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Meaningful Scales Detection along Digital
Contours for Unsupervised Local Noise

Estimation
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Abstract—The automatic detection of noisy or damaged parts along digital contours is a difficult problem, since it is hard to distinguish

between information and perturbation without further a priori hypotheses. However, solving this issue has a great impact on numerous

applications, including image segmentation, geometric estimators, contour reconstruction, shape matching or image edition. We

propose an original strategy to detect what are the relevant scales at which each point of the digital contours should be considered. It

relies on theoretical results of asymptotic discrete geometry. A direct consequence is the automatic detection of the noisy or damaged

parts of the contour, together with its quantitative evaluation (or noise level). Apart from a given maximal observation scale, the proposed

approach does not require any parameter tuning and is easy to implement. We demonstrate its effectiveness on several datasets.

We present different direct applications of this local measure to contour smoothing and geometric estimators, whose algorithms

initially required a noise/scale parameter to tune: they show the pertinence of the proposed measure for digital shape analysis and

reconstruction.

Index Terms—Local noise detection, discrete geometry, maximal segments, shape analysis.
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1 INTRODUCTION

The geometric analysis of discrete or digital contours is
of primary importance for shape recognition or shape
matching. Discrete contours that arise naturally from
digitization processes or from image segmentation algo-
rithms are by nature non smooth and their geometric
analysis requires specific approaches. Examples of such
approaches can be found in the discrete geometry field,
where the most accurate techniques rely generally on
the extraction of maximal segments, which are local affine
reconstruction of contours.
In most cases, digital contours are not perfect digitiza-

tions of ideal shapes but present noise and perturbations.
This is also true for regions produced by most segmen-
tation algorithms, whose regularizers penalize length
but not curvature. Rather recently, blurred segments were
introduced to take into account both the discreteness
and possible noise of data [1]. They are parameterized
with a value related to the thickness of the perturbation.
Based on this, discrete tangent and curvature estimators
robust to noise have been developed [2], [3]. Similarly,
the curvature estimator of [4] requires a smoothing
parameter related to the amount of noise. In pattern
recognition too, many techniques for extracting feature
points, dominant points or corners rely on one or more
external parameters that are determinant for removing
contour perturbations due to noise (e.g., see [5]).
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Fig. 1. Top row: partially damaged input image and

results of morphological operations. Images (a-d): noise

removal algorithm of Rudin et al. [6]. The parameter

λ controlling the noise removal is global to the image.

Removing significant noise induces a general smoothing.

Our noise detection algorithm (bottom, second from right)

could provide interesting information to such algorithms.

An adaptive median filter using this information (see Sec-

tion 5) creates image at bottom right.

Two factors limit the applicability of these techniques:
first their parameterization requires a user supervision,
secondly this parameter is global to the shape, while the
amount of noise may be variable along the shape.

Strangely enough, this issue has not been tackled in
the discrete geometry and pattern recognition commu-
nities. However, the similar problem of noise detection
and appraisal in gray-level or color images has been
studied a lot in the image processing and edge detection
community. It has led to the development of multiscale
analysis [7], [8]. In a way, noise detection is postponed
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to a later process which will analyze the scale-space
instead of the image. Further improvements lead to the
automatic determination of a local scale, whose aim is
either to improve edge detection or image restoration.
Some approaches rely on a global optimization scheme,
like the one of Jeong and Kim [9]. Its optimization
is however difficult. The Mumford-Shah model of im-
age segmentation [10] is also a global technique for
getting rid of the noise by fitting a piecewise contin-
uous function. However, the delineated regions may
have perturbed boundaries. The noise removal algorithm
based on nonlinear total variation by Rudin, Osher
and Fatemi [6] is efficient to remove a global Gaussian
noise of known characteristics. As illustrated on Fig. 1,
this approach is less convincing for binary images with
variable noise. Along the same lines, global approaches
like morphological operations (see Fig. 1) or gaussian
smoothing failed at preserving features and removing
noise at the same time.
Most methods adopt a local optimization procedure

for finding the best local scale. Elder and Zucker [11] de-
termines the minimum reliable scale by fitting a blurred
step-model of a contour. Kervrann [12] proposes to deter-
mine the best local window for a local piecewise constant
reconstruction of the image by a statistical method. Many
other approaches are related to anisotropic diffusion
[13] and non-linear filtering [14]. They aim at defining
locally what should be the threshold between diffusion
and sharpening. Among them, we quote the work of
Chen [15] which uses a local discontinuity measure
to constrain the anisotropic diffusion, and the work
of Goshtasby and Satter [16], which smoothes images
according to adaptive windows depending on the local
image gradient structure.
Although very interesting for image processing, these

techniques cannot be used to process binary images or,
equivalently, segmented region boundaries and digital
contours. They indeed rely either on a local SNR analysis
of the image, sometimes with a user-given global SNR
parameter, or on gradient information. Since we have
only the discrete contour as input, both information are
not computable.
We propose here a new method for estimating locally

if the digital contour is damaged, what is the amount
of perturbation, and what are the meaningful scales at
which this part of the contour should be considered. Our
method is similar in spirit to multiscale analysis, but
relies on specific properties of digital contours. We know
indeed several asymptotic properties of perfect shape
digitizations. The main idea is to look for these asymptotic
properties in the multiresolution decomposition of the
given contour. If they are present, then the scale is mean-
ingful, otherwise the contour is still noisy at this scale
and must be examined at a coarser scale. Our approach
is local, requires no parameter tuning (except a given
maximal observation scale), and is easy to implement. Its
output can be used in many applications which requires
a global or local noise parameterization. Among them,

