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Abstract—This paper proposes an original method for extract-
ing the centerline of 3D objects given only partial mesh scans as
input data. Its principle relies on the construction of a normal
vector accumulation map build by casting digital rays from input
vertices. This map is then pruned according to a confidence voting
rule: confidence in a point increases if this point has maximal
votes along a ray. Points with high confidence accurately delineate
the centerline of the object. The resulting centerline is robust
enough to allow the reconstruction of the associated graph by a
simple morphological processing of the confidence and a geodesic
tracking. The overall process is unsupervised and only depends
on a user-chosen maximal object radius. Experiments show a
good behavior on standard mesh scans. Moreover, the proposed
method is not only competitive with state-of-the-art methods on
perfect data, but appears to be much more reliable on imperfect
or damaged data, like holes, partial scans, noise, and scans from
only one direction.

I. INTRODUCTION

Given some sampling of the boundary of some tubular
shape, and more generally a shape with a symmetry of revolu-
tion, detecting its centerline is a classical problem in geometry
processing, and is useful for shape acquisition and modeling,
reverse-engineering, or control of manufactured objects. As a
matter of fact, this problem is important in many other areas
relying on shape or image analysis. In medicine or biology, we
can cite the extraction of vessels, bronchi or brain structure as
an important step to obtain geometric measurements and help
to the diagnostic of numerous pathologies [1], [2]. Tubular
structures can also be found in agronomic research and indus-
try with studies of the wood structure as the knot segmentation
from X-ray CT scans [3] or the bark defect detection from laser
scan [4]. In the industrial context, we can cite the problem of
reverse engineering of tubular metallic pieces coming from a
production line of bending machines [5], [6].

There exist many methods to recover and/or analyze tubular
or locally tubular structures, and most of them are designed for
a particular type of input data, e.g. meshes, volumic images,
point clouds, or height maps, which depends on the acquisition
device (CT scans, MRI, lasers, Kinect R©-like devices). When
data is constituted of meshes, Tagliasacchi et al. [7] recently
proposed a method which has good performance on nice mesh
without holes. We will show in the experimental section that
this method is considerably perturbated when dealing with
partial data, which are the standard output of laser scans.
We can also mention the method based on mesh contraction
from Au et al. which shows fine results but as mentionned by

(a) Playmobil tree (b) Lemon tree

(e) dacc = 10

(c) Shell (f) dacc = 3

Fig. 1. Detection of the centerline of objects with a local symmetry of
revolution: (a) Playmobil and (b) lemon tree scanned from one side, (c) shell
with large missing parts, (d,e) phone wire without data on the inner side
according to accumulation distance parameter.

the authors, the method only works for closed mesh models
with manifold connectivity [8]. To overcome these limitations
other work was introduced to process incomplete point cloud
[9] however this method suffers from the parameters tunning.
Other methods were proposed in geometry processing to work
with solely point clouds as input. We can cite the methods
of Lee using shrinking [10] and moving least squares [11]
approaches. Bauer et al. proposed to recover a parametric
model based on a tubular spine [5]. For digital data (generally
segmented images), there are two main families of methods:
methods based on the medial axis extraction, for which we
can find a survey in [12] with implementations, and methods
exploiting image gradient information [13], for instance the
works of Hassouna et al. [14] or Bauer et al. [15] dedicated
to virtual endoscopy. Unfortunately these methods are not
adapted to deal with partially defined shapes (like partial
scans, images with occlusions, etc), and this limitation is a
serious drawback for numerous applications. Please note that
all methods relying to some extent on a distance transform
to input data cannot process partially sampled shapes: holes



and missing information perturbate too much the distance
transform. As a consequence, methods relying on medial axis,
Voronoi diagram, distance transform, thinning and skeletoniza-
tion will be incorrect on such data.

