a Jordan pair for n, the ��-boundaries of any image I have the following

interesting property: they separate �-omponents of 1-voxels from �-omponents of 0-voxels

in the digital spae (Z

n

; !

n

). They form also a partition of Z

n

into two onneted lasses, one

of them being �nite: their interior elements and their exterior elements. These properties are

very similar to the properties of onneted losed (n � 1)-dimensional manifolds in the spae

R

n

, whih separate the spae into two onneted sets, one of them being �nite, suh that the

boundary of these sets is exatly the (n� 1)-manifold. The ��-boundaries thus de�ne objets

by their boundary, whih is a onvenient representation espeially for n = 3.

Consequently, �nding the Jordan pairs for any n has both theoretial and pratial on-

sequenes. We show in the remainder of the paper that we an extrat new Jordan pairs

by building a ontinuous analog to ��-boundaries (see Setion 4.1). Note that the de�nition

of ��-boundary does not ontain the notion of \adjaeny" and \onnetedness" between its

elements. This notion is also important for the extration of ��-boundary by traking their

elements along their adjaenies. We will takle this issue in Setion 4.3 and, for the 3D ase,

in Setion 5.2.
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2.2 Complexes

The analog of digital boundaries is built using basi elements in the Eulidean spae that

�t together. The omplex is a lassial tool of ombinatorial topology that answers to these

requirements. We present here two spei� lasses of omplexes whih are suÆient to our

purpose: the Eulidean omplex and the polyhedral omplex. Their onstitutive elements, the

simplex and the onvex polyhedral domain, respetively, are de�ned in Appendix B. Additional

de�nitions and properties of omplexes are presented in Appendix D.

A Eulidean omplex K is a �nite set of mutually disjoint Eulidean simplexes situated in

some R

n

suh that every fae of every simplex of K is also an element of K. The set K may be

partially ordered as follows: a simplex � 2 K preedes a simplex �

0

2 K (denoted by � � �

0

)

if � is a proper fae of �

0

. � is inident to �

0

if either � � �

0

or �

0

� �. This de�nition is the

restrition to �nite omplexes of the de�nition given in [28℄. It orresponds to the de�nition of

triangulation given in [2℄. The dimension of K is the maximal dimension of its simplies.

The de�nition of a polyhedral omplex is obtained by replaing the word \simplex" in

the de�nition of Eulidean omplex by \onvex polyhedral domain," leaving everything else

unhanged. Any p-dimensional element of a polyhedral omplex K will be alled a p-ell of

K. Any Eulidean omplex is a polyhedral omplex. The union of the elements of K (as point

sets of a given R

n

) is alled the body of the omplex K and is denoted by kKk.

Every subset K

0

of a omplex K (either Eulidean or polyhedral) is alled a subomplex

of K i� �; �

0

2 K

0

and � � �

0

in K implies � � �

0

in K

0

. Informally, the inidene relations

between elements of the subomplex K

0

are the inidene relations between these elements in

the omplex K.

Note that any set whih is the body of some Eulidean omplex is alled a polyhedron. A

polyhedron may as well be de�ned as the body of some polyhedral omplex. This de�nition

orresponds to the intuitive notion of polyhedron. Sine we will build the ontinuous analog

loally, piee by piee, the following subomplex will be useful:

Lemma 1. Let D be any losed set of R

n

. If L is the subomplex of a Eulidean omplex K

(respetively, polyhedral omplex K) whose elements are the elements of K that are a subset of

D, then L is either empty or is a Eulidean omplex (respetively, polyhedral omplex). This

subomplex (empty or not) will be onveniently denoted by K eD.
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Proof. All elements of this subomplex are learly disjoint. Assuming L is not empty and

� 2 L, let �

0

be a fae of � in K. We have �

0

� � � D = D and �

0

is also in L. 2

2.3 Continuous analogs of voxels

Lateki [27℄ de�nes the ontinuous analog of a voxel p 2 Z

3

as the losed unit ube entered

at this point with faes parallel to the oordinates planes. By imposing some properties on

the binary images, several interesting results an be derived from this de�nition (e.g., a Jordan

property, all onnetednesses are equivalent). Sine we wish to deal with arbitrary images, we

take an opposite approah: instead of imposing some properties on binary images, we onstrain

the set of possible adjaeny relations between voxels.

Therefore, we propose a di�erent way to map a set of voxels into the Eulidean spae. This

mapping is dependent on the digital onnetedness hosen for this set of voxels. By this way,

onneted omponents in the digital spae are also onneted in the Eulidean spae. Refer to

Appendix B for lassial de�nitions related to arbitrary dimensional onvex sets.

De�nition 2 (�-deomposition of Z

n

). Let � be an adjaeny relation in Z

n

. We de�ne

the �-deomposition G

�

(Z

n

) of Z

n

, as the aggregate of subsets of R

n

the elements of whih are

de�ned by:

(i) all the voxels of Z

n

as points of R

n

(alled the 0-ells of the deomposition);

(ii) All the open segments of R

n

between 0-ells when the orresponding voxels are �-adjaent

(alled the 1-ells of the deomposition);

(iii) For 2 � j � n, all the j-dimensional onvex polyhedral domains whose boundary is

omposed of disjoint i-ells, 0 � i < j, and that are minimal: 8�;  2 G

�

(Z

n

) � �  )

� =  . These elements are alled the j-ells of the deomposition.

Note that G

!

n

(Z

n

) is the standard ubial partition of the spae R

n

into verties, edges,

squares, ubes, hyperubes, et. Hene, any m-ube is an element of G

!

n

(Z

n

). Any i-ell from

a �-deomposition is built on 0-ells (the extremal points of its losure are 0-ells). By analogy

with polyhedra, the 0-ells bordering an i-ell � (i.e., the set Extr(�)) are alled the verties

9



1 0 0 1 1

0 1 1 1 0

0 1 1 0 0

0 0 0 0 0

(a) (b) () (d)

Figure 1: (a) Binary image I as a set of 0 and 1 in a digital spae; (b) 8-deomposition of the

foreground of I and 4-deomposition of the bakground of I; () orresponding 8-volume and

4-volume of the same sets (as subset of R

3

); (d) orresponding 8-1-skeleton and 4-1-skeleton of

the same sets (as subset of R

3

).

of �. By de�nition, these verties are voxels of Z

n

. The aggregate G

�

(Z

n

) is generally not a

polyhedral omplex.

We an de�ne the �-deomposition G

�

(A) of any subset A � Z

n

as the set G

�

(A) = f� 2

G

�

(Z

n

) j Extr(�) � Ag. The 0-ells of G

�

(A) are the elements of A.

Now we de�ne a ontinuous analog of any set of voxels onsidered with an adjaeny

relation into the spae R

n

. Informally speaking, any set of voxels �lls a part of the spae R

n

that depends on the adjaeny hosen for this set. In R

3

, this de�nition is losely related to

the de�nition of digital polyhedra [21℄. A digital polyhedron is reated by olleting all disrete

simplexes de�ned by eah possible digital 3-ube of the image. However, the authors of [21℄

restrit their study to objets whose boundary is a ellular omplex. Besides, the onstrution

of digital polyhedra is based on the use of a table of simplexes, whih is given as is: proofs

annot be derived from that kind of formulation.

De�nition 3 (�-volume and �-m-skeleton). The �-volume of a set of voxels A is the subset

of R

n

that is the union (in R

n

) of all the elements of G

�

(A). We all �-m-skeleton of A, for

0 � m � n, the subset of R

n

that is the union (in R

n

) of all the i-ells of G

�

(A), for 0 � i � m.

The �-m-skeletons of A are thus subsets of the �-volume of A.

Figure 1 illustrates the notion of �-deomposition and of �-volume of sets of voxels. The

�-volume of A is a onvenient ontinuous analog of voxels beause of the following proposition,

whih states that the digital onnetedness property of a set of voxels is equivalent to the on-

10



netedness property of its ontinuous analog, when n � 3 (see omplete proof in Appendix C):

Proposition 4. The following three statements are equivalent, if A is a �nite set of voxels and

� an adjaeny relation:

(i) (arbitrary n) the set A is �-onneted,

(ii) (arbitrary n) the �-1-skeleton of A is onneted,

(iii) (n � 3) the �-volume of A is onneted.

and (i) ) (iii) and (ii) ) (iii) for arbitrary n.

The whole Proposition 4 is true also for the adjaeny relations �

n

and !

n

for arbitrary

n. Although we have not found any ounterexample, we do not know yet whether or not

Proposition 4 is true for any � and n. In the 3D ase, this proposition entails that if a set of

voxels A has k �-onneted omponents, then its ontinuous analog, the �-volume of A, has

also k onneted omponents. This equivalene will be espeially useful �nding new Jordan

pairs for n, where only the equivalene (i) , (ii) will be used in the proof (Theorem 29).

2.4 Spei� adjaenies

In order to build a surfae in R

3

(or a set in R

n

) separating the 1-voxels from the 0-voxels of a

binary image I, we must add two additional onstraints on the adjaeny relations with whih

these sets are onsidered: the �rst is linked to the embedding of the voxels in R

n

(i.e., if these

two embeddings interset, then there is no possible way to build a surfae separating them),

the other is linked to the way this \surfae" is built (i.e., the surfae is built piee by piee;

these piees must �t together).

De�nition 5 (Proper adjaeny pair). A pair f�; �g of adjaeny relations between voxels

is said to be proper if for any two disjoint sets A, B of voxels, all the elements of G

�

(A) are

disjoint from all the elements of G

�

(B).

It is easy to see that any pair f!

n

; �g is proper, and, for any � 6= !

n

, the pair f�; �

n

g is not

proper. Further, if f�; �g is proper, then any f�

0

; �

0

g, �

0

� � and �

0

� �, is proper.

11



Clearly, the fat that a pair of adjaeny relations is proper is a neessary ondition to build

a ontinuous analog to a ��-boundary that separates ontinuous analogs of the foreground from

ontinuous analogs of the bakground. We have the following simple lemma:

Lemma 6. For n � 3, if �

n

� � and f�; �g is proper, then � = !

n

.

Proof. It is suÆient to onsider the ase of two diagonally opposite voxels in a digital 2-ube.

Point (iv) of the voxel adjaeny de�nition onludes the argument. 2

We introdue the following de�nition, whih will be useful in the ase n = 2: a pair f�; �g

of adjaeny relations between voxels is said to be onneting when, for any binary image I

and any digital n-ube C

n

of I, either the set of 1-voxels in C

n

is �-onneted or the set of

0-voxels in C

n

is �-onneted.

The ontinuous analog of a digital boundary is onstruted n-ube by n-ube. Eah piee

onstruted in a digital n-ube must �t with the piees built in the adjaent digital n-ubes.

Consequently, we introdue the following de�nition, whose purpose will learly appear in the

remainder of the paper (see Setion 3.2.1):

De�nition 7 (quasi-omplete adjaeny). Any adjaeny relation � between voxels is said

to be quasi-omplete if �

n

� �.

Note that �

n

is quasi-omplete, !

n

is not quasi-omplete for any n > 2, �

n

is not quasi-

omplete for any n > 3. An immediate orollary to Lemma 6 is:

Lemma 8. For n � 3, if � is quasi-omplete and f�; �g is proper, then � = !

n

and f�; �g is

onneting.

3 Continuous analogs of digital boundaries

Starting from any binary image I (possibly obtained by thresholding a gray-level image), we

would like to build a ontinuous analog to any ��-boundary of I, if (�; �) is the onnetedness

pair hosen for the foreground and for the bakground of I.

Following the analogy with iso-surfae extration tehniques, we propose a loal approah to

this onstrution. In [30℄, the authors build an iso-surfae loally on eah group of eight adjaent

12



(26-adjaent) voxels forming a ube. Within eah \ube," a set of triangles is extrated. The

algorithm \marhes" on all \ubes" of the image to extrat the whole triangulated surfae.

Eah \ube" shares \faes" of four voxels with adjaent \ubes." With this property, the

triangles built within a \ube" theoretially �t with the triangles built within an adjaent

\ube."

In fat, this was not exatly the ase in the original paper, and the whole set of triangles

did not form a losed surfae, as lassially de�ned (a 2-manifold without boundary): some

holes are present in the set. Di�erent approahes have been proposed to orret the so-alled

\topologial ambiguity" problem of the marhing ubes [14, 34, 35, 36, 38℄. None of the

proposed methods are expliitly based on the introdution of digital onnetedness.