we may quote tangent or curvature estimators, dominant
point and corner detection.
In Section 2 we recall standard notions of discrete ge-

ometry and known asymptotic results concerning max-
imal segments defined along the contour of shape digi-
tizations. We show that the length of maximal segments
over scales can be used both to distinguish between flat
and curved parts of a contour and to detect noise. These
characteristics are to be found in the multiscale profile
of each point of the digital contour. We present how
to compute them from the subsamplings of the input
contour. Section 3 gives several ways for interpreting the
multiscale profile of a point, depending on whether the
user wish to detect the first local reliable scale (meaningful
scale, noise level) or the finest local reliable scale knowing
a global coarse reliable scale (standard scale). In Section 4
we validate our technique on several datasets, containing
different shape geometries, localized and/or variable
noise, various resolutions. All datasets are processed uni-
formly without any specific parameterization. Noise and
reliable scales are correctly determined and quantified
in all cases. Our noise quantifier is also shown to be
globally consistent, since it keeps the same response
along the digital shape contour for a stationary noise
whatever the chosen resolution. We further demonstrate
the potential of our approach in Section 5, where we give
four straightforward applications of our noise detector.
The first one is the simple adaptive median filtering
of the digital object according to its noise level: sharp
features are preserved while noise is removed. The
second one is the local parameterization of a discrete
tangent estimator [17]. Tangent estimation is improved
in damaged regions while its precision is preserved in
undamaged parts. The third one is the exploitation of
detected noise level for the parameterization of two
classical contour reconstruction algorithms [18], [19]. The
fourth one is the evaluation of the segmentation accuracy
of the power watershed algorithm [20]. Section 6 presents
some perspectives to this work. The presented noise
detector is available online at [21].

2 MULTISCALE PROPERTIES OF MAXIMAL

SEGMENTS

2.1 Definition and known asymptotic results

Introduced in the 1970s, digital straightness has been
an active research subject through many years (e.g. [22],
[23], [24], and [25] for a recent review). In this work, we
consider the following definition:
A standard Digital Straight Line (DSL) is some set

{(x, y) ∈ Z2, µ ≤ ax−by < µ+|a|+|b|}, where (a, b, µ) are
also integers and gcd(a, b) = 1. The real lines of equation
ax − by = µ and ax − by = µ + ω − 1 are respectively
the lower and upper leaning lines (as illustrated in the
next floating figure). It is well known that a DSL is a
4-connected simple path in the digital plane. A Digital
Straight Segment (DSS) is a 4-connected piece of DSL.
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The interpixel contour of a simple digital shape is a 4-
connected closed path without self-intersections. Given
such a 4-connected path C, a maximal segment M is a
subset of C that is a DSS and which is no more a DSS
when adding any other point of C \M .

The figure on the
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right illustrates a re-
cognition process of a
maximal straight seg-
ment initiated from
the point P0 (like
the recognition algo-
rithm of Debled and
Reveilles [26]). From this point the sequence P1, P- 1,
P2, P- 2, P3, P- 3, P4, P- 4, P5, P- 5, P- 6, P- 7, P- 8, P- 9

are added alternately to the front and to the back of
the current segment. The final segment is maximal since
the points P- 10 and P6 cannot be added. The resulting
recognition process gives also the DSS characteristics
(a, b, µ) = (2, 5, 0) and its discrete length L = 14 which
is simply defined as its number of pixels minus one.
A discrete contour point can be covered by several

maximal DSS. For instance, the point P0 of Fig. 2 is
covered by four DSS (a-d). Note that the set of all
maximal DSS can be computed in linear time according
to the contour size [17]. Such a detection can be done
by removing points from the back of the DSS and by
adding new points to the front. For instance, from the
DSS (a) of Fig. 2, the DSS (b) is obtained by removing
the point P- 6, P- 5, P- 4 and by adding P3, P4 and P5.
In the following we will denote by Lj the length of the
jth DSS covering a point P . As example the notation L3

will denote the length of the third DSS which cover P0

on Fig. 2 (c).
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Fig. 2. Illustration of the set of all maximal DSS covering

a discrete point P0 with discrete lengths L equals respec-

tively to 8, 8, 8 and 9.

We recall some asymptotic results related to maxi-
mal segments that lie on the boundary of some shape
X digitized with step h. The digitization process is
Digh(X) = X ∩ hZ × hZ (Gauss digitization [27]). First,
we assume the shape has smooth C3-boundary and
is strictly convex (no flat zones, no inflexion point).
Theorem 5.26 of [28] states that the smallest discrete
length — the number of pixels minus one — of the
maximal segments on the boundary of Digh(X) is some
Ω(1/h1/3). The longest discrete length of the maximal
segments on the boundary of Digh(X) is some O(1/h1/2)
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Mean discrete length of maximal DSS Lmean

Awaited maximal discrete length (kx1/2 from Equ (1))

Awaited minimal discrete length (lx1/3 from Equ (1))

Scale (inverse of the digitization step (1/h))

Fig. 3. Illustration of the asymptotic behaviour of the

discrete length of maximal discrete straight segment on

a circle of radius 1. The abscissa represents the inverse

of the digitization step h. The upper and lower bound

from Equ (1) are plotted as a reference for illustration with

chosen values of k and l.

