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1. Introduction 1.1 Motivation and previous work

1. Introduction

Meaningful Scale Detection

Important problem for noise detection.

Geometric estimator: best scale to analyze discrete shape.

Algorithm parameter tuning.
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1. Introduction 1.1 Motivation and previous work

1. Introduction

Meaningful Scale Detection

Important problem for noise detection.

Geometric estimator: best scale to analyze discrete shape.

Algorithm parameter tuning.

Denoising approach [Hoang et al.,2011]
(fidelity parameter ǫ = 10)
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1. Introduction

Meaningful Scale Detection

Important problem for noise detection.

Geometric estimator: best scale to analyze discrete shape.

Algorithm parameter tuning.

Denoising approach [Hoang et al.,2011]
(fidelity parameter ǫ = 20)
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1. Introduction

Meaningful Scale Detection

Important problem for noise detection.

Geometric estimator: best scale to analyze discrete shape.

Algorithm parameter tuning.

Denoising approach [Hoang et al.,2011]
(fidelity parameter ǫ = 30)
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1. Introduction 1.1 Motivation and previous work

1. Introduction

Meaningful Scale Detection

Important problem for noise detection.

Geometric estimator: best scale to analyze discrete shape.

Algorithm parameter tuning.

Denoising approach [Hoang et al.,2011]
(fidelity parameter ǫ = 50)
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1. Introduction 1.1 Motivation and previous work

1.1 Motivation and previous work

Existing works for meaningful discrete contours

Notion of good continuations [Cao 03]

based on perception principle from the Gestalt theory.
False alarm probability based on curvature approximation.

Meaningful edges detection: [Desolneux et al., 2001]
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1. Introduction 1.2 Concept of Meaningful Scales

1.2 Concept of Meaningful Scales (1)

Concept based on the definition of discrete primitives

1 A standard Digital Straight Line (DSL):

{(x , y) ∈ Z
2, µ ≤ax − by< µ+ |a|+ |b|},

where (a, b, µ) are integers and gcd(a, b) = 1.
2 Maximal straight segment:

4-connected piece (denoted M) of DSL.
No more a DSL by adding other contour points C \M
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1. Introduction 1.2 Concept of Meaningful Scales

1.2 Concept of Meaningful Scales (2)

Main idea [Kerautret&Lachaud,09]

1 Exploit asymptotic properties of perfect shape digitizations.
⇒ Length (L) of maximal straight segments

2 They grow longer as h gets finer.

3 Estimate them from a multiresolution decomposition of the
input shape.
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1 Exploit asymptotic properties of perfect shape digitizations.
⇒ Length (L) of maximal straight segments

2 They grow longer as h gets finer.

3 Estimate them from a multiresolution decomposition of the
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X Dig2(X ) Dig1(X ) Dig0,5(X )
X some simply connected compact shape of R2.
Digh(X ) = Gauss digitization of X with step h.
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1. Introduction 1.2 Concept of Meaningful Scales

1.2 Concept of Meaningful Scales (3)

Theorem [Lachaud 06]: asymptotic behavior of the length of maximal segments

X simply connected shape in R2 with piecewise C 3 boundary ∂X ,
U an open connected neighborhood of p ∈ ∂X ,
(Lhj ) the digital lengths of the maximal segments of Digh(X ) which cover p,

X
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X simply connected shape in R2 with piecewise C 3 boundary ∂X ,
U an open connected neighborhood of p ∈ ∂X ,
(Lhj ) the digital lengths of the maximal segments of Digh(X ) which cover p,

∂X ∩ U convex or concave, then Ω(1/h1/3) ≤ Lhj ≤ O(1/h1/2) (1)

∂X ∩ U has null curvature, then Ω(1/h) ≤ Lhj ≤ O(1/h) (2)

Experiments of asymptotic behaviour Experiments from subsampling
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1. Introduction 1.2 Concept of Meaningful Scales

1.2 Concept of Meaningful Scales (4)

Asymptotic properties of maximal segments

Construction of a multiscale profile starting from initial resolution.

Compare the multiscale profile to determine a local meaningful scale.

Detect locally the amount of noise.

Detect flat/curved parts.

h1 = h, Lh1 = (18, 20, 19)

 1

 10

 1  10

slope -1/3

(h, L(h)) in log-scale
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Asymptotic properties of maximal segments

Construction of a multiscale profile starting from initial resolution.

Compare the multiscale profile to determine a local meaningful scale.

Detect locally the amount of noise.

Detect flat/curved parts.
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Asymptotic properties of maximal segments

Construction of a multiscale profile starting from initial resolution.

Compare the multiscale profile to determine a local meaningful scale.

Detect locally the amount of noise.