The ontinuous analog of a ��-boundary in a binary image will provide a formal way to

build loally a surfae (or hypersurfae in arbitrary dimension) separating two sets. As it is

shown in Setion 5, the ontinuous analog will niely orrespond to the usual de�nition of

iso-surfae in the 3D ase.

We begin by mapping the elements of a digital boundary (i.e., the boundary surfels) into the

Eulidean spae and then we present the onstrution of the ontinuous analog as a polyhedral

omplex whose verties are the mapped boundary surfels.

3.1 Mapping boundary surfels into R

n

The �rst step in onstruting a ontinuous analog to digital ��-boundaries is to map their

elements into R

n

. Let I be any binary image in Z

n

and B (I) its set of all boundary surfels.

Any mapping h from the spae B (I) to the spae R

n

is alled a boundary mapping of I into

R

n

if, for t = (; d) 2 B (I), h(t) lies in the open segment of R

n

whose endpoints are  and d.

This de�nition of boundary mapping is partiularly useful in the ontext of the omputation

of an iso-surfae within a gray-level image. Indeed, let J = (E; f) be a gray-level image in Z

n

and let s be an iso-value. The thresholded image J

s

= (E; f

s

) is a binary image (f(v) � s )

f

s

(v) = 0 and f(v) > s) f

s

(v) = 1). It ontains a set of boundary surfels B (J

s

). Let h

s

be a

mapping from B (J

s

) to R

n

suh that:

h

s

: (u; v) 2 B (J

s

) 7�! h

s

(u; v) =

�

1�

s� f(u)

f(v)� f(u)

�

u+

�

s� f(u)

f(v)� f(u)

�

v:
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It is easy to verify that h

s

is a boundary mapping of J

s

into R

n

when f does not take the value

s on any of the voxels of J . Notie that, if s = f() for some voxel  in E, then the mapping

h

s

may not be one-to-one any more. Sine we annot build a polyhedral omplex on verties

that are not all pairwise disjoint, we will always assume in the following that either s 6= f()

for any voxel  in E or h

s

is built in suh a way that it is a boundary mapping of J

s

into R

n

.

The boundary mapping h

s

gives the linear approximation of the intersetion of the iso-

potential set de�ned by s with the segments between adjaent voxels. It is similar to the linear

approximation of the surfae{edge intersetion of the marhing ube [30℄. Note that if the

negative image of J

s

is J

�

s

, then we an de�ne a negative boundary mapping h

�

s

from B (J

�

s

)

to R

n

suh that h

�

s

(v; u) = h

s

(u; v) sine (v; u) 2 B (J

�

s

) , (u; v) 2 B (J

s

). The algebrai

expression of h

�

s

is idential to the expression of h

s

(only the domain hanges).

Most of the results we are presenting in this paper are independent of the hosen boundary

mapping for a given image. Only the geometry of the ontinuous analog is dependent on it.

The boundary mapping highlights the fat that the ontinuous analog of a digital boundary

an be interpreted as a triangulated approximation of some iso-potential set. In partiular, the

ontinuous analog oinides with a triangulated iso-surfae for the ase n = 3 (see Setion 5).

When a binary image I does not ome from the thresholding of a gray-level image, any boundary

mapping an be hosen for I; for some �gures, the trivial boundary mapping g : (u; v) 2 B (I) 7!

(u+ v)=2 will be onveniently used.

For any image I and any boundary mapping h of I, the elements of h(B (I)) are alled

boundary verties indued by h (or simply boundary verties when no onfusion may arise).

The set of all the boundary verties of I indued by h is denoted by A

h

(I). The mapping h

is a one-to-one mapping from B (I) to A

h

(I). If O is a set of 1-voxels in I, we will also use

the notation A

h

(O) to designate the boundary verties h(u; v) with u 2 O. If C is any set

of voxels, the notation A

h

(O;C) indiates the subset of A

h

(O) whose elements h(u; v) follow

u 2 O and v 2 C.

3.2 Continuous analog de�nition

In this setion, we use the following notations: I is a binary image and h a boundary mapping

of I, O is a �-onneted omponent of 1-voxels in I, Q is a �-onneted omponent of 0-voxels
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in I, � is the ��-boundary of O and Q (supposed to be nonempty). The adjaeny pair f�; �g

is supposed to be proper and onneting. We de�ne the ontinuous analog of a ��-boundary

in four steps:

1. First, we de�ne the loal volume V

h

(O;C

n

) within eah digital n-ube C

n

of the image

that meets O. The loal volume an be seen as one or two briks whose verties are

boundary verties and 1-voxels of O.

2. If the adjaeny � is quasi-omplete, then all these briks �t well together. In this ase,

the set of all the briks reated in every digital n-ube meeting O forms a n-dimensional

polyhedral omplex K

h

(O), alled the solid extension of O. The solid extension of O

ontains the �-volume of O and exludes the �-volume of any set of voxels disjoint from

O, e.g., Q.

3. The boundary BK

h

(O) of the solid extension of O is itself a (n� 1)-polyhedral omplex

whih is omposed of several onneted omponents. The set of verties of BK

h

(O) is

exatly the set of boundary verties A

h

(O).

4. The ontinuous analog S

h

(O;Q) of the ��-boundary �(O;Q) is de�ned as the body of

the unique onneted omponent of BK

h

(O) that borders Q. It is a (strongly) onneted

polyhedron that separates the spae R

n

in two onneted domains. The set of verties of

this polyhedron is exatly the set of boundary verties A

h

(O;Q).

The following four subsetions detail these four steps. Figure 2 depits the loal onstrution

of the ontinuous analog with a 3D example. The neessity of f�; �g to be proper has already

been stressed. The neessity of � to be quasi-omplete will be exhibited in the following

subsetion. The onneting property of f�; �g is useful only in the ase n = 2 (see Lemma 8)

and is needed in the demonstration of Lemma 24 (Setion 3.2.4).

3.2.1 Loal volume, loal omplex

In this setion, C

n

is a digital n-ube whih ontains at least one voxel of O, and C

m

is a

digital m-ube that is inluded in C

n

(obviously m � n).
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(a) (b) () (d) (e) (f)

Figure 2: This �gure illustrates how to build loally the ��-ontinuous analog of B (I): (a)

the digital 3-ube C

3

with the value in I of its voxels (blak: 1, white: 0) together with the

boundary verties (small irles) A

g

(U(I) \ C

3

; N(I) \ C

3

), where g is the trivial boundary

mapping; (b) the C

3

-loal volume of U(I) indued by h; () deletion of every ell with a 1-

voxel vertex; (d) same as (a) but with an arbitrary boundary mapping h (surfels may not be

mapped at midpoints); (e) same as (b) but with h; (f) same as () but with h. The boundary

mapping does not inuene the edges on the 2-faes of the digital n-ube.

De�nition 9 (C

n

-loal volume). Let P

1

; : : : ; P

l

be the �-onneted omponents of O \C

n

.

The C

n

-loal volume of O indued by h, denoted by V

h

(O;C

n

), is the subset of R

n

de�ned as

[

i=1::l

Conv(P

i

[A

h

(P

i

; C

n

)):

In other words, the loal volume is omposed of several n-dimensional losed onvex sets,

one for eah �-onneted omponent of O in this digital n-ube. These onvex sets are de�ned

by the loation of the voxels in R

n

and by the loation of the boundary verties bordering these

voxels in this n-ube. We similarly de�ne the C

m

-loal volume of O indued by h, 0 � m � n,

by hanging the symbol C

n

with the symbol C

m

in the previous de�nition.

It is straighforward to see that V

h

(O;C

m

) � C

m

, for any h. The boundary mapping h

inuenes the shape of the loal volume, but under ertain onditions, not its topology, as the

following lemma shows:

Lemma 10. If the adjaeny � is quasi-omplete, the number of onneted omponents of

V

h

(O;C

m

) is equal to the number of �-onneted omponents of O \C

m

. More preisely, this

number is equal to one or two when m = n and is equal to zero or one when m < n.

Proof. The ase where V

h

(O;C

m

) is empty is trivial. The lemma obviously holds if O\C

m

is

�-onneted and this statement is always true when m < n sine by de�nition � � �

n

. Assume
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Figure 3: This �gure illustrates that the loal volume of two disonneted sets of voxels might

be onneted when the adjaeny relation is not quasi-omplete. This ounterexample ours

in R

5

with the !

5

-adjaeny. The digital 5-ube is seen as two adjaent digital 4-ubes. The

voxels adjaeny is represented by thik lines.

m = n and O \ C

m

is not �-onneted. The de�nition of quasi-omplete adjaeny implies

that O \C

n

is a set of two diagonally opposite voxels in C

n

, say u and v. Now the onvex set

U = Conv(u [A

h

(u;C

n

)) forms a orner of the losed n-ube C

n

, for any h. The set C

n

n U

is therefore onvex. Now, for any h, the voxel v and any element of A

h

(v; C

n

) are in C

n

n U :

their losed onvex hull is therefore in C

n

n U and the two onvex sets forming V

h

(O;C

n

) are

disjoint. 2

Figure 3 shows that this property is not true in general if the adjaeny is not quasi-

omplete. The following lemma is a diret onsequene of Lemma 10 and of point (iv) of the

de�nition of adjaeny between voxels:

Lemma 11. If the adjaeny � is quasi-omplete, we have V

h

(O;C

m

) = V

h

(O;C

n

) \ C

m

.

Note that the hypothesis of � quasi-ompleteness is a neessary and suÆient ondition

for Lemma 11 to be true for any binary image I. Suppose � is not quasi-omplete. Let the

domain of some image I

0

be the image omposed of two digital n-ubes C

n

1

and C

n

2

sharing a

digital (n� 1)-ube C

n�1

. We also suppose that C

n

1

nC

n�1

is omposed of 1-voxels, C

n

2

nC

n�1

is omposed of 0-voxels, and C

n�1

is omposed of 0-voxels exept two 1-voxels whih are not

�-adjaent (it is possible sine � 6� �

n

). The set O

0

of 1-voxels of I

0

is learly �-onneted and

the set of 0-voxels of I

0

is learly �-onneted. Now V

h

(O

0

; C

n

1

) \ C

n�1

is onneted whereas

V

h

(O

0

; C

n

2

) \ C

n�1

is not onneted.

17



Consequently, given two di�erent losed n-ubes that share some verties (i.e., a losed

k-ube), their loal volumes are idential on their ommon fae. Lemma 11 omplemented by

the following lemma shows that the \briks" �t well together:

Lemma 12. When the adjaeny � is quasi-omplete and m < n, the set V

h

(O;C

m

) is either

empty or a losed polyhedral domain that is m-dimensional.

Proof. Beause � is quasi-omplete, the set V

h

(O;C

m

) is onneted and is trivially a losed

polyhedral domain. We now ompute its dimension. By de�nition, the 0-faes of V

h

(O;C

m

)

are among (O\C

m

)[A

h

(O;C

m

). It is easy to see that all these points are extremal points (i.e.,

0-faes) of V

h

(O;C

m

). When nonempty, at least one voxel of O \ C

m

or one boundary vertex

in A

h

(O;C

m

) is a 0-fae of V

h

(O;C

m

). If it is a boundary vertex, it is lear that O\C

m

is also

not empty. Therefore, at least one voxel of O (say u) is a 0-fae of V

h

(O;C

m

). If we look at the

m !

n

-neighbors of u that are also in C

m

, then two ases arise: either this neighbor is in O and

hene is inluded in V

h

(O;C

m

), or this neighbor is not in O and a boundary vertex is loated

in-between: this boundary vertex is also inluded in V

h

(O;C

m

). We have found m points

in C

m

, whih are linearly independent and inluded in a onvex set. This onvex set is thus

at leastm-dimensional. Beause the set V

h

(O;C

m

) � C

m

, it must be exatlym-dimensional. 2

Supposing the adjaeny � is quasi-omplete, Lemma 10 implies that the C

n

-loal volume

is omposed of one or two disjoint onvex sets, whih are the losure of onvex polyhedral

domains. Therefore, we an de�ne:

De�nition 13 (C

n

-loal omplex). When the adjaeny � is quasi-omplete, the set

V

h

(O;C

n

) is the disjoint union of one or two n-dimensional losed polyhedral domains. The n-

dimensional polyhedral omplex, suh that its n-ells are the interior of these losed polyhedral

domains and all its other ells are the faes of these n-ells, is alled the C

n

-loal omplex of

O indued by h, and is denoted by V

h

(O;C

n

). Thus, the body of V

h

(O;C

n

), i.e., kV

h

(O;C

n

)k,

is by de�nition equal to V

h

(O;C

n

).