function (Lemma15 of [17]). Fig. 3 presents experimental
measures of the DSS length obtained on the digitizations
of a circle. The discrete minimal, maximal and average
length well fit the theoretical behaviour defined from the
previous theorem.
Secondly, we observe maximal segments along the

digitization of a flat zone of a shape. Since digital straight
segments are digitization of straight line segments, there
is at least one maximal segment that covers the straight
line. It means that the discrete length of the longest
maximal segment is Θ(1/h).
As a corollary to the previous properties, by consider-

ing not only strictly concave or convex shape, we obtain:
Corollary 1: Let S be a simply connected shape in R2

with a piecewise C3 boundary. Let P be a point of the
boundary ∂S of S. Consider now an open connected
neighborhood U of P on ∂S. Let (Lh

j ) be the discrete
lengths of the maximal segments covering P along the
boundary of Digh(S). Then, if U is strictly convex or
concave, then

Ω(1/h1/3) ≤ Lh
j ≤ O(1/h1/2) (1)

if U has null curvature everywhere, then

Ω(1/h) ≤ Lh
j ≤ O(1/h) (2)

The first inequality expresses the asymptotic be-
haviour of the length of maximal segments in smooth
curved parts of a shape boundary. The second one gives
the analog properties in flat parts of a shape boundary.

2.2 From asymptotic to scale analysis by subsam-
pling

In the context of image analysis and pattern recognition,
we do not have access to asymptotic digitizations of
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shapes: we are not able to get finer and finer versions of
the object. At first glance, it could mean that asymptotic
properties are not useful to analyze shape boundaries.
This is not true. We can use asymptotic properties in
a reverse manner. We consider that our digital object
D is the digitization of some Euclidean shape X at
a grid step h, choosing for instance again the Gauss
digitization. We then subsample the digital object D
with covering “pixels” of increasing sizes i × i, for
i = 2, 3, . . . , n. The subsampling process φi will be
described in Section 2.3. The family D of digital objects
φn(D), . . . , φ2(D), D is an approximation of a sequence
of finer and finer digitized versions of X , namely the
family X : Dignh(X), . . . ,Dig2h(X),Digh(X). Corollary 1
holds for the latter family X . Although this corollary
does not formally hold for the family D, a similar
behaviour is observed in practice (see for instance the
plots of points P1 and P ′

1 from Fig. 5 (b,d) or the com-
plementary experiments from the annex, part A. [29]).
When looking at lengths of maximal segments around

some point P of the boundary of D, we should thus ob-
serve a decreasing sequence of lengths for the increasing
sequence of digitization grid steps hi = ih, whose slope
is related to the fact that P was in a flat or curved region.
More precisely, letting (Lhi

j )j=1..li be the discrete lengths
of the maximal segments along the boundary of φi(D)
and covering P , we can expect:

• If P is in a curved convex or concave zone, then the
lengths Lhi

j follow (1).

• If P is in a flat zone, then the lengths Lhi
j follow (2).

The asymptotic bounds of these equations suggest:
Property 1 (Multiscale): The plots of the lengths Lhi

j in
log-scale should be approximately affine with negative
slopes as specified below:

expected slope
plot (curved part) (flat part)

(log(i), log(maxj=1...li L
hi
j )) ≈ − 1

2 ≈ −1

(log(i), log(minj=1...li L
hi
j )) ≈ − 1

3 ≈ −1

The plot is only approximately affine since the preced-
ing properties are asymptotic. Given an object at a finite
resolution, subsampling induces length variations that
follow only approximately the asymptotic behaviour.
Arithmetic artefacts play also a role in this. It is however
clear that the approximation gets better when the initial
shape is digitized with a finer resolution.
We can make several remarks about the preceding

result. First, it allows to distinguish between flat parts
and curved parts of an object boundary, provided the
object was digitized with a reasonable precision. This
distinction relies only on the classification of the plot
slope between [−1,− 1

2 [ and [− 1
2 ,−

1
3 ]. Secondly, the pre-

ceding approach is not valid on (around) points that are
(i) a transition between a flat and a curved part, (ii)
corner points. Thirdly, this technique assumes smooth
objects with perfect digitization: if the digital contour has
been damaged by noise or digitization artefacts, these

(a) scale = 1 (b) scale = 2 (c) scale = 3 (d)

P0 P0 P0

L1

mean
= 9.25 L2

mean
= 6.33 L3

mean
= 5.5

Fig. 4. Illustration of the set of maximal segments cov-

ering a point P at different scales (a-c). Ls
mean gives the

mean discrete length of the DSS covering P at scale s.
(d) shows the function (represented by lines) associating

each pixel P of C to the point φ0,0
3 (P ).

characterizations do not hold.
Although the two last remarks seem problematic for

analyzing shapes, we will use them to detect locally the
amount of noise and to extract local meaningful scales.

2.3 Subsampling a digital contour

Our multiscale analysis of digital contours requires
several subsampling computations of the initial digital
shape. The subsampling as selected in our approach is
not spatial but operates along the digital contour [30].
The output subsampled contour is denoted by φx0,y0

i (C)
where x0 and y0 is the shift needed for the subsampling
(with 0 ≤ x0, y0 < i). The index correspondence between
points along the two contours is computed during the
subsampling. Along with φx0,y0

i (C), there is thus a sur-
jective map fx0,y0

i which associates any point P in C
to its image point in the subsampled contour φx0,y0

i (C).
Several subsampled contours are illustrated on Fig. 4 (a-
c) and the map f0,0

3 is shown in (d). This subsampling
similar to the common spatial one, can be done either
locally around the point of interest or globally for the
whole contour.