Recently, we proposed a new method to detect the centerline
of tubular shapes [6]. Its principle is to build a normal
accumulation map from input surface data, and then to follow
maxima in this map by tracking. This method is very versatile
with respect to input data: it is able to extract the centerline
of mesh scans, cloud of points, digital shapes in images or
height maps. Its sole requirement is that a normal vector
field must be associated to the input points. An optimization
process was then conducted to smooth the resulting centerline
approximation. The method was shown to be robust to noise
and to missing data. However the method presents two major
issues: its tracking step prevents it to extract branching tubular
structures and its smoothing step restricts input data to tube-
shaped objects with constant radius.

To overcome these limitations, we introduce in Sec. II the
new notion of accumulation confidence, which significantly
improves the quality of the centerline detection, especially
for highly sparse mesh sampling (see Fig. 1). This new
notion is also compatible with branching structures of variable
radii of revolution. Sec. III describes a geodesic-based graph
extraction algorithm following the detected centerline. Sec.
IV presents several experiments and comparisons with other
methods. Some applications are discussed too. Note that for
space reasons we will only present results with partial mesh
scans as input data, but the whole method is generic enough
to process points with normals, digital images or height maps.

II. NORMAL VECTOR ACCUMULATION AND CONFIDENCE

This section presents a new notion called accumulation
confidence, which refines the normal vector accumulation map
introduced in [6]. Input data consists of a set of points with an
associated normal field, for instance provided as a triangulated
or quadrangulated mesh. All the proposed algorithms can be
applied on an arbitrary normal vector field, independently of
the initial structure: a mesh, a digital image or a point cloud.
For instance if you consider digital object (resp. a point cloud),
normals can be obtained by the estimator proposed by Cuel
et al. [16] (resp. the algorithm proposed by Ran et al. [17]).

From now on, every step of our method is independent of
the type of data. There is only one user-given parameter, called
the accumulation distance dacc. It corresponds to a length
in pixel units in the discrete accumulation space. It should
be chosen as rmax + ε, where rmax denotes the maximal
radius of the input tubular shape. The parameter ε is set
rmax/5 in all our experiments. It ensures that our ray tracing
algorithm reaches the object centerline even in the sample
point or the normal vector direction were poorly approximated.
Furthermore the gridstep of the digitized grid used in the
process is determined as the average edge length of the input
mesh.

A. Normal vector accumulation map

The normal vector accumulation map is built by casting
digital rays from each input point in the direction of its
associated inner normal vector. The length of each ray is dacc.
The space is thus digitized as a regular grid. Each voxel of
this grid will count the number of digital rays coming from
input points with length dacc that cross it. The idea of the
accumulation map is illustrated Fig. 2 (a,b) in the 2D case.
This map remains robust even when normal vectors are poorly
estimated. A 3D example of normal vector accumulation map
is shown in Fig. 2 (d,e). Although this accumulation map keeps
stable (but slightly diffused) maxima in presence of noise [6],
the optimization process was not able to detect centerlines of
objects with branches or variable radii.

B. Accumulation confidence

The accumulation confidence is a new notion that we
introduce to estimate the reliability of an accumulation value.
Let be v a voxel and vacc its accumulation value, which is
the number of ray segments passing through v. We define the
number vmax as the number of rays passing through v and
for which vacc is the strict maximum value along the whole
ray. Then, the accumulation confidence of vacc is the ratio
vconf ∈ [0, 1] such as

vconf = vmax/vacc.

The confidence is very discriminative for unwanted important
accumulation values due to imprecisions on the normal vector
directions. As illustrated in Fig. 2, if several voxels have a high
accumulation value vacc, only one has a high confidence of
1, which means that vacc is the maximum value along all the
rays voting for it. Such points are thus the exact intersection
of many rays originating from input points, and corresponds
to centerlines of objects with a symmetry of revolution.