Furthermore, when m < n and O \ C

m

6= ; , the set V

h

(O;C

m

) is one m-dimensional

losed polyhedral domain (Lemma 12). The m-dimensional polyhedral omplex, suh that its

m-ell is the interior of this losed polyhedral domain and all its other ells are the faes of this

m-ell, is alled the C

m

-loal omplex of O indued by h, and it is denoted by V

h

(O;C

m

). (By
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de�nition, kV

h

(O;C

m

)k = V

h

(O;C

m

).) If O \C

m

= ;, it is onveniently de�ned as the empty

set.

In fat, the omplex V

h

(O;C

m

) is a partiular subomplex of V

h

(O;C

n

):

Lemma 14. When � is quasi-omplete, the equality V

h

(O;C

m

) = V

h

(O;C

n

) e C

m

holds.

Proof. The equality is trivial if m = n or if O \ C

m

= ;. Suppose m < n and O \ C

m

6= ;.

The set V

h

(O;C

n

) is made of one or two omponents (eah is a losed polyhedral domain), and

only one, say �

n

, touhes C

m

. Now the m-plane arrying C

m

an be seen as the intersetion of

n�m supporting planes of �

n

. Lemma 11 and Lemma 12 imply that the interior of V

h

(O;C

m

)

is an m-dimensional fae of �

n

. Any element of V

h

(O;C

m

) is thus in V

h

(O;C

n

)e C

m

. As well,

any element of V

h

(O;C

n

) e C

m

is a fae of the m-ell of V

h

(O;C

m

). 2

The following lemma expresses the idea that loal omplex ells interseting an open fae

of a n-ube are ompletely inluded in this open fae:

Lemma 15. Assume � is quasi-omplete. Let � 2 V

h

(O;C

n

). If �\C

m

6= ;, then � � C

m

and

� 2 V

h

(O;C

m

).

Proof. The lemma is obvious if m = n. Suppose m < n. Let R

m

be the arrying plane of C

m

.

The m-plane R

m

is the intersetion of n�m supporting planes R

n�1

1

; : : : ; R

n�1

n�m

of the onvex

polyhedral domain C

n

. We an hoose these planes so that the set C

n

be inluded in all the open

positive (say) half-spaes H

1

; : : : ;H

n�m

that are respetively bounded by R

n�1

1

; : : : ; R

n�1

n�m

. Let

� be the open onvex hull of some points whih are either in C

m

or in C

n

n C

m

. If any one of

them is in the latter set, then it does not belong to at least one R

n�1

i

, hene is inluded in the

open positive half-spae H

i

. By de�nition of the open onvex hull as a linear ombination with

stritly positive oeÆients, it is lear that � is totally inluded in H

i

, hene has an empty

intersetion with R

n�1

i

, furthermore with C

m

.

Now the set � is the open onvex hull of the extremal points of �. If any of these extremal

points are not in C

m

, the previous disussion onludes that � \ C

m

= ;, whih is a ontradi-

tion with the hypothesis. All extremal points of � are thus in C

m

. The Krein{Milman theorem

implies that � � C

m

. Sine �

m

is open in its arrying plane, we have �

m

� C

m

. Clearly,

�

m

2 V

h

(O;C

n

) e C

m

. Lemma 14 onludes. 2
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3.2.2 Solid extension

In this setion, we assume that the adjaeny � is quasi-omplete. We onstrut an n-

dimensional omplex, whih inludes both the voxels of O and the boundary verties of O,

by gathering all loal omplexes of O:

De�nition 16 (Solid extension of O). Let K

h

(O) be the set obtained by olleting all

elements of the C

n

-loal omplexes of O aording to the following rule: if a p-ell, 0 � p � n,

belongs to one or more loal omplexes, then this p-ell is present only one in K

h

(O) and

ollets all the inidene properties that it had in those loal omplexes. The set K

h

(O) is

alled the solid extension of O indued by h.

We show that this assembly of omplexes onstruts a polyhedral omplex:

Proposition 17. The set K

h

(O) is an n-dimensional polyhedral omplex.

Proof. The de�nition of K

h

(O) entails that the faes of any element of the omplex K

h

(O)

are also element of this omplex. It remains to show that all elements of K

h

(O) are mutually

disjoint. Let �

1

and �

2

be two elements of K

h

(O), �

1

6= �

2

. Then there exist two digital

n-ubes, say C

n

1

and C

n

2

, suh that �

1

2 V

h

(O;C

n

1

) and �

2

2 V

h

(O;C

n

2

). If C

n

1

= C

n

2

then

�

1

\ �

2

= ; sine V

h

(O;C

n

1

) is a polyhedral omplex. If C

n

1

\C

n

2

= ; then �

1

\ �

2

= ; beause

�

1

� kV

h

(O;C

n

1

)k � C

n

1

and �

2

� kV

h

(O;C

n

2

)k � C

n

2

and C

n

1

\ C

n

2

= ;. If C

n

1

\ C

n

2

6= ; then

their intersetion is a digital m-ube C

m

. If �

1

\ C

m

= ; or �

2

\ C

m

= ; then �

1

\ �

2

= ;.

Otherwise, Lemma 15 indues �

1

and �

2

are both element of the same polyhedral omplex

V

h

(O;C

m

). They are thus disjoint. 2

We derive two fundamental properties of the solid extension:

Lemma 18. Any (n� 1)-ell of K

h

(O) is either the fae of two n-ells when it is inluded in

some losed (n� 1)-ube, or the fae of one n-ell (when it is inluded in an n-ube).

Proof. Let � be a (n � 1)-ell of K

h

(O). Let us assume that � is inluded in some losed

(n� 1)-ube, whose orresponding digital (n� 1)-ube is C

n�1

(say). This digital (n� 1)-ube

belongs to exatly two digital n-ubes. Aording to Lemma 15, � is the (n � 1)-ell of the
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omplex V

h

(O;C

n�1

). Lemma 14 indues that � is a (n� 1)-fae of exatly one n-ell in one

of these n-ubes and is a (n � 1)-fae of exatly one n-ell in the other n-ube. Beause � is

open and (n � 1)-dimensional, it is a subset of C

n�1

, and therefore annot be the fae of any

other n-ell. If � is not inluded in some losed (n� 1)-ube, then Lemma 15 implies that � is

a subset of an open n-ube. Within this n-ube, it is the fae of exatly one n-ell (the onvex

polyhedral domain that de�nes it). 2

Lemma 19. The n-dimensional omplex K

h

(O) is strongly onneted.

Proof. The idea is to use the �-onnetedness of the set O to build a path of digital n-ubes

suh that any two onseutive digital n-ubes share a digital (n � 1)-fae. Let � and �

0

be

two n-ells of K

h

(O). Let u be a voxel of O bordering � and u

0

be a voxel of O bordering

u

0

. Beause O is �-onneted, there exists a �-path 
 = o

1

o

2

: : : o

l

in O from u to u

0

(u = o

1

and u

0

= o

l

). We an build a hain �

0

of digital n-ubes, �

0

= C

n

1

C

n

2

: : : C

n

l�1

, suh that

8i; 1 � i � l � 1; fo

i

; o

i+1

g � C

n

i

. We an form a new hain � from �

0

by setting � = C

n

0

�

0

C

n

l

,

with � � C

n

0

and �

0

� C

n

l

. We onveniently set o

0

= o

1

and o

l+1

= o

l

.

We show by indution on i that the following statement is true for 0 � i � l: there is a

hain of n-ells from � to a n-ell �

i

, with �

i

� C

n

i

and both o

i

and o

i+1

are verties of �

i

, suh

that any two onseutive n-ells of this hain share a (n� 1)-ell as a ommon fae.

It is trivially true for i = 0. Let us assume the preeding statement is true for an i < l, and

we show it for i+1. If the two n-ubes C

n

i

and C

n

i+1

are idential, we an onlude diretly. Oth-

erwise, the voxel o

i+1

belongs to both C

n

i

and C

n

i+1

. A hain � of at most n�1 digital n-ubes

ontaining o

i+1

an be onstruted between C

n

i

and C

n

i+1

with the property that two onseutive

digital n-ubes have a digital (n� 1)-ube in ommon (by pivoting around o

i+1

, hanging one

oordinate at eah step). LetD and E be two onseutive elements of � sharing a digital (n�1)-

ube C

n�1

. Aording to Lemma 14, V

h

(O;D)eC

n�1

= V

h

(O;E)eC

n�1

= V

h

(O;C

n�1

). Sine

o

i+1

belongs to both omplexes, the omplex V

h

(O;C

n�1

) is by de�nition (n� 1)-dimensional.

Its (n� 1)-ell is a fae of the n-ell of V

h

(O;D) inident to o

i+1

and is a fae of the n-ell of

V

h

(O;E) inident to o

i+1

. If we denote by �

i+1

the n-ell of C

n

i+1

inident to o

i+1

, the hain

� onnets �

i

� C

n

i

to �

i+1

� C

n

i+1

by n-ells sharing a ommon (n � 1)-ell. Beause o

i+2

is �-adjaent to o

i+1

, the voxel o

i+2

is also a vertex a �

i+1

. Sine �

i+1

is onneted to �

i

, it
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is onneted to � by hypothesis. The statement is demonstrated . We onlude the proof by

setting i = l and by notiing that �

l

an be set equal to �

0

. 2

Lemma 18 and Lemma 19 lead to the following theorem (orientability is easily demon-

strated):

Theorem 20. Any simpliial subdivision of the solid extension of O indued by h is a (ori-

entable) n-pseudomanifold with boundary.

3.2.3 Boundary of the solid extension

The boundary of K

h

(O), denoted BK

h

(O), is the subomplex of K

h

(O) whose ells are (i) all

(n � 1)-ells of K

h

(O) that are the fae of exatly one n-ell of K

h

(O) and (ii) all faes of

these (n � 1)-ells. It is learly a polyhedral omplex. The following proposition states that

the verties of the omplex BK

h

(O) are exatly the elements of A

h

(O):

Proposition 21. The omplex BK

h

(O) is a (n � 1)-dimensional polyhedral omplex whose

verties are the boundary verties of O in I (i.e., the 0-ells of BK

h

(O) are the points of

A

h

(O)).

Proof. Let � be a (n� 1)-ell of BK

h

(O) and let R

n�1

be its arrying (n� 1)-plane. The ell

� is a fae of a n-ell �

0

of V

h

(O;C

n

). Assume, to the ontrary, that there is one vertex of �,

say u, that is a voxel element of O. The set of n voxels in C

n

!

n

-adjaent to u forms with u an

orthonormal basis of R

n

. This basis de�nes an orthant in R

n

, whih ontains C

n

. Lemma 18

implies that � is a subset of the n-ube C

n

. Consequently, its arrying plane R

n�1

divides the

ube C

n

in two parts; it also divides this orthant in two. Two endpoints of this basis, say v and

w, must be in two di�erent parts of R

n

nR

n�1

. By de�nition, !

n

(u; v) and !

n

(u;w). If v 62 O,

then there exists a boundary vertex a in A

h

(O) that belongs to the open segment bounded

by u and v. Sine u 2 R

n�1

, a must be in the same part of R

n

n R

n�1

as v. We also have

a 2 V

h

(O;C

n

) and a is inident to �

0

. We set v

0

= a. If v 2 O then v 2 V

h

(O;C

n

) and v is

inident to �

0

; in this ase, we set v

0

= v. With a similar reasonning for w, we obtain a point

w

0

that is inluded in V

h

(O;C

n

) and that is inident to �

0

. We have found two points of the

losed polyhedral domain �

0

that are on either side of the plane R

n�1

. Therefore this plane is
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not a supporting plane of �

0

, whih is a ontradition to the hypothesis. All the verties of �

are thus boundary verties. It is easy to see that all boundary verties of O are indeed 0-ells

of K

h

(O). 2

We an verify that the ontinuous analog of a onneted omponent of 1-voxel is entirely

inluded in its solid extension, whatever is the hosen boundary mapping. Furthermore, these

voxels are the only voxels of Z

n

that are inluded in this solid extension.

Theorem 22. The �-volume of O is inluded in kK

h

(O)k and has an empty intersetion

with kBK

h

(O)k. The �-volume of any set of voxels in the omplement of O has an empty

intersetion with kK

h

(O)k.