2.4 Local geometric evaluation with multiscale crite-

rion

We are now in a position to analyze the local geometry
of some point P on a digital contour C. For resolution
i and a shift (x0, y0), we compute the discrete lengths
Lhi,x0,y0

j of the maximal segments of φx0,y0

i (C) containing
fx0,y0

i (P ). To take into account the possible digitization
artefacts and approximations, we average these lengths

as L
hi

= 1
i2

∑

0≤x0<i,0≤y0<i
1

l
x0,y0
i

∑

j L
hi,x0,y0

j , where

lx0,y0

i represents the number of maximal segments con-
taining fx0,y0

i (P ). As previously described in Section 2.1,
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all the maximal segments of φx0,y0

i can be computed in
linear time with the number of points [17]. Fig. 4 illus-
trates for a point P the cover of maximal DSS obtained
at several scales with shift values (x0, y0) = (0, 0).
The multiscale profile Pn(P ) of a point P on the

boundary of a digital object D is the sequence of

samples (log(i), log(L
hi
)i=1..n). According to Property 1,

these samples should be correctly approached with an
affine model. Several examples of multiscale profiles
are illustrated in Fig. 5 (b,d). We thus define the ideal
multiscale criterion µn(P ) of a point P on the boundary
of a digital object D as the slope coefficient of the
simple linear regression of Pn(P ) (in the order regressor,
regressand). An example of ideal multiscale criterion
along a digital spiral is illustrated on Fig. 5 (e,f).
The slope defined by the ideal multiscale crite-

ria µn(P ) appears useful to detect the flat or con-
cave/convex contour parts. In fact, Property 1 indicates
that µn(P ) should be around −1 if P is in a flat zone,
whereas it should be within [−1/2,−1/3] if P is in
a strictly convex or concave zone. A complementary
study [31] and others experiments [30] have shown that
this distinction can be reasonably performed by using a
threshold (denoted as tf/c) set around to −0.52.

3 MULTISCALE PROFILE ANALYSIS

There are several ways to analyze the resulting multi-
scale profile defined in the previous section. The first one
is to detect the first local scale for which the contour part
can be considered as meaningful: it naturally induces a
noise level definition. The second one is to start from a
global coarse scale and to detect the finest reliable scale
(standard scale).

3.1 Meaningful scales and noise detection

The multiscale profile can be used to detect noisy digital
contours. Indeed, if the multiscale profile of some point
P is not some approximation of an affine map with
negative slope, it means that locally around P the shape
geometry is neither a flat or curved zone. We display on
Fig. 5 (a-b) the multiscale profile of a point P1 located
on a perfectly digitized curved zone and the multiscale
profiles of the points P2 and P3 located in noisy zones.
On the former profile, the decreasing affine relation is
immediately visible. On the latter profiles, it is somewhat
randomly increasing for fine resolutions and then follow
an expected decreasing affine profile after a given scale.
A similar behavior is observable for the multiscale pro-
files on the pentagon shape with similar noisy regions.
The only difference is the slope of the affine relation of
the profiles (slopes near − 1

3 for the plots of Fig. 5 (b) and
near −1 for the plots of Fig. 5 (d)).
We therefore introduce a noise threshold tm to dis-

criminate between a curved zone and a noisy zone.
From this parameter a meaningful scale of a multiscale
profile (Xi, Yi)1≤i≤n is then defined as a pair (i1, i2),

1 ≤ i1 < i2 ≤ n, such that for all i, i1 ≤ i < i2,
Yi+1−Yi

Xi+1−Xi
≤ tm, and the preceding property is not true for

i1− 1 and i2. According to the analysis and experiments
of [30] it appears that the threshold tm = 0 gives locally
precise noise detection both on curved or flat zones and
near corners. Note that setting parameter tm between
−1/3 and 1/3 only slightly change the noise detection
as shown in the part B of the annex [29].

If (i1, i2) is a meaningful scale of the profile Pn(P ), the
(i1, i2)-multiscale criterion µi1,i2(P ) of point P is then the
slope coefficient of the simple linear regression of Pn(P )
restricted to its samples from i1 to i2.

Obviously meaningful scales of Pn(P ) do not overlap
and are thus naturally ordered. If the first meaningful
scale of Pn(P ) is (k1, k2), then the integer k1−1 is called
the noise level at point P and we denote it by ν(P ).

We will show in the experiment section that both
definitions of meaningful scales and noise level have a
clear intuitive interpretation. They determine precisely
where the contour is perturbed and how it should be
interpreted to be meaningful.

3.2 Standard scale

In presence of a large amount of noise (or for the
special case of fractal shapes) the first meaningful scale
is not always relevant compared to the global shape. For
example if we consider the shape of Fig. 6 (a) we can see
that the first meaningful scale of the point represented by
a cross indicates a zero noise level while the noise is well
visible from a global point of view: this phenomenon
appears in places where the noise is so important that
its geometry becomes pertinent at small scales. In order
to detect the global shape scale we propose another
strategy by defining the standard scale. This strategy is
top-down and assumes that the parameter n gives a
coarse scale at which the whole shape is relevant.

This notion is defined from the decomposition of the
multiscale profile (Xi, Yi)1≤i≤n into a sequence Sk of k
pairs (i1, i2), (i2, i3), . . . , (ik, ik+1), 1 ≤ ik < n and ik+1 =
n, each of them corresponding to the linear regression
computed by starting from highest index ij+1 to ij , 1 ≤
j ≤ k and which is false for ij − 1. The linear regression
model was used with a confidence rate set empirically to
70% after experiments on various contours. The slope of
the linear regression between ij and ij+1 is denoted by
θij . From this profile decomposition the standard scale
is defined as the first interval (il, im), 1 ≤ l < m ≤ k+1,
computed starting from scale n such that for all p, l ≤
p < m , θiP < 0 and such that θil−1

≥ 0 or il = 1. The
integer il defines the standard scale level of the point P
and is denoted by σ(P ).