Detect flat/curved parts.
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1.2 Concept of Meaningful Scales (4)

Asymptotic properties of maximal segments

Construction of a multiscale profile starting from initial resolution.

Compare the multiscale profile to determine a local meaningful scale.

Detect locally the amount of noise.

Detect flat/curved parts.
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Asymptotic properties of maximal segments

Construction of a multiscale profile starting from initial resolution.

Compare the multiscale profile to determine a local meaningful scale.

Detect locally the amount of noise.

Detect flat/curved parts.
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Asymptotic properties of maximal segments

Construction of a multiscale profile starting from initial resolution.

Compare the multiscale profile to determine a local meaningful scale.

Detect locally the amount of noise.

Detect flat/curved parts.
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1.2 Concept of Meaningful Scales (4)

Asymptotic properties of maximal segments
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1.2 Concept of Meaningful Scales (4)

Asymptotic properties of maximal segments

Construction of a multiscale profile starting from initial resolution.

Compare the multiscale profile to determine a local meaningful scale.

Detect locally the amount of noise.

Detect flat/curved parts.
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1.2 Concept of Meaningful Scales (4)

Asymptotic properties of maximal segments
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Compare the multiscale profile to determine a local meaningful scale.
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1.2 Concept of Meaningful Scales (4)

Asymptotic properties of maximal segments

Construction of a multiscale profile starting from initial resolution.

Compare the multiscale profile to determine a local meaningful scale.

Detect locally the amount of noise.

Detect flat/curved parts.
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1. Introduction 1.3 Characteristics and limitations

1.3 Characteristics and limitations

Can be considered as parameter free (the maximal scale has few importance).

Limited to discrete contour only.
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Can be considered as parameter free (the maximal scale has few importance).

Limited to discrete contour only.
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2. Meaningful Thickness

2. Meaningful Thickness

Main idea

Use another primitive to process non discrete set of points.
α-Thick Blurred Segments [Faure et al., 2009, Debled-Rennesson et al., 2006]:

Defined with a thick parameter: t

maximal isothetic thickness of the convex hull.
⇒ (P1, Q1, Q2, P2, P3)

Maximal α-Thick Blurred Segments.
The multi scale behaviour is obtained from the t parameter.
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α-Thick Blurred Segments [Faure et al., 2009, Debled-Rennesson et al., 2006]:
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Use another primitive to process non discrete set of points.
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Defined with a thick parameter: t
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2. Meaningful Thickness

Main idea

Use another primitive to process non discrete set of points.
α-Thick Blurred Segments [Faure et al., 2009, Debled-Rennesson et al., 2006]:

Defined with a thick parameter: t

maximal isothetic thickness of the convex hull.
⇒ (P1, Q1, Q2, P2, P3)

Maximal α-Thick Blurred Segments.
The multi scale behaviour is obtained from the t parameter.

t3 = 3
√
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2. Meaningful Thickness

Main idea

Use another primitive to process non discrete set of points.
α-Thick Blurred Segments [Faure et al., 2009, Debled-Rennesson et al., 2006]:

Defined with a thick parameter: t

maximal isothetic thickness of the convex hull.
⇒ (P1, Q1, Q2, P2, P3)

Maximal α-Thick Blurred Segments.
The multi scale behaviour is obtained from the t parameter.

t4 = 4
√
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α-Thick Blurred Segments [Faure et al., 2009, Debled-Rennesson et al., 2006]:

Defined with a thick parameter: t

maximal isothetic thickness of the convex hull.
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Maximal α-Thick Blurred Segments.
The multi scale behaviour is obtained from the t parameter.
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2. Meaningful Thickness

Main idea

Use another primitive to process non discrete set of points.
α-Thick Blurred Segments [Faure et al., 2009, Debled-Rennesson et al., 2006]:

Defined with a thick parameter: t

maximal isothetic thickness of the convex hull.
⇒ (P1, Q1, Q2, P2, P3)

Maximal α-Thick Blurred Segments.
The multi scale behaviour is obtained from the t parameter.
⇒ the t step k given from the mean distance between each consecutive contour point.
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2. Meaningful Thickness

Thickness asymptotic behaviour

Multi-thickness property (from experiments)

The plots of the lengths Lti
j /ti in log-scale are approximately affine with negative slopes as specified

besides:

expected slope
plot curved part flat part

(log(ti ),log(maxj Lti
j /ti )) ≈ − 1
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Thickness asymptotic behaviour

Multi-thickness property (from experiments)
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2. Meaningful Thickness

Multi-thickness criterion

Meaningful Thickness Profiles

The multi-thickness profile Pn(P) of a point P is defined as the graph

(log(ti ), log(L
ti
/ti ))i=1,...,n.
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Multi-thickness criterion

Meaningful Thickness Profiles

The multi-thickness profile Pn(P) of a point P is defined as the graph

(log(ti ), log(L
ti
/ti ))i=1,...,n.