Proof. Let � be any i-ell of the �-deomposition of O, 0 � i � n. The ell � is inluded

in some losed n-ube C

n

(Lemma 40) and its verties are elements of O \ C

n

. Moreover the

verties of � are �-onneted (Lemma 42), thus they are all 0-faes of an n-ell of V

h

(O;C

n

).

The open onvex hull of these verties, i.e., �, is thus inluded in kV

h

(O;C

n

)k. Proposition 21

prevents the ell � to meet any ell of V

h

(O;C

n

) that is part ofBK

h

(O). Beause this statement

is true for all n-ubes that ontain �, � does not interset the set BK

h

(O).

Let  be any j-ell of the �-deomposition of Q. The ase n = 2 is readily proven beause

f�; �g is proper. Suppose n � 3. Sine � is quasi-omplete, � must be equal to !

n

(Lemma 8).

The ell  is therefore a j-ube whose verties are not in O. Let C

n

be a losed n-ube that

ontains  . If the orresponding digital n-ube meets O, let � be a ell of V

h

(O;C

n

). The

verties of � are all inluded in C

n

n . Sine the set C

n

n is onvex and � is the open onvex

hull of its verties, � � C

n

n  , whih onludes the proof. 2

We shall now demonstrate that the boundary of the solid extension has no boundary, i.e.,

it is a \losed" (hyper-)surfae:

Lemma 23. Any (n� 2)-ell of BK

h

(O) is the fae of exatly two (n� 1)-ells of BK

h

(O).

Moreover any (n� 2)-ell of BK

h

(O) is a subset of either an n-ube or a (n� 1)-ube.

Proof. Let �

n�2

be a (n � 2)-ell of BK

h

(O). The demonstration is performed by ases,

whether the (n � 2)-ell �

n�2

lies in an open n-ube, in an open (n � 1)-ube or in a losed
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(n� 2)-ube (the latter is proved to be impossible).

If this ell is ontained in an open n-ube C

n

, then it is a (n� 2)-fae of exatly one n-ell

of K

h

(O), say �

n

. Sine the boundary of a losed polyhedral domain is a losed (n � 1)-

pseudomanifold (Lemma 50), the ell �

n�2

is the fae of exatly two (n� 1)-ells of �

n

. These

(n�1)-ells must be in BK

h

(O). Indeed, if this was not the ase, Lemma 18 would entail that

they are inluded in some losed (n�1)-ube: sine �

n�2

lies in the losure of these ells, �

n�2

should lie in this losed (n� 1)-ube, whih is a ontradition to the hypothesis.

Assume now that �

n�2

is inluded in some (n�1)-ube C

n�1

. Then �

n�2

is inident to one

(n � 1)-ell �

n�1

of V

h

(O;C

n�1

). From Lemma 14, �

n�1

is inident to exatly two n-ells of

K

h

(O), say �

n

1

and �

n

2

, with �

n

1

in an n-ube C

n

1

and �

n

2

in an n-ube C

n

2

. The (n�2)-ell �

n�2

is inident to �

n

1

by the (n� 1)-ell �

n�1

and must be a fae of another (n� 1)-ell of �

n

1

, say

�

n�1

1

(Lemma 50). As well, �

n�2

is the fae of another (n � 1)-ell of �

n

2

, say �

n�1

2

. Beause

�

n�1

is already a subset of C

n�1

, �

n�1

1

� C

n

1

and �

n�1

2

� C

n

2

, Lemma 18 implies that both �

n�1

1

and �

n�1

2

belong to BK

h

(O) and that �

n�1

does not belong to BK

h

(O). It is obvious that

�

n�2

annot be inident to another n-ell of K

h

(O) hene to another (n� 1)-ell.

Finally, suppose �

n�2

is inluded in some losed (n�2)-ube C

n�2

. We show that this ase

annot our by ontradition. This (n� 2)-ube is shared by exatly four losed n-ubes, say

C

n

i

with 0 � i � 3. We organize them by adjaent pairs suh that C

n

i

\ C

n

i+1

= C

n�1

i

, indies

taken modulo 4. The ell �

n�2

is inident to exatly one (n � 1)-ell �

n�1

i

in eah C

n�1

i

and

to exatly one n-ell �

n

i

in eah C

n

i

. For eah i, we have �

n�2

� �

n�1

i

, �

n�2

� �

n�1

i+1

, and

�

n�1

i

� �

n

i

and �

n�1

i+1

� �

n

i

. Sine �

n

i

is a onvex polyhedral domain, there is no other (n� 1)-

ell of �

n

i

that is inident to �

n�2

(Lemma 50). Beause eah �

n�1

i

is the fae of exatly two

n-ells ofK

h

(O), it does not belong to BK

h

(O) (by de�nition). Sine no other n-ell is inident

to �

n�2

, the ells �

n�1

i

were the only (n � 1)-ells of K

h

(O) inident to �

n�2

. Consequently,

�

n�2

62BK

h

(O), whih ontradits the hypothesis. 2

3.2.4 Continuous analog of a digital boundary

Until now, we have not used the set Q of the ��-boundary �(O;Q) in the onstrution of its

ontinuous analog. The inuene of the set Q is introdued in this setion. The following
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lemma shows that eah ell of BK

h

(O) an border only one �-omponent of the 0-voxels in I.

Any omponent of this omplex is built on boundary verties of one �-omponent of 1-voxels

(here O) and one �-omponent of 0-voxel of I. This is the �rst lemma where the value of the

voxels is used in the proof.

Lemma 24. There is no r-ell of BK

h

(O), r � n � 1, suh that some of its verties are

elements of A

h

(O;Q) and some others are elements of A

h

(O) n A

h

(O;Q).

Proof. It is suÆient to prove this lemma for r = n � 1. We prove it by ontradition.

Assume there exists one (n � 1)-ell � of BK

h

(O) with a 0-ell a 2 A

h

(O;Q) and a 0-ell

a

0

2 A

h

(O) n A

h

(O;Q). This ell belongs to at least one n-ube C

n

(say). There exist two

!

n

-adjaent voxels u and v with u 2 O\C

n

and v 2 Q\C

n

and a is lying on the open segment

℄uv[. Similarly, a

0

is lying on an open segment ℄u

0

v

0

[ with u

0

2 O\C

n

, v

0

2 C

n

and v

0

62 O[Q,

and !

n

(u

0

; v

0

).

Let R

n�1

be the arrying plane of �. R

n�1

divides the spae R

n

in two onneted half-

spaes, H

+

and H

�

. The ell � is a fae of a n-ell � in V

h

(O;C

n

). Hene R

n�1

is a supporting

plane of �. Clearly, all the voxels of O \ C

n

inident to � are loated in the same half-spae,

say H

�

: u and u

0

are in H

�

. The open segments ℄ua[ and ℄u

0

a

0

[ are inluded in H

�

. Sine a

and a

0

lie in R

n�1

= H

�

nH

�

, both v and v

0

must be inluded in H

+

.

We show now that we an build an !

n

-path from v to v

0

in C

n

nO. The omplex V

h

(O;C

n

)

ontains one or two n-ells (Lemma 10). Sine f�; �g is onneting and, by assumption, the

set of 0-voxels of C

n

is not �-onneted, the set of 1-voxels of C

n

is �-onneted, hene O\C

n

is �-onneted. Consequently, there is only one n-ell in V

h

(O;C

n

) and it is �. Furthermore,

any voxel of C

n

\H

+

must be a 0-voxel, and it is suÆient to build an !

n

-path from v to v

0

in C

n

\H

+

.

It is always possible to �nd a voxel w 2 C

n

with !

n

(v; w) and kw� v

0

k

1

= kv� v

0

k

1

� 1. If

w 2 H

+

, we have found a new element of the path we are building. Otherwise, w 2 H

�

and

w � v orrespond to a unit vetor. The voxel w

0

de�ned from v

0

by the displaement v � w is

suh that !

n

(v

0

; w

0

) and kw

0

� vk

1

= kv

0

� vk

1

� 1. Beause this displaement is opposite to

the displaement w�v, w

0

must be in H

+

. By iterating this onstrution, we build an !

n

-path

between v and v

0

suh that all its elements are in H

+

, hene in C

n

nO. Sine !

n

� �, we have

found a �-path joining v and v

0

that lies in C

n

\H

+

: any voxel of this path is a 0-voxel. v is
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a 0-voxel in Q so all the path is in Q and v

0

2 Q. This ontradition onludes the argument. 2

If we ollet the ells of BK

h

(O) whose verties are boundary verties between O and Q

in I, Lemma 24 implies that this olletion is a subomplex of BK

h

(O). Beause �(O;Q) is

not empty, this subomplex is a (n� 1)-dimensional polyhedral omplex. This subomplex is

denoted by B

jQ

K

h

(O).

We de�ne now the ontinuous analog of a digital boundary as:

De�nition 25 (Continuous analog of a ��-boundary). The ontinuous analog indued

by h of a ��-boundary � = �(O;Q) is de�ned as the body of the omplex B

jQ

K

h

(O). It is

denoted by S

h

(O;Q). The omplex B

jQ

K

h

(O) is alled the omplex of S

h

(O;Q). All points of

A

h

(O;Q) are inluded in S

h

(O;Q).

This de�nition is impliitly dependent on the image where the set O and Q are de�ned: the

value of every voxel of O (respetively, Q) in I must be 1 (respetively, 0). It is also dependent

on the adjaenies � and � hosen for I.

Note that we have not proved yet that the omplex of S

h

(O;Q) is strongly onneted. The

following theorem establishes this property and highlights some immediate onsequenes:

Theorem 26. Suppose f�; �g is proper and onneting, and � is quasi-omplete. The ontin-

uous analog indued by h of a ��-boundary � = �(O;Q) is strongly onneted and separates

the spae R

n

into two disjoint domains: one of these domains ontains the �-volume of O, the

other ontains the �-volume of Q.

Proof. We �rst divide the omplex of the ontinuous analog S

h

(O;Q) into its strongly on-

neted omponents, say K

1

; : : : ;K

l

with l � 1. Eah K

i

is a strongly onneted (n � 1)-

dimensional polyhedral omplex and eah (n�2)-ell of K

i

is a fae of exatly two (n�1)-ells

ofK

i

(Lemma 23). Any simpliial subdivision of eah K

i

is thus a losed (n�1)-pseudomanifold

and kK

i

k separates R

n

into two disjoint domains H

+

i

and H

�

i

(Theorem 49). For larity, we

set H

0

i

= kK

i

k. By Theorem 22, for any i, 1 � i � l, the �-volume of O is in one of these

domains (say H

+

i

). The same theorem implies that the �-volume of Q is, for a given i, either

entirely in the same domain H

+

i

, or entirely in the other domain H

�

i

.

We prove by ontradition that the �-volume of Q is in H

�

i

. Suppose it is in H

+

i

. Let
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a be a vertex of K

i

. Sine a 2 A

h

(O;Q), it lies on an open segment ℄uv[, where u 2 O,

v 2 Q, and !

n

(u; v). Clearly, the segment ℄ua[ is a 1-ell of K

h

(O). Proposition 21 entails that

this segment is not in BK

h

(O). The segment ℄av[ is not a 1-ell of K

h

(O), hene it is not in

BK

h

(O). Consequently, we have S

h

(O;Q)\℄uv[= fag. The hypothesis implies [ua[� H

+

i

and

℄av℄ � H

+

i

(with a 2 H

0

i

).

It is easy to see that the 0-ell a is the fae of 2

n�1

(n�1)-ells of the omplex of S

h

(O;Q).

All these ells are strongly onneted and are thus part of the same strongly onneted om-

ponent, i.e., K

i

. Loally around a, the body of K

i

is homeomorphi to a topologial disk.

Therefore, for a suÆiently small neighborhood V of a in R

n

, the set H

+

i

\ V is onneted by

ars. Further, for a suÆiently small neighborhood V of a in R

n

, we have H

0

j

\ V = ; for any

j 6= i, 1 � j � l. We hoose suh a small neighborhood V . Let x 2℄ua[\V and y 2℄av[\V .