Figure 6 illustrates the standard scale obtained on a
noisy contour point. The point on subfigure (a) has zero-
level noise according to its meaningful scale, while it
presents a large noise level of 7 according to its standard
scale equal to (8, 30).
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Fig. 5. Examples of multiscale profiles (a-d) and illustration of the ideal multiscale criterion µn(P ) on a spiral (e, f).

(a,b) shows examples of multiscale profiles P15(P ) on ellipse: P1 in a curved zone, P2 in a slightly perturbed curved

zone , P3 in a strongly perturbed curved zone. Gaussian noise (source image illustrated in the background in light

gray) was added on each areas containing the point P1, P2 and P3 with respectively the following standard deviation

σ1 = 0, σ2 = 75, and σ2 = 175 . The same experiment is applied on the polygon (c-d) with the points P ′
1, P ′

2, and P ′
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Fig. 6. Illustration of standard scale on a noisy contour.

The standard scale of the point represented by a cross is

equal to (8, 30).

4 EXPERIMENTAL VALIDATION

Noise detection. A robust noise detector should not
detect noise on perfectly digitized data and should not
be sensitive to the object initial resolution. To experiment
these properties, different shapes have been generated
with a manual addition of noise (gaussian or manually
added by edition) on some specific areas (see. Fig. 7).
Note that for certain areas (on bottom left of the shape)
only one or three pixels were changed (highlighted in
red). For each pixel P of the contour, the result of the
noise detection is illustrated by drawing a box of size
ν(P ) + 1, i.e. its first meaningful scale.
The obtained noise detection displayed on Fig. 7 (d-

f) shows a good precision. Even with low resolution
shapes and with a one pixel change, the noise is well

detected. Only a few false positive noise detections can
be seen on some small areas on the flower (near corners):
however these errors are limited to one noise level.
Note that for all of these experiments no parameter was
changed for the detection. The variable tm associated to
the noise threshold was set to 0 for all the experiments
as suggested in Section 3.1. The maximal resolution n
used in the definition of the multiscale profile Pn(P ) has
only an influence on the maximum scale of the detected
noise. Indeed, for example the use of the minimal value
of n = 2 induces a noise detection only at scales 1 and 2.
This value was set to 15 in all the presented experiments.

Global noise detection on several grid sizes. The be-
havior of noise detection with respect to different object
sizes or samplings was analyzed by generating noisy
shapes with several grid sizes. We used a noise model
defined by a power law similar to the noise model
proposed by Kanungo [32]. The probability Pd to change
a pixel located at a distance d from the shape boundary
is defined as Pd = a

bd
. The parameters were set in order

to take into account the grid size s, a = 1
2s , and b = 2.

The generated noisy shapes are illustrated on Fig. 8 (a-
d). The resulting noise level estimation shows a mean
value approximatively near size 5 (according to an initial
grid size s equals to one) for the two types of shapes
(circle and polygon) and for all grid sizes (graphics (e,f)
of Fig. 8). This demonstrates the ability of the proposed
approach to detect automatically the real noise scale,
independently from the object sampling.

Detection of flat and curved contour areas. As described
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grid size s = 0.5 grid size s = 2 grid size s = 1

(a) (b) (c)

(d) (e) (f)

Fig. 7. Noise detection on flower-like and polygonal shapes defined with several grid sizes (s). Noisy areas are

highlighted by red box (images (a-c)) and were obtained after adding locally gaussian noise or by editing manually

some single pixel values (b,c). The areas outside boxes are not changed from the initial reference shape. The resulting

noise detection is shown in (d-f) by displaying for each pixel P a centered box of size ν(P ) + 1.

(a) s = 1 (b) s = 2 (c) s = 3 (d) s = 4
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Fig. 8. Global noise detection on several grid sizes s. Shapes (a-d) were obtained with the Kanungo noise model

[32] defined on each grid size s (i.e. the amount of noise is independent of the sampling resolution). Plots (e) and (f)

show the noise level estimation obtained on a pentagon (e) and on a circle (f) of radius 120 with a sampling grid size

s varying from 1 to 5.
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in the previous section, the analysis of the multiscale
profile Pn(P ) can discriminate the curved and flat areas
of the contour. In order to take into account only the
significant part of the profile of a point P , we use
the (i1, i2)-multiscale criterion (µi1,i2(P )) which defines
the slope of the profile only from the meaningful scale
(i1, i2). From this value, the decision curved/flat relies
on a constant threshold value tf/c which is set to−0.52 to
maximize the good detection as suggested in Section 2.4.

The detection was experimented both on perfect and
noisy shapes with exactly the same parameters. Fig. 9
(a-c) shows the results obtained on perfectly digitized
shapes composed of various curved and flat parts. The
detection is accurate everywhere except on a few small
areas (image (b)), which are not detected as curve in
some parts of the spiral (related to octant changes). On
the damaged shapes (e-g) the detection is always fine
and looks insensitive to the different noise intensities.