C. Thresholding the accumulation confidence

Both accumulation map and confidence map could be
interpreted as probabilities for each voxel to belong to the
centerline of the shape. Thresholding theses maps restrict
candidates to the most likely voxels, as illustrated in Fig.
3. However, it is delicate to determine a good threshold for
a normal vector accumulation map. It depends both on the
mesh resolution and the resolution of the discrete accumulation
space, as well as the amount of noise in input data. On
the contrary, thresholding the confidence map is much more
intuitive, without dependence on the sampling of the input
object or user choices. This is because there is always one
point (and no more) that has confidence 1 at the crossing of
rays. Another consequence is that the thresholding is much
more robust on the confidence than on the accumulation for
objects with a non constant radius (compare Fig. 3(c) and
(f)). Each voxel that has a confidence value greater than some
threshold is a centerline voxel.
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(d) 3D ray casting

(a) Normal trajectories (b) Accumulation map (c) Confidence map imConf (e) 3D accumulation

Fig. 2. Normal vector accumulation to produce the accumulation map imAcc in (b). An accumulation value corresponds to the number of normal vector
segments of length dacc intersecting the voxel. Image (e) shows the accumulations obtained on a 3D mesh section after a ray casting (d). The corresponding
confidence map imConf (c) allows to discriminate the maximum values of imAcc. A confidence value corresponds to the ratio between the number of
normal vector segments intersecting it and these for which the corresponding accumulation value is a maximum.

Algorithm 1 Compute the confidence map imConf for each
accumulation value of imAcc from each normal vector of nvf
contributing to this accumulation value.

1: Procedure COMPUTECONF

2: Input
3: List<Vector3D> nvf # Normal field
4: List<Point3D> nvo # Face origins
5: Image3D<Int> imAcc # Accumulation map
6: Int dacc # Accumulation distance
7: Output
8: Image3D<Double> imConf # Confidence map
9: Begin

10: For i : 0→ nvf .size() - 1 do
11: Vector3D norm = nvf [i]
12: Point3D orig, pos,maxPos = nvo[i]
13: Int maxAcc = 0
14: While orig.distanceTo(pos) < dacc do
15: If imAcc(pos) > maxAcc then
16: maxAcc = imAcc(pos)
17: maxPos = pos

18: pos.translate(norm)
19: imConf (maxPos)++
20: Foreach pos ∈ imConf .domain() do
21: imConf (pos) = imConf (pos) ÷ imAcc(pos)
22: return imConf
23: End

D. Radius estimation

We propose an algorithm to estimate the local radius at
each centerline voxel from the accumulation confidence map.
By construction, this estimation is available for each voxel
intersected by at least one normal vector ray segment in Alg.
1. We simply attributes to each highly centerline voxel its
average distance to the origins of the digital rays that cross it.

This algorithm allows by example, to reconstruct the initial
shape from the radius associated to each centerline voxel. In
Fig. 4, we can see two reconstructions by balls and tubes using

(a) t = 0.05 (b) t = 0.1 (c) t = 0.4

(d) t = 0.1 (e) t = 0.5 (f) t = 0.8

Fig. 3. Thresholding on an accumulation (a,b,c) and confidence map (d,e,f)
for the manually scanned Playmobil tree. The accumulation distance is set to
dacc = 6, since the measured maximal radius rmax was 5.7 pixels.

the estimated radius. After the thresholding on the confidence
map, we applied the graph extraction proposed in Sec. III and
we drew each vertex as a ball of the estimated radius and each
edge as a tube with a linear radius variation between the two
linked vertex.

E. Stability of the confidence accumulation

Contrary to the normal vector accumulation map, the ac-
cumulation confidence is much more stable with respect to
the threshold parameter. To evaluate this stability, we have
measured the variation of the number of voxels as a function
of the threshold value (associated to their number of connected
components). As shown in Fig. 5, we can see that the variation
of the number of voxels appears more stable for the confidence
map than for the accumulation map. Related to this stability,



(a) imConf > 0.7 (b) Graph vertex (c) Radius estimation

Fig. 4. The thresholding of the confidence map imConf (in (a)) is used as
input of the graph extraction algorithm proposed in Sec. III. It produces a set
of vertices (in (b)) from which we can reconstruct the initial branching object
using balls and tubes (in (c)) with radii estimated as described in section Sec.
II-D.
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Fig. 5. Comparison of the stability towards the threshold parameters (T1, T2

and T3) and for the accumulation (left) and confidence (right) map.

the number of connected components close to one, is more
frequent for the confidence map (left column of Fig. 5) than
for the accumulation map (right column of Fig. 5).