Clearly, x 2 H

+

i

\ V and y 2 H

+

i

\ V . Sine H

+

i

\ V is onneted by ars, there exists an ar

 from x to y inluded in H

+

i

\ V . We build an ar 

0

, entirely inluded in H

+

i

, by gluing the

segment [ux℄, the ar  from x to y, and the segment [yv℄. Sine V is not met by any H

0

j

for

j 6= i, the ar 

0

has an empty intersetion with S

h

(O;Q). We have built an ar joining u to

v whih does not meet kB

jQ

K

h

(O)k, although u 2 kK

h

(O)k n kBK

h

(O)k and v 62 kK

h

(O)k.

Aording to the de�nition of the boundary of a omplex, this ar should meet another om-

ponent of kBK

h

(O)k. Beause this ar is built loally between the �-omponent O and the

�-omponent Q, this is learly impossible.

We dedue that the �-volume of Q is in H

�

i

. Now, any ar from an element of O to an

element of Q should meet all the set H

0

i

for 1 � i � l. In the previous paragraphs, we have

just shown that the ar [uv℄ intersets only one strongly onneted omponent of the omplex

of S

h

(O;Q). Therefore the omplex of S

h

(O;Q) has only one strongly onneted omponent

(l = 1) and any simpliial subdivision of this omplex is a losed (n� 1)-pseudomanifold. All

the other statements are trivially dedued from this one and from Theorem 49. 2

Corollary 27. Any ar in R

n

from a voxel of O to a voxel of Q intersets S

h

(O;Q).

Theorem 26 shows that, by a loal approah, we have onstruted a (hyper-)surfae in R

n

.

This (hyper-)surfae has several nie properties: it is a strongly onneted (n� 1)-dimensional

ompatum in R

n

; it separates embedding of 1-voxels from embedding of 0-voxels in the spae;
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if the binary image I is a gray-level image I

0

thresholded by the iso-value s, the ontinuous

analog indued by the boundary mapping de�ned in Setion 3.1 is a linear approximation of

the iso-potential set of value s in I

0

. Setion 5 will apply this onstrution method to extrat

losed triangulated iso-surfaes from gray-level images.

3.3 Continuous analog when � is quasi-omplete

We de�ne the ontinuous analog of a ��-boundary of a binary image I when � is quasi-omplete

as the ontinuous analog of the orresponding ��-boundary of its negative image I

�

:

De�nition 28 (Continuous analog of a ��-boundary, � quasi-omplete). Let I be a

binary image and h a boundary mapping of I. Let O be a �-onneted omponent of 1-voxels

in I and Q a �-onneted omponent of 0-voxels in I. When f�; �g is proper and onneting

and � is quasi-omplete, the ontinuous analog indued by h of the ��-boundary �(O;Q) of I

is de�ned as the ontinuous analog indued by h

�

of the ��-boundary �(Q;O) of I

�

, where Q

is a �-onneted omponent of 1-voxels in I

�

and O is a �-onneted omponent of 0-voxels in

I

�

. It is similarly denoted by S

h

(O;Q).

This de�nition is valid beause ��-boundaries in a binary image I are ��-boundaries in its

negative image I

�

. All properties shown until now are still valid when � is quasi-omplete. In

partiular, the �-volume of O is separated from the �-volume of Q by S

h

(O;Q). De�nition 25

and De�nition 28 imply that we an de�ne a ontinuous analog of any ��-boundary of an image

I, provided that f�; �g is proper and onneting, and either � or � is quasi-omplete.

4 Properties and appliations

4.1 New Jordan pairs for n

This setion highlights an important appliation of ontinuous analogs of digital boundaries:

the extration of new Jordan pairs for arbitrary n. We have the following theorem.

Theorem 29. Any proper and onneting pair of voxel adjaeny f�; �g is a Jordan pair for

n � 2 if either � or � is quasi-omplete. In partiular, for n � 3 and � quasi-omplete, f�; !

n

g

is a Jordan pair for n.
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Proof. From De�nition 28, we an assume that � is quasi-omplete. We have to prove that

every ��-boundary (say �) of every binary image I has the following property: any !

n

-path

from a voxel of II(�) to a voxel of IE(�) exits through �. Let � = �(O;Q) nonempty. It

is suÆient to show that any !

n

-path, say 
, from u 2 O to v 2 Q exits through �. The

!

n

-path 
 draws an ar in R

n

whih is a onneted set of segments (Proposition 4). Corol-

lary 27 entails this ar intersets S

h

(O;Q) in some point a. The point a is a boundary vertex

of A

h

(O;Q) and lies between two voxels u

0

and v

0

, with u

0

2 O, v

0

2 Q, !

n

(u

0

; v

0

), and both

u

0

and v

0

are onseutive voxels of 
. If the voxel u

0

appears just before v

0

in 
, then (u

0

; v

0

)

is a boundary surfel inluded in � and 
 exits through �. If u

0

appears after v

0

in 
, then the

restrition of 
 to the voxels from u

0

to v is an !

n

-path, say 


0

, from an element of O to an

element of Q, whih is shorter than 
. It draws an ar in R

n

that intersets S

h

(O;Q). By it-

erating the argument used on 
, we establish that any !

n

-path from O to Q exits through �. 2

For suh pairs f�; �g, the ��-boundaries of any image have \good" properties. The preed-

ing theorem asserts that f8; 4g is a Jordan pair for n = 2, that f18; 6g and f26; 6g are Jordan

pairs for n = 3, but also that the adjaeny pair symbolized by f

�

�

,

�

�

g is a Jordan pair for

n = 2 (also known as \6-adjaeny"). On the other hand, we annot assert a similar result

for the f6; 14g voxel adjaeny pair of Ref. [15℄ and its n-dimensional generalization of Ref.

[41℄, sine none of these voxel adjaenies are quasi-omplete. It is thus possible to �nd Jordan

pairs whose voxel adjaenies are not quasi-omplete.

4.2 Continuous analog of B (I)

In this setion, we assume that f�; �g is proper and onneting, and that � is quasi-omplete.

We relate the number of ��-boundaries bordering a �-omponent O of 1-voxels to the number

of onneted omponents of the body of BK

h

(O) with the following proposition, whih an be

demonstrated easily:

Proposition 30. Let I be any binary image (with both 0-voxels and 1-voxels) and h any

boundary mapping of I. Let O be any �-onneted omponent of 1-voxels in I. Let Q

1

; : : : ; Q

l

be the l di�erent �-onneted omponents of 0-voxels in I suh that �(O;Q

i

) is not empty

for any 1 � i � l. Then the set kBK

h

(O)k has either l or l + 1 onneted omponents.
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The l onneted omponents are the l ontinuous analogs indued by h of the ��-boundaries

�(O;Q

i

). The last one may appear if O forms the border of the domain of I; in this ase,

this omponent is a (n�1)-dimensional parallepiped in R

n

embraing the whole domain of the

image I.

The following theorem shows that ��-boundaries and their orresponding ontinuous analogs

are disjoint at the same time :

Theorem 31. Let �(O;Q) and �(O

0

; Q

0

) be two (nonempty) ��-boundaries of a binary image

I with a boundary mapping h. Their ontinuous analogs indued by h are not disjoint if, and

only if, O = O

0

and Q = Q

0

.

Proof. We just have to prove that if O 6= O

0

or if Q 6= Q

0

, their ontinuous analogs S

h

(O;Q)

and S

h

(O

0

; Q

0

) are disjoint. Assume �rst O = O

0

. Then their respetive omplexes B

jQ

K

h

(O)

and B

jQ

0K

h

(O) are subomplexes of the polyhedral omplex BK

h

(O). Lemma 24 implies that

their respetive 0-ells are disjoint. The bodies of the omplexesB

jQ

K

h

(O) andB

jQ

0
K

h

(O) are

neessary disjoint. Suppose now O 6= O

0

. Let C

n

be any digital n-ube. If only one of O \C

n

or O

0

\ C

n

is nonempty, then S

h

(O;Q) \ S

h

(O

0

; Q

0

) \ C

n

is empty by onstrution. Suppose

both are nonempty. Sine � is quasi-omplete, the sets O\C

n

and O

0

\C

n

are both redued to

one voxel of C

n

, and these two voxels are diagonally opposite in C

n

. With an argument similar

to the proof of Lemma 10, we also get that S

h

(O;Q) \ S

h

(O

0

; Q

0

) \ C

n

is empty. Beause this

is true for any losed n-ube, we have S

h

(O;Q) \ S

h

(O

0

; Q

0

) = ;. 2

This theorem allows us to de�ne:

De�nition 32 (��-ontinuous analog of B (I)). The ��-ontinuous analog indued by h of

B (I) is the disjoint union of the ontinuous analogs indued by h of all the ��-boundaries of

I, minus the one arising when U(I) forms the border of the domain of I (see Proposition 30).

It is denoted by S

��

h

(B (I)). The omplex of S

��

h

(B (I)) is the union of the omplexes of eah

ontinuous analog determined by I. It is trivially a (n� 1)-dimensional polyhedral omplex.

If there are p di�erent ��-boundaries in I, then the set S

��

h

(B (I)) has p (strongly) onneted

omponent (it is lear that at most one �-omponent of 1-voxels in I an lie on the border of

the domain of I). The onverse is also true.
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4.3 Adjaeny between boundary surfels

Until now, no adjaeny has been introdued between boundary surfels of an image. Hene

��-boundaries inside an image must be extrated by sanning the whole image, or at least the

whole omponent of foreground voxels. It would be prudent to de�ne an adjaeny between

boundary surfels suh that, starting from a given boundary surfel (u; v) and following the

adjaenies, we ould extrat the whole set of boundary surfels bordering the �-omponent

of 1-voxels ontaining u and the �-omponent of 0-voxels ontaining v. This proess is alled

digital surfae traking. It is more eÆient than the sanning method beause it an �nd a

��-boundary without expliitly omputing the �-omponent of U(I) and the �-omponent of

N(I) that de�ne it. Several authors [5, 19, 24, 39℄ have proposed adjaenies between boundary

surfels to extrat the whole ��-boundary in the three-dimensional ase. For an arbitrary n,

several adjaenies between boundary surfels along with orresponding traking algorithms are

presented in [41℄. Conversely, it is also possible to extrat objet and bakground omponents

starting from boundaries [42℄.

An essential property that should have any adjaeny between boundary surfels is that

the onneted omponents de�ned by this adjaeny orrespond to the ��-boundaries of the

image, for some � and �. An important property of suh adjaenies is that it must allow

an eÆient traking of surfels: for instane the adjaeny should be loal (only \neighboring"

surfels an be adjaent). Ideally, the most eÆient adjaeny would be the one whih provides

a Hamiltonian iruit over the set of boundary surfels of a ��-boundary. However, it is not a

simple task to ompute a Hamiltonian iruit over a graph, and not all graphs are Hamiltonian.

For any binary image I and a boundary mapping h from B (I) to R

n

, f�; �g proper and

onneting, either � or � quasi-omplete, we de�ne the binary relation �

��

I;h

on B (I) suh as:

the relation �

��

I;h

(t; t

0

) holds, with t = (u; v) and t

0

= (u

0

; v

0

) boundary surfels of I, if the open

segment ℄h(u; v)h(u

0

; v

0

)[ is a 1-ell of the omplex of S

��

h

(B (I)). If �

��

I;h

(t; t

0

), we say that the

boundary surfel t is �

��

I;h

-adjaent to the boundary surfel t

0

.

The following lemma is easily demonstrated. It shows that the �

��

I;h

-adjaeny is loal:

Lemma 33. Let t; t

0

2 B (I), then �

��

I;h

(t; t

0

) implies t and t

0

are subsets of some digitalm-ube,

with 2 � m � n.
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It means that we need to look at only a neighborhood around a boundary surfel to �nd

its �

��

I;h

-adjaent boundary surfels. The neighborhood is onstituted of the 2

n�1

digital n-

ubes ontaining this boundary surfel. The transitive losure of the �

��

I;h

-adjaeny indues

�

��

I;h

-omponents in B (I), whih have the following property:

Theorem 34. If f�; �g is proper and onneting, and either � or � is quasi-omplete, then

every ��-boundary in every image I with any boundary mapping h of I is a �

��

I;h

-omponent

of B (I).