Experiments on real images. Our method was applied
on real images with unchanged parameters (Fig. 10).
Contours were defined by tracking the border of the
regions obtained by thresholding the greyscale image.
The image of Fig. 10 (a) was directly extracted without
subsampling from a digital camera picture obtained at
resolution 4000 × 2672 with a sensibility of 250 ISO. As
for the previous experiments, the detected noise level
K of a point P is illustrated by drawing a box of
size K centered on each point P (images (b-d)). These
results are comparable to the ones obtained on synthetic
images. In the same way, the curved part detection was
performed on the shapes of subimage (d). As previously,
the main curved parts of the characters are well detected
(represented by large blue (dark) pixels on subimage
(e)). Other Experiments on contours extracted from real
images (Fig. 9 (d,h)) show also good detections.

By considering the global contour of subimage (b)
of Fig. 10 one could expect a noise level at a greater
scale than the one obtained with the meaningful scale
detection. As suggested in Section 3.2 we apply instead
the standard scale detection. Figure 11 (a) shows that the
top-down strategy of the standard scale is a better choice
in this case and subimage (b) gives the reconstructed dig-
ital contour obtained from the standard scale measures
(see also Section 5.1).

Meaningful level set. Experiments on grayscale image
can also be done by extracting the digital contours from
level sets defined by successive thresholds of the image
gray levels (and by using a border tracking algorithm
on the thresholded connected compoments). Fig. 12 (b)
illustrates the 50692 contours obtained with a threshold
step equals to 10. The meaningful contour parts are de-
fined as the set of points P for which the first meaningful
scale ν(P ) is one and such that P is not included in the
neighorhood of size ν(Q) > 1 of another contour point
Q. More precisely, if we denote by Si,j the sequence of
points of the contour C going increasingly from point
Pmin(i,j) to Pmax(i,j) included, its meaningful parts are

(a) (b)

Fig. 11. Illustration of the standard scale levels σ (a).

For each pixel P of the contour a centered box of size

σ(P ) is displayed. Reconstruction from the standard scale

median filter is displayed on (b).

(a) (b)

(c) (d)

Fig. 12. Application on 50692 level set contours (b) of

the photograph of Valbone church (a). The contours were

obtained after a threshold step equals to 10 from the 256

initial levels. Resulting meaningful coutours (c) and flat

contour parts (d).

defined as the set { P ∈ C �{ {P ∈ C | ν(P ) > 1}∪{ Pi ∈
C | ∃k | ∀Pl ∈ Sk,i , ν(Pk) ≥ ||PkPl||} } }. The resulting
meaningful contours parts are well visible on the image
(c) while the flat meaningful parts are also well detected
on image (d).

Timing measures. To conclude the experimentation part
some runtime measures were performed on the contours
of Fig. 10. The runtimes listed on the following table were
obtained on a 2.4 GHz Intel Core Duo. The measures
include the computation of all subsampled contours
φx0,y0

i (C) and their maximal segments.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Detection of flat/curved areas on various shapes using the meaningful scales information. The large blue

pixels (in dark) represent the detected curved areas. Images (e-g) are the noisy version of the shapes represented on

images (a-c). The noisy version of (a,b) were obtained by applying noise specifically on the quadrants of the image

as used for Fig. 5 (a,c) (illustrated in the background in light gray). (c) and (g) are respectively the close-up view of the

center area of images (b) and (f). (h) shows the results obtained on the segmentation of image (d). All these results

were obtained with a maximal allowed scale set to 25 (it was increased since images have a larger resolution).

nb points 226 702 788 874 1450
runtimes (ms) 178 363 387 411 513

5 APPLICATIONS

5.1 Contour smoothing

Meaningful scales can be used to remove locally noise
detected from the input shape. For instance, a simple
application is to define an adaptively sized mask in a
classical median filter [33]. To process such a filter, from
a contour pixel P , we assign a mask size K = 2ν(P )+ 1
to all points contained in the neighborhood of size K
centered in P . If several mask sizes are assigned to one
pixel, the maximal mask size is retained.
This meaningful scale median filter (MS median filter)

has been applied on the shapes of Fig. 7 (a-c). The noise
present in the initial shapes was well removed as it can
been seen on Fig. 13. Moreover the sharp features on the
polygonal shapes are well preserved. In order to quantify
the smoothing accuracy, we measure the number of
pixels which differs from the original ideal image (not
the corrupted input image). Table 1 shows the number
of incorrect pixels with a comparison between the MS
median filter and various constant size median filters.
If we except shape “FlowerR1”, the results obtained are
always the best with the MS median filter.
Other comparisons were performed on a noisy star

shape object. The initial star was damaged with var-
ious noise levels at several locations (see Fig. 14 (a)).
Subimage (b) shows its MS median filtering, which is
very close to the original shape. When using a constant

Shapes MS
Median filter

1 2 3 4 5

Flower R0 26 48 30 27 53 81
Flower R1 18 17 14 13 44 78
Flower R2 6 9 8 20 44 84
Polygon R0 24 51 35 33 39 54
Polygon R1 12 21 17 18 32 39
Polygon R2 6 6 8 12 20 37

Star 111 143 115 117 142 174

TABLE 1

Measures of the number of incorrect pixels different

between ideal perfect images (flower, polygon and star)

and several median filtering of these images corrupted

with noise (some of them are illustrated in Fig. 7 (a-c)

and Fig. 14). The first column represent the measures

obtained with the Meaningful scale median filter.

size median filter (subimage (c)), small size masks are
not enough to remove the noise while large size masks
remove the noise but provoke strong corner smoothing.
Another denoising method specialized for processing
binary document images [34] was also used for compar-
ison (image (d)). Similarly, a small value of the fidelity
denoising parameter (ǫ) shows that noise is not removed
everywhere and a larger value implies shape and corner
enlargement.