This stability is a key element for designing the algorithm
of graph extraction defined in the next section.

III. GEODESIC-BASED GRAPH EXTRACTION FROM
CENTERLINE

The centerline detection algorithm proposed in [6] was
restricted to tubular structures of constant radius without
branching. The accuracy of the confidence map to delineate the
centerline allows us to connect centerline voxels as a graph,
thus overcoming these limits.

The proposed graph extraction algorithm takes as input the
thresholded confidence map (Initial step Fig. 6). The first step
consists in a morphological dilation. This connects centerline
voxels. Then the voxel with maximal accumulation value
defines the origin of a geodesic distance transform (Step 1).
The resulting labelled voxel set is decomposed into regions

Initial step: Start from
the confidence map.

Step 1: Dilatation and
geodesic propagation.

Step 2.a: Support regions of
vertices.

Step 2.b: Detection of splitting regions (in blue) with
details on the corresponding graph extraction step.

Step 3: Recovering graph
vertices with edges.

Fig. 6. The main steps of the geodesic-based graph extraction.

of similar distance (Step 2a). Each region is decomposed
into its connected components: branching points corresponds
to split regions (in blue Step 2b). A representative point is
defined for each region to constitute the set of graph vertices
(Step 3). A tracking in the geodesic distance image from
the maximum accumulation value then links the vertices by
simple analysis of the connectivity of ancestor regions (see the
graph extraction Fig. 6). To implement this graph extraction
algorithm, we used the Fast Marching Method [18] from the
DGtal library [19].

The process for detecting split split process is detailed
in Fig. 6. From an initial representative point P0 the FMM
propagation is iteratively applied on distance dgeo to remove
all the points of S0 from next candidate points. A second FMM
propagation is applied from S0 that constitutes the point set
S1. Since there is only one connected component, this leads
to only one new graph vertex V1. The next FFM propagation
furnishes the S2 pointset with two connected components: a
graph vertex is defined for each of them, V2 and V3. In this
case, the process is independently repeated on each of the
connected component: from V2 the process finds V4 and from
V3 it finds V5. Note that each graph vertex Vi is defined as
the barycenter of the point set of the corresponding connected
component of Si.

This algorithm is based on a geodesic distance to follow at
best the geometrical quasi tubular structure of the confidence
map. Other generic graph reconstruction algorithms could
also be adapted, for instance the metric graph based method
[20]. We tried to adapt this method but the geodesic-based
reconstruction provides better results in practice.

IV. RESULTS AND COMPARISONS

Fig. 7 summarized the accuracy and robustness of our
method of centerline detection. It is tested on three different
kinds of objects: (i) industrial metal tubes used in [6], (ii)
branched objects manually scanned, leading to very partial
scanned data, (iii) objects proposed in the SHREC 2011
contest [22].

Firstly, our method remains as accurate as the method of [6]
on metallic tubes (see Fig. 7 (e,f,g)). The two main advantages
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Fig. 7. In left, results of our centerline detection method from confidence in normal vector accumulation. In right, results of the mean curvature skeleton [7]
on the same objects, from the CGAL implementation [21]. In the first and second lines, two trees and three industrial tubes manually scanned. In the last
line, three synthetic objects of the SHREC 2011 contest [22].