Proof. Let �(O;Q) be a ��-boundary of I. Its ontinuous analog S

h

(O;Q) is strongly on-

neted (Theorem 26). The 0-ells of the omplex of S

h

(O;Q) (i.e., B

jQ

K

h

(O)) are the points

of A

h

(O;Q). The graph, say G

1

, whose verties are the 0-ells of A

h

(O;Q) and whose ars are

the 1-ells of B

jQ

K

h

(O), is onneted (otherwise it would not be strongly onneted). From

the de�nition of �

��

I;h

-adjaeny, the graph, say G

2

, whose verties are the surfels of �(O;Q)

and whose ars are the �

��

I;h

-adjaenies, is isomorph to G

1

. Hene G

2

is onneted. Now, any

element of B (I)n�(O;Q) annot be �

��

I;h

-adjaent to any element of �(O;Q), whih entails that

the set �(O;Q) is a �

��

I;h

-omponent of B (I). 2

Assume now we hoose the trivial boundary mapping g for every image. Let I

1

and I

2

be

two binary images, C

n

1

and C

n

2

two digital n-ubes suh that the values of the voxels of C

n

1

in I

1

are the same as the values of the voxels of C

n

2

in I

2

. Clearly, the ells of the omplex of

S

��

h

(B (I

1

)) within C

n

1

are the same as the ells of the omplex of S

��

h

(B (I

2

)) within C

n

2

(up to

an integer translation vetor). Consequently, the �

��

I

1

;g

-adjaenies within C

n

1

are idential to

the �

��

I

2

;g

-adjaenies within C

n

2

. The family �

��

g

of adjaenies �

��

I;g

an be entirely determined

by examining all the di�erent on�gurations of 1-voxels and 0-voxels that our in a digital

n-ube. In other words, this last remark together with Theorem 34 and Theorem 29 implies

that the ordered triple (�; �; �

��

g

) is a Jordan triple for n in the terminology of Udupa [41℄.

We have just shown that, for these f�; �g and for any image I, we an build an adjaeny

between boundary surfels, so that, starting from an initial boundary element, we an extrat

a whole ��-boundary of I by traking adjaenies. The family �

��

g

of adjaenies is not as

eÆient as the adjaenies proposed in [5℄ or in [15℄, but they are suitable for arbitrary n. One

way to design more eÆient adjaenies is to prune the graph of �

��

I;g

-adjaenies. Therefore,
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we propose two adjaenies derived from this adjaeny, and we onjeture that they also give

rise to Jordan triples.

The following binary relations on B (I) are not dependent on the boundary mapping h and

their de�nition is purely (digital) topologial:

De�nition 35 (�

��

I

-adjaeny on B (I)). Two boundary surfels t and t

0

of I are said to be

�

��

I

-adjaent i� they are �

��

I;h

-adjaent for any boundary mapping h of I.

De�nition 36 (~�

��

I

-adjaeny on B (I)). Two boundary surfels t = (u; v) and t

0

= (u

0

; v

0

)

of I are said to be weakly �

��

I

-adjaent, or ~�

��

I

-adjaent, i�: (i) �

��

I

(t; t

0

) and (ii) there is no

1-voxel other than u and u

0

in the smallest digital m-ube ontaining t and t

0

when m � 3.

Clearly, for any h, we have ~�

��

I

� �

��

I

� �

��

I;h

.

Conjeture 37. If we denote by �

��

(respetively, ~�

��

) the family of �

��

I

-adjaenies (respe-

tively, ~�

��

I

-adjaenies) for all binary images I, then both (�; �; �

��

) and (�; �; ~�

��

) are Jordan

triples for n (the latter implies the former).

The onjeture \(�; �; ~�

��

) is a Jordan triple for n" would have an interesting appliation

for traking: given a surfel t in I, we look at a digital 2-ube that inludes it; if this 2-ube

ontains another 1-voxel, then we follow the adjaenies within this 2-ube; otherwise, we look

at a digital 3-ube inluding this 2-ube; if this 3-ube ontains another 1-voxel, then we follow

the adjaenies within this 3-ube; otherwise, we iterate this proess until the digital n-ube.

This proess is more eÆient than heking all �

��

I

-adjaenies.

5 The 3D ase

In this setion, we desribe the onstrution of ontinuous analogs of digital boundaries for

n = 3 and we exhibit the equivalene between triangulated iso-surfaes and these ontinuous

analogs. Analogous to the marhing ube method [30℄, we show that a table of 256 on�gu-

rations an be onstruted to speed up the omputation of the ontinuous analog of all the

boundary surfels of the image. With this table, iso-surfaes with well-de�ned properties an be

omputed within any image. After that, we turn to adjaenies between boundary surfels and
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(a)

(b)

() (d)

Figure 4: This �gure displays the set of triangles assoiated with eah noteworthy on�guration

(other on�gurations may be obtained from these via rotations or by taking the negative of the

binary image) with the trivial boundary mapping. The 1-ells belonging to a fae of a 3-ube,

or outer 1-ells are displayed in thiker lines. The other 1-ells, or inner 1-ells are dedued

from the onvexity property of the loal volume. Note that some 2-ells may be planar with

more than three verties. In this ase, an arbitrary subdivision is performed. The pair (�; �)

has an inuene on the topology and on the geometry of the set of triangles: (a) triangles

reated when � = 6, � 2 f18; 26g; (b) when � = 6 and � 2 f18; 26g, these on�gurations

have idential outer 1-ells as in (a) but the inner 1-ells are di�erent; () when � = 6 and

� 2 f18; 26g, these on�gurations have di�erent outer and inner 1-ells than in (a); (d) when

(�; �) = (26; 6), triangles are reated to onnet the opposite boundary verties.

show that digital surfae traking algorithms an be used to onstrut triangulated iso-surfaes.

We onlude by experimental results implementing our approah.

The !

3

-adjaeny orresponds to 6-adjaeny. The �

3

-adjaeny orresponds to 18-adjaeny

and �

3

orresponds to 26-adjaeny. Hene, the pairs (26; 6), (18; 6), (6; 18), (6; 26) are proper

and onneting and one of the adjaeny is quasi-omplete. These pairs are also Jordan pairs

for n = 3 (these statements have been demonstrated in [19, 32℄, but they also follow from

Theorem 29). In the remainder of this setion, we will deal with only these four tuples.
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5.1 Con�guration table

For a given boundary mapping h of I, Fig. 2 illustrates how to onstrut the ontinuous analog

of B (I) inside a digital 3-ube. For eah digital 3-ube inluded in the domain of I, a set of

triangles is thus extrated. The whole set of triangles forms a losed triangulated surfae in

R

3

whih separates 1-voxels from 0-voxels.

Of ourse, even if this method of ontinuous analog onstrution is loal, it is not very fast,

beause it requires to ompute the onvex hull of a dozen of points for eah digital 3-ube of the

domain of I. In order to avoid these repetitive omputations, we an ignore in a �rst step the

boundary mapping h of I and instead use the trivial boundary mapping g. With this assump-

tion, if we take two di�erent digital 3-ubes inside the domain of the image I with the same

voxel values, the triangles built in either digital 3-ubes will be idential (up to a translation).

Therefore, we an preompute the sets of triangles for eah possible on�guration of voxel val-

ues in a digital 3-ube. A table of 256 on�gurations is thus assoiated with eah possible pair

(�; �). Four tables are thus reated, one for eah element of f(26; 6); (18; 6); (6; 18); (6; 26)g.

Figure 4 shows the sets of triangles obtained for noteworthy on�gurations and highlights

the dissimilarities between idential on�gurations but with di�erent adjaenies. Clearly, they

are similar to the 15 on�gurations introdued in [30℄ whih were obtained with a rather ad ho

method. Here, the \ambiguity" of some on�gurations is naturally removed by the inuene

of the adjaenies. Any ��-ontinuous analog of B (I) for any binary image I is thus alled a

��-iso-surfae of I. Figure 5 emphasizes the variations between ��-iso-surfaes of the same

binary image I when the pair (�; �) is hanged. These variations reet the variations in the

��-boundaries of this image.

Now, it would be interesting to allow the boundary verties to move along their segment

in order to obtain a \nier" iso-surfae. In fat, if we move the boundary verties aording to

the boundary mapping h but on the triangles omputed with the trivial boundary mapping, we

obtain a surfae that is very similar to the ��-ontinuous analog indued by h of B (I): these

two surfaes are indeed homeomorphi. Figure 6 illustrates this method: the result is a linear

approximation of the \ontinuous" iso-surfae.

We have just desribed a method to quikly onstrut iso-surfaes

1

of an image I with a

1

Note that we do not obtain exatly the ��-ontinuous analog of B (I), sine the �-volume of any �-omponent
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(a) (b) () (d)

Figure 5: The ��-iso-surfaes of a \onnetion" ube: (a) displays the binary image in blok

form; (b) ��-iso-surfae with (�; �) = (26; 6); () with (�; �) = (18; 6); (d) with (�; �) 2

f(6; 18); (6; 26)g.

boundary mapping h: (i) the �rst step uses one of the four trivial tables of on�gurations to

obtain the topology of the triangulated surfae; (ii) the seond step moves verties aording

to the boundary mapping h.

5.2 Transforming digital boundaries into iso-surfaes

In this setion, we arry further what has been presented in Setion 4.3 for the 3D ase. We

introdue the following binary relations between boundary surfels of binary images:

De�nition 38 (�

��

I

-adjaeny). Let t

1

= (u; u

0

) and t

2

= (v; v

0

) be two boundary surfels of

an image I. These two surfels are said to be �

��

I

-adjaent if one of the statements below holds

(see Fig. 7):

(i) u = v and, either �(u

0

; v

0

) or the voxel w that is 6-adjaent to u

0

and to v

0

is a 0-voxel of

I;

(ii) u

0

= v

0

and, either �(u; v) or the voxel w that is 6-adjaent to u and to v is a 1-voxel of

I;

(iii) u is 6-adjaent to v and u

0

is 6-adjaent to v

0

;

(iv) �(u; v) and �(u

0

; v

0

), and, when � = 26 (respetively, � = 26), u and v (respetively, u

0

and v

0

) are diagonally opposite voxels in the 3-ube ontaining t

1

and t

2

, all other voxels

of this 3-ube are 0-voxels of I (respetively, 1-voxels of I).

of 1-voxels and the �-volume of any �-omponent of 0-voxels may interset this triangulated surfae. We only

have that their !

n

-volumes do not interset the triangulated surfae.
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(a) (b) () (d)

Figure 6: Visual omparison between boundary verties mapped at the middle of their segment

and boundary verties mapped by the boundary mapping de�ned by the iso-value in the gray-

level image (the image size is 15

3

, the intensity value assigned to eah voxel is the Eulidean

distane to the image enter, the surfae normals are determined faet by faet as a vetor

produt): (a) iso-surfae of a sphere with the trivial boundary mapping; (b) same iso-surfae

with the non-trivial boundary mapping; () iso-surfae of a sphere minus ylinders; (d) same

iso-surfae with the non-trivial boundary mapping. The omplex de�ning the iso-surfae (a)

(respetively, ()) is isomorph to the omplex de�ning the iso-surfae (b) (respetively, (d)).

(a)

u=v v’

u’ w

1

2
t

t

(b)

w v

u

u’=v’

1 2t t

()

u v

u’ v’

1 2t t

(d)

u’

v’

u
v

1

2

t

t

Figure 7: Illustration of the �

��

I

-adjaeny relation between surfels of an image I: (a) point

(i); (b) point (ii); () point (iii); (d) point (iv).

This adjaeny relation indues a �

��

I

-onnetedness relation and �

��

I

-omponents in B (I).

The family of �

��

I

-adjaenies for all binary images I is denoted by �

��

.

For (�; �) 2 f(18; 6); (6; 18)g, the relation �

��

I

is the lassial adjaeny between boundary

surfels that share an edge (i.e., two surfels share an edge if they are inluded in some digital

2-ube). This adjaeny an be direted and an eÆient algorithm has been developed to

extrat a �

18:6

I

-omponent of B (I) (or a �

6:18

I

-omponent of B (I)) given a starting surfel [5℄. In

[19℄, it is shown that the extrated �

18:6

I

-omponent of I (respetively, �

6:18

I

-omponent of I)

is a 18:6-boundary of I (resp 6:18-boundary of I). In other words, the triples (18; 6; �

18:6

) and

(6; 18; �

6:18

) are Jordan triples for 3.
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Point (iv) of this de�nition modi�es the adjaenies when � = 26 (or � = 26): when O (or

Q) is 26-onneted but not 18-onneted, it reates adjaenies betwen some surfels belonging

to two di�erent 18-omponents of O (or Q). More preisely, it reates adjaenies between

surfels that are not sharing an edge (we say that these surfels are sharing a vertex). This point

is ompulsory sine it has been demonstrated in [41℄ (Proposition 3.11) that 26:6-boundaries

annot be onneted by an adjaeny de�ned on boundary surfels sharing an edge in the general

ase.