The MS median filter was applied on the letters
extracted from Fig. 10 and on a star obtained after a
small rotation. As shown on Fig. 15 the parts with little
noise are well removed while smooth parts and corners
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(b) Π
(J)
ν = {65, 6, 7, 5, 7, 6, 2, 2}%

(a) (c) Π
(S)
ν = {57, 25, 11, 6, 1}%

(d) Π
(t)
ν = {50, 37, 10, 3}%, Π

(e)
ν = {40, 41, 17, 2}% (e)

Fig. 10. Noise (b-d) and curved parts (e) detection applied on a real text photography (a). The contours of the

characters were extracted by thresholding the gray level image and by tracking the resulting connected component

border. Noise is represented by light blue boxes (of size ν(P ) + 1) on images (b-d) while curved parts are highlighted

with large dark blue boxes on image (e). The noise partition Π
(X)
ν gives for each shape X the percentage ci of points

P having for noise level ν(P ) = i, i.e Π
(X)
ν = {c0, c1, ..., ci, ..., ck}.

grid size s = 0.5 grid size s = 2 grid size s = 1

(a) (b) (c)

Fig. 13. Results obtained from the meaningful scale median filter. The initial shapes are represented in light gray and

the resulting contour is shown in dark (blue color).
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MS
median
filter

(a) (b)
MF n = 2

MF n = 6

MF n = 10

DD ǫ = 50
DD ǫ = 30
DD ǫ = 20
DD ǫ = 10

(c) (d)

Fig. 14. Result of the adaptive median filter (b) defined

with meaningful scales obtained on a noisy star shape

(a). The initial star shape is represented in light gray.

The images (c) and (d) show respectively comparison

with a constant size median filter and with the directional

denoising approach [34] (denoted as DD) with several

values of fidelity parameter ǫ.

without noise are well preserved. To extract the global
contour of the noisy contour (b) of Fig. 10 we define
the standard scale median filter by simply replacing the
noise level ν(P ) with the standard scale level σ(P ).
The resulting contour presented on Fig. 11 (b) shows the
awaited contour representing the global shape without
the very small variations visible at the finest scale.
A comparison between the MS median filter and the

Markov Random Field (MRF) segmentation is illustrated
in Fig. 16. Although the MRF is not limited to deal with
two classes segmentation problem, even by selecting a
specific parameter β, the result of the MS median filter
appears to better fit the initial shape. This filter can also
be applied directly on the gray level image with the same
isocontour. Such a restoration is illustrated in Fig. 17. The
adaptive quality is well visible on the right image of the
previous figure.

5.2 Geometric analysis

Geometric estimators are generally sensitive to the
amount of noise that may perturb the digital contour.
This sensitivity can be reduced by choosing a scale
parameter or by applying global noise reduction. Since
meaningful scales appear useful in determining locally
everywhere along the contour what is the first relevant
scale, we experiment it through a digital tangent estima-
tor based on maximal segments called λ-MST [17]. It has
been shown to be one of the most accurate estimators for
perfect shape digitizations.
The λ-MST estimator is based on the recognition

of maximal segments along some discrete contour C,

whose discrete points Ck are numbered consecutively.
We denote by MSi the maximal segments of the contour
and by θi the angle they form with the x-axis. Each
maximal segment MSi is a 4-connected sequence of
points of C going increasingly from point Cmi

to point
Cni

included. A pencil of maximal segments around
some point Ck is defined as the set {MSi, Ck ∈ MSi}
and denoted by Γ(k). The eccentricity ei(k) of a point Ck

with respect to a maximal segment MSi is its relative
position between the extremities of MSi:

ei(k) =

{

‖Ck−Cmi
‖1

Di
= k−mi

Di
if MSi ∈ Γ(k)

0 otherwise
,

with Di = ‖Cni
− Cmi

‖1. (3)

Given a point on a maximal segment, the closer its
eccentricity is to 1

2 the more centered it is.
The λ-MST direction at point Ck is the weighted convex

combination of the directions of the covering maximal

segments: θ̂(k) =
∑

i∈Γ(k) λ(ei(k))θi∑
i∈Γ(k) λ(ei(k))

where λ is a mapping

from [0, 1] to R+ with λ(0) = λ(1) = 0 and λ > 0 else-
where. We have chosen here a simple triangle function
with peak at 0.5, but other choices are possible.
To exploit the meaningful scales in the tangent estima-

tion we simply assign to any point Ck the tangent com-
puted from the contour given at the associated meaning-
ful scale (i.e. computed from φ0,0

ν(Ck)+1(C)). The λ-MST
estimation on flower and polygon shapes of Fig. 7 is dis-
played on Fig. 18 (a,c,e,f). Noisy parts are well identified
and at the same time relevant features are preserved.
The tangent estimation defined through the meaningful
scales gives robust estimations on noisy parts and keeps
the finest accuracy elsewhere (b,d,g,h). We also com-
pared the estimation obtained from meaningful scales
with the λ-MST estimation computed at global scales 4
and 8. The noise disappears too; however the smoothing
effect is well visible near sharp features (g,h).