TABLE I
COMPUTING TIMES OF MESH EXPERIMENTED FIG. 7

Our method MCS Nb. faces
(a,c) Playmobil tree 2’20 5’08 250 873

(b,d) Lemon tree 22’47 no graph 833 128
(e,h) Tube 1 0’94 3’60 151 444

(e,h) Tube 1 partial 0’67 infinite loop 16 764
(f,i) Tube 2 1’50 5’60 230 428
(g,j) Tube 3 1’50 4’42 187 638

(k,n) Ant 2’62 0’81 19 996
(l,o) Horse 5’88 0’70 19 992

(m,p) Snake 1’02 0’45 18 926

of our method are visible on Fig. 7 (a,b). Both trees have
many branches of variable radii, all acquired with a partial
acquisition. Our method nicely localizes the centerlines of
these trees. The precision of our method detects the branch
start of trees due to bumps on the bark. The robustness to
this kind of data is intrinsic to the accumulation process,
comparable to a vote: it is based on the majority principle
that allows the method to be independent of the number of

votes. Our method is thus extremely resilient to missing data.
Last, we tested our method on data which have only pseudo-
tubular properties since they have scarcely a local symmetry
of revolution. Despite of that, our approach is competitive
with the state-of-the-art method of [7], as illustrated on Fig.
7 (k,l,m), while this method is not robust to missing data. Some
small defects appear for the horse hoofs with few non expected
intersections, or with the non-linear ant body. However, these
results are obtained without any post-processing operations.

Our results are compared to the Mean Curvature Skeleton
(MCS) proposed by Tagliasacchi et al. [7] through the C++
implementation of the CGAL library [21]. The results are
presented on the right part of Fig. 7. Even if the MCS method
presents fine results on SHREC 2011 contest, we can see that
the quality of the method is dramatically degraded when the
scan are obtained by manual scanner acquisition. Conversely,
our method performs much better on partial scans even if
significant missing parts are present like on the top of the
branches of lemon tree Fig. 7 (a,b). Moreover, the computing
times compared in Tab. I show that the MCS is longer to



(a) (b) (c)

(d) (e)

Fig. 8. Thickness estimation computed from Alg. 1 (a,d) with a segmented
version (b). (c,e) show the associated centerline extraction.

compute on mesh with a consequent number of faces than our
method, and is not robust on the lemon tree or the partial tube
1 with unpredictable comportments.

A. Thickness estimation

During the confidence map computation detailed in Alg.
1, we can store for each face the position of the maximal
accumulation value maxPos. By this way, we can associate
to each face the value of the thickness of the tubular object
and segment its tubular parts. Fig. 8 (a,d) shows this thickness
estimation and (b) the segmentation into mesh faces defined
according to a thickness interval selection. The last column
(c,e) shows the centerline detected after a thresholding on the
corresponding accumulation map.

V. CONCLUSION

The new notion of confidence on normal vector accumula-
tion proposed an original way to detect the centerline of tube-
like shapes even with imperfect or damaged data. The sole
parameter is the maximal radius expected in the input data.
The confidence increases the accuracy of the accumulation
map. This accuracy allows us to propose a graph extraction
method dealing with shapes with branching structures and
radius variations. This graph extraction uses a geodesic ap-
proach combined to a connected component analysis to detect
graph branchings. In addition, we proposed an estimation
of the structure radii exploiting the same approach than the
confidence algorithm.

Obtained results show that the method is really competitive
with state-of-the-art methods on classical mesh. The major
advantage of our method is its excellent robustness to partial
data, which makes it particularly adapted to mesh acquired
by quick manual scanning. Numerous applications can be
considered: shape retrieving, mesh segmentation, geometry
analysis, etc.

We are considering to improve the graph extraction ap-
proach: the radius estimation could be used in order to
propose an adaptive graph extraction method. This would be

very suitable for medical applications as vessel or bronchi
segmentation where important radius variations appear.
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[3] A. Krähenbühl, B. Kerautret, I. Debled-Rennesson, F. Mothe, and
F. Longuetaud, “Knot Segmentation in 3d CT Images of Wet Wood,”
Pattern Recognition, 2014.

[4] L. Thomas and L. Mili, “A robust gm-estimator for the automated
detection of external defects on barked hardwood logs and stems,” Signal
Processing, IEEE Transactions on, vol. 55, no. 7, pp. 3568–3576, 2007.

[5] U. Bauer and K. Polthier, “Generating parametric models of tubes from
laser scans,” Computer-Aided Design, vol. 41, no. 10, pp. 719–729,
2009.
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