By de�nition, the �

26:6

I

-adjaeny (respetively, �

6:26

I

-adjaeny) di�ers from the �

18:6

I

-

adjaeny (respetively, �

6:18

I

-adjaeny) only on the digital 3-ubes ontaining two diagonally

opposite 1-voxels (respetively, 0-voxels) and all others are 0-voxels (respetively, 1-voxels):

we say that this 3-ube forms a strit 26-on�guration of 1-voxels (respetively, strit 26-

on�guration of 0-voxels). Within this 3-ube, six additional relations are added to the rela-

tions de�ned by the �

18:6

I

-adjaeny. As far as we know, only the authors of [37℄ have added

one adjaeny between boundary surfels in the ase of a strit 26-on�guration (see Fig. 7d)

and proved the validity of a surfae traking algorithm for these indued digital surfaes

2

.

From any subset � of B (I) and any relation � between elements of B (I), we de�ne the � -

surfae graph of � as the graph whose verties are the surfels of � and whose ars orrespond

to two surfels of � related by � . It is denoted by G(�; �). We have:

Proposition 39. Suppose (�; �) 2 f(26; 6); (18; 6); (6; 18); (6; 26)g. Every ��-boundary in

every binary image I is a �

��

I

-omponent of B (I) (i.e., (�; �; �

��

) is a Jordan triple for 3).

Proof. The ases (�; �) 2 f(18; 6); (6; 18)g has been demonstrated in [19℄. For (26,6) (and

(6,26)), we only sketh a demonstration: eah 26-omponent is divided into its 18-omponents.

On these 18-omponents the �

26:6

I

-surfae graph F (say) orresponds to the �

18:6

I

-surfae graph

(whih is onneted). Every strit 26-on�guration of 1-voxels indues �

26:6

I

-adjaenies be-

tween bels of di�erent �

18:6

I

-omponents of F , thus onneting them together. We onlude by

notiing that no other element of B (I) an be onneted to F . 2

It an be seen that, when n = 3, the family �

��

is idential to the family ~�

��

de�ned in

2

This de�nition of adjaeny is suÆient for a surfae-traking algorithm, where only one onnetion is re-

quired to extrat 26.6-boundaries. However, this de�nition is not symmetrial and forbids subsequent properties.
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(a) (b) () (d)
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(e) (f) (g) (h)

Figure 8: (a) Blok representation of a binary image I; (b) the �

6:�

I

-surfae graph of B (()I); ()

the �

18:6

I

-surfae graph of B (()I); (d) the �

26:6

I

-surfae graph of B (()I); (e) the 26:6-ontinuous

analog of B (()I) displayed as a triangulated surfae; (f) the 6:�-ontinuous analog of B (()I): the

�

6:�

I

-adjaenies (or ~�

6:�

I

-adjaenies) are the thin lines, the additional ars de�ned by the �

6:�

I

-

adjaenies are the thik lines; (g) the 18:6-ontinuous analog of B (()I) with �

18:6

I

-adjaenies

in thin lines and additional �

18:6

I

-adjaenies in thik lines; (h) the 26:6-ontinuous analog of

B (()I) with �

26:6

I

-adjaenies in thin lines and additional �

26:6

I

-adjaenies in thik lines.

Setion 4.3 [26℄: informally, the relations oinide on eah digital 2-ube and it an be veri�ed

that the loal onvex volume has the same six ars in a strit 26-on�guration. Conjeture 37

is thus valid for the 3D ase. Figure 8 illustrates the analogy between the adjaenies between

surfels and some 1-ells of the ontinuous analog. This �gure also shows that the �

��

I

-adjaeny

add ars on the ontinuous analog whih help to desribe its geometry. However, the ~�

��

I

-

adjaeny provides a suÆient desription of the topology of the ontinuous analog.

In fat, a areful examination of Fig. 4 shows that, within any digital 3-ube, the restrition

of the �

��

I

-surfae graph of B (I) an be arranged into a set of oriented loops

3

(refer to [25℄ for

a demonstration). These loops an be oriented so that loops from adjaent digital 3-ubes

3

More preisely, this surfae graph is representable on the ontinuous analog (i.e., it an be drawn on this

set so that no ars interset exept at their endpoints). The ontinuous analog minus a representation of the

surfae graph de�nes onneted sets. Eah of these sets is homeomorphi to an open dis of the plane. Hene,

the boundary of any of these onneted elements an be delineated by a loop on the ars of the surfae graph.

Note that the �

26:6

I

-surfae graph would not be representable on the 26:6-ontinuous analog without the point

(iv) of the de�nition of �

��

I

-adjaeny.
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visit the same ar in opposite diretions. Furthermore, it an be shown that the �

��

I

-surfae

graph of B (I) with these loally de�ned loops is a 2D ombinatorial manifold without boundary

[11℄, whih is the ombinatorial analog of the 2-manifold without boundary. Eah loop of the

2D ombinatorial manifold an then be triangulated in order that the resulting triangulated

manifold embedded into R

3

by a boundary mapping h is exatly the ��-ontinuous analog

indued by h of I.

From Fig. 4 it an be seen that any boundary surfel is inident to exatly one loop within

a digital 3-ube exept in the ase of a strit 26-on�guration, where the surfel is inident to

three loops. Any surfel is inluded in exatly four digital 3-ubes. Therefore, we propose the

following algorithm to transform the �

��

I

-surfae graph of B (I) into the ��-ontinuous analog

of B (I), whih is restrited to the ase (�; �) 2 f(18; 6); (6; 18)g:

(Given an image I, a boundary mapping h, an empty mesh K)

For every surfel t in G(B (I); �

��

I

)

For every digital 3-ube C ontaining t

lear the ag (t; C)

EndFors

For every surfel t in G(B (I); �

��

I

)

For every digital 3-ube C ontaining t

If the ag (t; C) is not set

{ follow the two �

��

I

-adjaenies of t in C

to extrat the loop L = (t

1

; : : : ; t

l

) in C ontaining t

{ triangulate L (onvex hull omputation or look-up in table)

{ add the verties h(t

i

), edges and triangles to K

{ for all i = 1::l, set the ag (t

i

; C).

Endif

EndFors

Return K

The preeding algorithm an be extended to extrat 26:6- or 6:26-boundaries by heking the

number of �

��

I

-adjaenies of t in C. Furthermore, the topology of the mesh is naturally

onstruted by the �

��

I

-adjaenies.
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We have just shown that a omponent of a ��-ontinuous analog of B (I) an be diretly

omputed from the �

��

-adjaenies of the orresponding ��-boundary. A surfae traking

algorithm (suh as [5℄ for f18; 6g or [37℄ for f26; 6g), whih stores adjaenies between surfels,

builds a surfae graph of a ��-boundary in O(q

2

) time omplexity, for an image of size q

3

.

The traversal of the surfae graph has the same omplexity. Now, the reation of new edges

to triangulate the surfae graph an be made in O(1) around eah surfel (simply by storing

the di�erent subdivision one and for all). Consequently, the omputation of a onneted iso-

surfae an be done in O(q

2

). It is a signi�ant improvement to the marhing ubes algorithm

(whose time omplexity is O(q

3

)) when we do not need to ompute the whole iso-surfae of an

image but only one of its omponents. Moreover, it shows that a digital surfae an easily be

transformed into an iso-surfae and that the onverse an also be realized.

5.3 Experimental results

We have implemented the algorithm whih transforms the surfae graph of a ��-boundary of

an image I into the ontinuous analog of this ��-boundary. Note that this implementation is

just a prototype and an be optimized by many ways. Figure 9 shows that this method for

omputing a onneted iso-surfae is less sensitive to the addition of pepper and salt noise than

the lassial sanning method. Moreover, the greater is the size of the image the slower is the

sanning method ompared to the transformation of the digital boundary. Of ourse, rather

large data sets are needed to obtain a substantial gain with the traking approah: this is due

to the fat that the marhing ubes algorithm \marhes" very quikly on empty or �lled digital

3-ubes and its theoretial omplexity is not a very aurate desription of its behavior when

the image is rather \simple."

6 Conlusion

In this paper, we have proposed a new de�nition for the ontinuous analog of any digital

boundary. The ontinuous analog is de�ned as an assembly of (n � 1)-dimensional elements,

whih are omputed within eah digital n-ube meeting the digital boundary. We have proved

that it is a (n� 1)-dimensional polyhedron that separates the spae into two disjoint domains.
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It shares ommon topologial properties with its orresponding digital boundary (separation

of the spae, onnetedness). The Jordan{Brouwer separation theorem in the Eulidean spae

has entailed several signi�ant digital topology results: new Jordan pairs for arbitrary n have

been exhibited, and new families of adjaenies between elements of digital boundaries have

been proposed. Furthermore, it has been shown that a ontinuous analog onstitutes a piee-

wise approximation of some iso-potential set in a salar �eld: it is a triangulated iso-surfae

of a volumetri dataset in the 3D ase. The ontinuous analog an hene be used to ompute

impliitly de�ned (hyper-)surfaes with well-de�ned properties. The ontinuous analog de�ni-

tion shows that this polyhedron an be onstruted either from its digital boundary or diretly

from the binary image. In the 3D ase, we have shown how to transform a digital boundary

with adjaenies into its ontinuous analog (i.e., a onneted iso-surfae) by a simple traversal

of the surfae graph of this digital boundary. A lassial digital surfae traking algorithm an

thus be used to build a triangulated iso-surfae.

In the future, we plan to pursue our study of the topologial and geometrial properties of

ontinuous analogs. Reent works [6℄ show that the ontinuous analog of a three-dimensional

boundary satis�es the Delaunay onstraint: for instane, this geometri harateristi is fun-

damental in the onstrution of volumetri meshes for �nite-element methods. We intend to

verify whether this property holds for further dimensions. We are also working on methods to

derive boundary surfel adjaenies from the de�nition of ontinuous analog, so that the digital

boundaries are eÆiently traked and transformed into ontinuous analogs.
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A Notation onventions

Throughout the paper, some symbols and letters are preferred to designate spei� sets: n

is the dimension of the spaes we are dealing with (Z

n

and R

n

), the lowerase letters i, j,

k, l, m, p, q, r denote integer numbers, the letter s is an iso-value, the letters f; g; h denote

mappings, I and J are images or binary images, subsets of Z

n

are upperase letters (generally

A;B;O;Q) sometimes with a supersript letter (digitalm-ube C

m

), elements of Z

n

(voxels) are

symbolized by lowerase letters (generally ; d; e; u; v; w), subsets of R

n

or aggregates of subsets

of R

n

(exept omplexes and graphs) are denoted by upperase alligraphi letters (A;D;G)

sometimes with a supersript (m-ube C

m

), points of R

n

are denoted like voxels exept that the

letter a always designates a boundary vertex, omplexes are generally denoted byK and graphs

by G, the greek letters �; �;  symbolize simplies and onvex polyhedral domains (often with

a supersript denoting its dimension), the greek letters �; �; �; !; �; �; � designate adjaeny

relations between voxels, the greek letter �; �; � designates adjaeny relations between surfels,

the upperase greek letters 
;� indiate sequenes suh as paths or hains, the greek letter �

designates a digital surfae. In any ase, the addition to a symbol of a prime, of subsripts, or

of parameters do not modify the semanti of this symbol.

B m-dimensional onvex sets

The Eulidean n-dimensional spae is denoted by R

n

. A r-dimensional subspae of R

n

, 0 �

r � n is alled a r-dimensional plane of R

n

or simply r-plane. If a

0

; : : : ; a

r

are r + 1 linearly

independent points of R

n

, they de�ne a unique r-plane going through these points.

A set M of points of the Eulidean spae R

n

is said to be onvex if it ontains with every

two of its points a and b the whole segment [ab℄. The intersetion of an arbitrary number of

onvex sets is onvex. The dimension number of a onvex setM is, by de�nition, the maximum

number r suh that M ontains r+1 linearly independant points. Sine it orresponds to the

topologial dimension, we will rather use the term dimension. Every onvex setM of dimension

r is ontained in a uniquely de�ned r-plane, the arrying plane of M, and it ontains interior

points with respet to this plane. Unless otherwise spei�ed, interior points of a onvex set M

always refers to interior points of M relative to its arrying plane. The losure of M, denoted
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byM, is the smallest losed set ontainingM. The boundary ofM, denoted by ÆM, is de�ned

as the losure of M minus its interior (relative to its arrying plane).