5.3 Polygonal reconstruction

Another potential application of the meaningful scales
can be found in numerous polygonal reconstruction
methods for which a scale parameter needs to be set
by the user. To demonstrate this application we first
consider the algorithm proposed by Bhowmick and
Bhattacharya [18] which uses a scale parameter (τ ) to
adjust the accuracy of the reconstruction process (called
ADSS). We applied this algorithm by changing the scale
parameter from 1 to 20 with noisy versions of the kan-
garoo shape illustrated on Fig. 19. Two types of measure
were performed on the initial shape. The first one is the
Hausdorff distance between the resulting polygon and
the digital source contour and the second one is the error
of the tangent vectors deducted from the polygon to the
ones estimated with the previous λ−MST estimator (see
Fig. 19 (b,c)). The same procedure was defined with the
polygonalization method called Visual Curvature (VC)
[19] (Fig. 19 (d-f)) which is defined from a given scale.
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Fig. 15. Application of the MS median filter on shapes obtained from non perfect digitizations (a-d). Images (e-h) show

the resulting shapes obtained without the need to set any parameters.

(a) Original image (b) Optimal GM threshold (c) MS level ν (d) Adaptive median filter

(e) β = 0 (f) β = 1 (g) β = 2 (h) β = 5

Fig. 16. Comparison of MS median filtering with Markov Random Field (MRF) segmentation in two classes. Top row:

image (b) gives the optimal Gaussian mixture threshold of (a); image (c) displays the meaningful scale of the digital

contour (b), while image (d) displays the induced MS median filtering. Bottom row: images (e) to (h) display the results

of MRF segmentation in two classes, assuming each class follows a normal distribution. The parameter β indicates the

balance between the fit to data and the consistency between neighbors. Mean and variance of classes were initialized

with the optimal Gaussian mixture threshold. The MRF was optimized with simulated annealing with initial temperature

10, which was stopped after 3300 iterations.

As shown in Fig. 19, the use of the mean value of
the meaningful scale ν represented by vertical lines on
graphics (b,c,e,f) gives an Hausdorff error always near
the minimal values for each noisy shape. On the point
of view of the tangent estimation errors, the use of
the parameter 2ν appears to ensure a quasi minimal
error. The choice between ν and 2ν should be defined
according to the need of the application and a promising
solution to avoid this trade-off should be to integrate
the meaningful scales directly in the polygonalization
method.

5.4 Segmentation evaluation and improvement

Digital contours can result from a segmentation process
like for example the watershed algorithms after a re-
gion boundary tracking. The automatic evaluation of the
amount of noise can be significant to evaluate locally
the quality of the segmentation process. To illustrate this
potential use, we applied the meaningful scale detection
on the result of the recent approach called the power

watershed [20] (Fig. 20). The comparisons between the
error made by the segmentation (areas highlighted in
red in image (b, d)) and the noise detection (images (a,c))
shows that this detection can be useful to improve shape
segmentation approaches.

6 CONCLUSION

The original and simple notion of meaningful scales
proposed in this article, offers new possibilities to detect
automatically what are the local pertinent scales of a
discrete contour. If a meaningful scale interval exists
given a maximal scale, it is possible to obtain geometric
information as the curvedness/flatness even on noisy
contours. Moreover it provides a tool for unsupervised
noise detection which allows to detect locally the amount
of noise on fine or coarse resolution shapes. The direct
applications of this concept to contour denoising and
geometric estimation already demonstrates the potential
of the approach. In future works, we plan to adapt this
concept to the blurred segments primitive and to extend
the meaningful scales to 3D objects.
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Fig. 17. Local contour restoration with MS median filtering. Left: original image with isocontour 140 drawn in black

(the contour of Fig. 16 (b)). Middle: same image after adaptive median filtering based on meaningful scale detection

(Fig. 16 (c)); isocontour 140 drawn in black. Right: difference of the two images with contrast enhanced.

(a) λ−MST scale 1
(b) λ − MST with mean-
ingful scales

(c) λ−MST scale 1
(d) λ − MST with mean-
ingful scales

T
an

g
en

t
an

g
le

-2

 0

 2

 4

 6

 8

 0  100  200  300  400  500  600  700

λ−MST scale 1

Index of the contour point

T
an

g
en

t
an

g
le

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500  600

λ−MST scale 1

Index of the contour point(e) (f)

T
an

g
en

t
an

g
le

-2

 0

 2

 4

 6

 8

 0  100  200  300  400  500  600  700

λ−MST meaningful scales
λ−MST scale 4
λ−MST scale 8

Index of the contour point

Real Tangents

T
an

g
en

t
an

g
le

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500  600

λ−MST meaningful scales
λ−MST scale 4
λ−MST scale 8

Index of the contour point(g) (h)

Fig. 18. Normal estimation using λ−MST estimator combined with meaningful scales. For each shape the estimation

obtained at a single scale is given for comparisons (a,c,e-h).
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Fig. 19. Polygonalization from meaningful scales by using Bohwmick and Bhattacharya algorithm [18] (a-c) and by

using the Visual Curvature based polygonalization [19] (d-f). The experiments were obtained on three digital contours

extracted from noisy images (with Gaussian noise σ = 50, 70, 100 ; see images (a,d)). The measure of Hausdorff

distance between the polygonal reconstruction and the source shape is represented in (b, e) with the associated

meaningful scale level ν represented by vertical lines. The graphics (c,f) shows the error between the tangent vector

from the polygonal shape and the tangents estimated by the λ−MST estimator. The illustrating scales 2ν are drawn

by vertical lines on (c,f).

(a) Meaningful scales (b) Segmentation error (red)

(c) Meaningful scales (d) Segmentation error (red)

Fig. 20. Application of Meaningful scale detection on

the result of the power watershed segmentation approach

[20] (a,c) and comparisons with segmentation error high-

lighted in red (b,d).
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