The losed onvex hull of a set M� R

n

is de�ned as the intersetion of all the onvex sets

ontaining M and is denoted by Conv(M). The losed onvex hull of a �nite set of points

a

0

; : : : ; a

k

onsists of all the points a 2 R

n

of the form a = 

0

a

0

+ � � �+ 

k

a

k

, where 

0

; : : : ; 

k

are arbitrary nonnegative real numbers whose sum is 1. The open onvex hull of a �nite set

of points a

0

; : : : ; a

k

is the subset of the losed onvex hull of a

0

; : : : ; a

k

obtained by restriting

the oeÆients 

0

; : : : ; 

k

to be stritly positive. The open onvex hull of a �nite set of points

is open relative to its arrying plane. The set of extremal points of a onvex set M is de�ned

as the set of points b 2M suh that Mn b is still onvex. It is denoted by Extr(M).

Let e

0

; : : : ; e

r

, 0 � r � n, be r + 1 linearly independent points in the Eulidean spae

R

n

. The open onvex hull of these points is alled a Eulidean r-simplex of verties e

0

; : : : ; e

r

.

These verties form the skeleton of the r-simplex. A p-simplex � is a fae (or more spei�ally

a p-fae) of the r-simplex �

0

if the skeleton of � is a subset of the skeleton of �

0

. Obviously,

p � r. A fae � of �

0

is proper when � 6= �

0

. Any proper fae of � is inluded in � n �. The

set of extremal points of the losure of any simplex � oinides with its skeleton (i.e. the set

of its 0-faes). We will often use the supersript notation �

m

to indiate that the simplex �

m

is m-dimensional.

A bounded nonempty subset of R

n

whih is the intersetion of a �nite number of open

(losed) half-spaes of R

n

is alled a onvex polyhedral domain (losed polyhedral domain).

We use the same supersript notation for onvex polyhedral domain as for simplies. Let

�

n

be a n-dimensional onvex polyhedral domain. If R

n�1

is a (n� 1)-plane in R

n

, suh that

�

n

\R

n�1

6= ; and �

n

\R

n�1

= ;, then R

n�1

is alled a supporting plane of �

n

. The intersetion

of any supporting plane with the boundary �

n

n �

n

of �

n

is a losed polyhedral domain �

r

,

r � n� 1; if r = n� 1, �

r

is alled a (n � 1)-fae of the polyhedral domain �

n

. Furthermore

the (n � 2)-faes of the (n � 1) faes of �

n

are alled the (n � 2)-faes of �

n

, et. It an be

demonstrated that every two faes of a onvex polyhedral domain are disjoint and that the

union of all the r-faes of �

n

, 0 � r � n� 1, is the boundary �

n

n�

n

. The set �

n

is itself alled

the n-fae of �

n

. The other faes of �

n

are said to be proper. The 0-faes of �

n

are exatly the

extremal points of �

n

.
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C Continuous analogs of voxels

This setion establishes the equivalene between the �-onnetedness of a set A in the spae Z

n

and the onnetedness of the �-1-skeleton of A in the spae R

n

. For the ase n = 3, we show

that this onnetedness is also equivalent to the onnetedness of the �-volume of A in R

3

. In

this setion, � is an adjaeny between voxels, A designates a set of voxels that is not empty.

The following lemma omes from the fat that any adjaeny relation � inludes the ad-

jaeny !

n

; therefore, point (ii) of De�nition 2 and the minimal property of ells entails �ner

aggregates; the uniqueness omes from the fat that G

!

n

(Z

n

) forms a partition of R

n

.

Lemma 40. Any i-ell � of G

�

(Z

n

), 0 � i � n, is inluded in exatly one j-ell of G

!

n

(Z

n

),

i � j � n. This ubial ell is alled the enlosing ell of �.

Note that in the previous lemma we annot substitute !

n

with any adjaeny relation �

0

inluded in � (a simple ounterexample is the 6- and the 8-adjaeny in Z

2

). Lemma 40 indues:

Lemma 41. If any two ells of G

�

(Z

n

) have a nonempty intersetion, then they have the same

enlosing ell.

The next lemma is trivially obtained:

Lemma 42. Let � 2 G

�

(A). Then the set of the verties of � is �-onneted.

We will need the two following lemmas:

Lemma 43. Let � be an i-ell of G

�

(A). If � has a nonempty intersetion with a 1-ell  of

G

�

(A) then the set gathering the verties of � and the verties of  is �-onneted.

Proof. From Lemma 41, � and  share the same enlosing ell C. This ell is bordered by k

voxels a

1

; : : : ; a

k

. Sine  is an open segment in C, it must be a main diagonal of C; Lemma 42

implies that the two verties of  are �-adjaent and are diagonally opposite voxels of C. Point

(iv) of the adjaeny relation de�nition indues that any a

j

, 1 � j � k, is �-adjaent to the

two verties of  . Sine eah vertex of � is in fa

1

; : : : ; a

k

g, it onludes the proof. 2

Lemma 44. Assume n � 3. If � is an i-ell of G

�

(A), i � 2, and  is a j-ell of G

�

(A), j � 2,
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and �\ 6= ;, then there exist two elements of G

�

(A), say �

0

and  

0

, suh that �

0

is an i

0

-ell,

 

0

is a j

0

-ell, �

0

\  

0

6= ;, �

0

� �,  

0

�  , and either i

0

< i or j

0

< j.

Proof. We build these two elements to prove this statement. Let � and  be two elements

following the hypothesis. The set � \  is not empty. Aording to a lassial result of ana-

lyti geometry,

4

the dimension of this onvex set is at least 1-dimensional. Therefore, the set

Æ(� \  ) is also not empty. Let y be a point of this set. Then, either y 2 Æ� or y 2 Æ . In the

�rst ase, y belongs to an i

0

-ell �

0

of G

�

(A) with i

0

< i, and y obviously belongs to  , hene to

a j

0

-ell of G

�

(A), j

0

� j, inluded in  , say  

0

. The seond ase is symmetri to the �rst ase. 2

We an now demonstrate the following proposition (Proposition 4 of Setion 2.3:

Proposition 45. The three following statements are equivalent when n � 3, if A is a �nite

set of voxels and � an adjaeny relation:

(i) the set A is �-onneted,

(ii) the �-1-skeleton of A is onneted,

(iii) the �-volume of A is onneted.

Proof. From the de�nition of �-deomposition, it is obvious that (i) ) (ii). Now (ii) ) (iii)

beause for any i-ell � of the �-deomposition of A, 2 � i � n, � ontains some 1-ells; the

Hausdor�-Lennes separation ondition, i.e. (A \B) [ (A \B) = ;, onludes the argument.

To prove (iii) ) (i), we show that we an onstrut a �-path in A between any two voxels

a, b of A. Let f�

i

g be all the elements of G

�

(A). Sine the �-volume of A is onneted, there

exists a sequene �

i

0

; : : : ; �

i

k

suh that �

i

0

= a, �

i

k

= b, and �

i

j

\ �

i

j+1

6= ; for 0 � j < k.

For any 0 � j < k, if �

i

j

and �

i

j+1

meet on one of their verties (hene a voxel), then

Lemma 42 indues that the set of verties of �

i

j

and the set of verties of �

i

j+1

are both

�-onneted. Sine these two sets have one vertex in ommon, their union is �-onneted.

4

The intersetion of two planes, one i-dimensional and the other j-dimensional, in the spae R

n

is either

empty or is a d-dimensional plane, d � i+ j�n. Now, � is open in its arrying i-plane,  is open in its arrying

j-plane, the set �\ is thus open in its arrying d-plane. When n � 3, the hypothesis implies d � 1. For higher

dimensions, the set � \  might be an isolated point in R

n

, and we annot use this argument to onlude.
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If �

i

j

and �

i

j+1

do not meet on one of their verties, then they interset on their interior.

Thus �

i

j

(resp. �

i

j+1

) is a k-ell (resp. l-ell) of G

�

(A), with k � 1 and l � 1. If both

k > 1 and l > 1, then the iteration of Lemma 44 indues that there exist two elements of the

�-deomposition of A, say  

1

and  

2

, with  

1

\  

2

6= ;, suh that one of them is a 1-ell and

 

1

� �

i

j

and  

2

� �

i

j+1

. If either k = 1 or l = 1, we take  

1

= �

i

j

and  

2

= �

i

j+1

. Aording

to Lemma 43, the set of the verties of  

1

and of the verties of  

2

is �-onneted. Lemma 42

indues that the set of verties of �

i

j

is �-onneted and that the set of verties of �

i

j+1

is also

�-onneted. Sine the verties of  

1

(resp. the verties of  

2

) are also verties of �

i

j

(resp.

verties of �

i

j+1

), the set of the verties of �

i

j

and of the verties of �

i

j+1

is �-onneted.

We have just built a hain of voxels of A between a and b, suh that two suessive sets of

voxels are �-onneted. Hene, there exists a �-path in A between any two voxels of A. 2

For arbitrary n, it is easy to see from the preeding proof that (i) and (ii) are always

equivalent and that (i) or (ii) implies (iii). The whole Proposition 4 is also true for the adjaeny

relations �

n

and !

n

in arbitrary dimension n.

D Complexes, Pseudomanifolds

This setion realls lassial de�nitions and theorems of ombinatorial topology [2, 28℄.

De�nition 46 (strongly onneted m-omplex). An m-dimensional omplex K is said

to be strongly onneted if every two m-simplies (or m-ells) an be onneted by a hain of

m-simplies (or m-ells) suh that any two onseutive simplies have a (m � 1)-dimensional

fae in ommon. The body of a strongly onneted omplex annot be separated by any losed

set of dimension � m�2. The strong onnetedness is part of the de�nition of pseudomanifolds

(see below).

De�nition 47 (subdivision of a omplex). A subdivision of the omplex K is any polyhedral

omplex K

0

suh that (i) the body of K

0

oinides with the body of K and (ii) every element of

the omplex K

0

, onsidered as a point set, is ontained in some element of the omplex K. A

simpliial subdivision of a omplex K is a subdivision K

0

the elements of whih are simplies.

Every polyhedral omplex numbers Eulidean omplexes among its subdivisions. It is a well
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known result that a omplex and any of its subdivisions have idential topologial properties.

The following de�nition provides a multidimensional analog to the notion of \surfae."

The term \simple geometri n-iruit" has been preferred by some authors [28℄ to the term

\pseudomanifold."

De�nition 48 (m-pseudomanifold). A strongly onneted (�nite)m-dimensional Eulidean

omplex K is alled a m-pseudomanifold if every (m� 1)-simplex of K

m

is a fae of one or two

m-simplexes. The subomplex of K onsisting of all the faes (proper or not) of the (m� 1)-

simplexes of K whih are faes of preisely one m-simplex of K is referred to as the boundary

of K, denoted by BK. If BK is null, then K is said to be losed, otherwise K is said to be

with boundary.

These omplexes are partiularly interesting beause, for m = n � 1, they separate the

spae R

n

in two onneted parts as it is stated by the following theorem [2℄:

Theorem 49 (Jordan{Brouwer). Every losed (n� 1)-pseudomanifold in R

n

is orientable,

separates R

n

into preisely two domains, and is the ommon boundary of these two domains.

The following lemma will be useful in some demonstrations.

Lemma 50. Let X be an n-dimensional onvex polyhedral domain in R

n

, K the polyhedral

omplex made of X and its faes. K is an n-pseudomanifold with boundary. Its boundaryBK

is a losed (n� 1)-pseudomanifold.
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Figure 9: This �gure ompares the performane of two approahes to extrat the iso-surfae:

(1) the sanning approah and (2) the transformation of the digital boundary extrated by

traking. The test image is a sphere (images are ubial; the numbers in absissa represent the

side sizes of those images), onstruted as a gray-level image, to whih pepper and salt noise

may be added. The phrase \p% of pepper and salt noise added to the image" means the gray

intensity of every voxel has a p% probability to be set to either blak or white. The graph

with diamond points and solid lines designates the test image without noise. The graph with

ross points and dashed lines indiates the test image with 1% of pepper and salt noise and the

graph with square points and dotted lines the test image with 5% of noise. Graph (a) draws

the time ratio between method (2) and method (1) as a funtion of the image side size. Graph

(b) draws the omputation time taken by method (2) as a funtion of the image side size (time

in ms on a 300 Mhz Pentium PC).
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