Ideal multi-thickness criterion µn(P)

Defined for a point P on the boundary of a digital object as the slope coefficient
of the simple linear regression of Pn(P).
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2. Meaningful Thickness

Multi-thickness criterion

Meaningful Thickness Profiles

The multi-thickness profile Pn(P) of a point P is defined as the graph

(log(ti ), log(L
ti
/ti ))i=1,...,n.

Ideal multi-thickness criterion µn(P)

Defined for a point P on the boundary of a digital object as the slope coefficient
of the simple linear regression of Pn(P).

⇒ From previous Property:

if P is in flat zone: µn(P) should be around -1.

if P is in strictly convex or concave zone: µn(P) should be within
[−1/2,−1/3].
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2. Meaningful Thickness

Illustration of multi-thickness profile

Example obtained form a shape with different sampling:

PA
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x**(-1.0)*100
x**(-1.0/2.0)*30

Multi-thickness profile PA
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2. Meaningful Thickness

Illustration of multi-thickness profile
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2. Meaningful Thickness

Illustration of multi-thickness profile (2)

Example obtained by adding noise:

PA

σ1 = 0

 1
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Multi-thickness profile PA
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2. Meaningful Thickness

Illustration of multi-thickness profile (2)

Example obtained by adding noise:

PB
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2. Meaningful Thickness

Illustration of multi-thickness profile (2)

Example obtained by adding noise:

PC

σ3 = 1  1
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2. Meaningful Thickness

Illustration of multi-thickness profile (2)

Example obtained by adding noise:

PD

σ4 = 1.5
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2. Meaningful Thickness

Illustration of multi-thickness profile (2)

Example obtained by adding noise:
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2. Meaningful Thickness

Illustration of multi-thickness profile (2)

Example obtained by adding noise:

PA

PB

PC

PD

σ1 = 0

σ2 = 0.5 σ3 = 1

σ4 = 1.5
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Multi-thickness profile PA

Multi-thickness profile PB

Multi-thickness profile PC

Multi-thickness profile PD

⇒ Define a noise threshold Tm to discriminate the curved and noisy zone.
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2. Meaningful Thickness

Noise detection and Meaningful Thickness

Meaningful thickness

A Meaningful thickness of a multi-thickness profile (Xi ,Yi )1≤i≤n is then a pair (i1, i2),
1 ≤ i1 < i2 ≤ n, such that for all i , i1 ≤ i < i2,

Yi+1−Yi

Xi+1−Xi
≤ Tm,

and the property is not true for i1 − 1 and i2.

PA
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 100

 10 i2i1

Multi-thickness profile PA
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2. Meaningful Thickness

Noise detection and Meaningful Thickness

Meaningful thickness

A Meaningful thickness of a multi-thickness profile (Xi ,Yi )1≤i≤n is then a pair (i1, i2),
1 ≤ i1 < i2 ≤ n, such that for all i , i1 ≤ i < i2,
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2. Meaningful Thickness

Noise detection and Meaningful Thickness

Meaningful thickness

A Meaningful thickness of a multi-thickness profile (Xi ,Yi )1≤i≤n is then a pair (i1, i2),
1 ≤ i1 < i2 ≤ n, such that for all i , i1 ≤ i < i2,

Yi+1−Yi

Xi+1−Xi
≤ Tm,

and the property is not true for i1 − 1 and i2.
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2. Meaningful Thickness

Noise detection and Meaningful Thickness

Meaningful thickness

A Meaningful thickness of a multi-thickness profile (Xi ,Yi )1≤i≤n is then a pair (i1, i2),
1 ≤ i1 < i2 ≤ n, such that for all i , i1 ≤ i < i2,

Yi+1−Yi

Xi+1−Xi
≤ Tm,

and the property is not true for i1 − 1 and i2.
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2. Meaningful Thickness

Noise detection and Meaningful Thickness

Meaningful thickness

A Meaningful thickness of a multi-thickness profile (Xi ,Yi )1≤i≤n is then a pair (i1, i2),
1 ≤ i1 < i2 ≤ n, such that for all i , i1 ≤ i < i2,

Yi+1−Yi

Xi+1−Xi
≤ Tm,

and the property is not true for i1 − 1 and i2.

PD
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Multi-thickness profile PD

Noise level

if (i1, i2) is the first meaningful scale at point P the noise level is i1 − 1 .
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3. Experiments

Experiments on polygonal shapes (1)

sigma1
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3. Experiments

Experiments on polygonal shapes (2)
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3. Experiments

Stability from intern parameters

• Maximal thickness tmax

tmax = 5
√
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• Maximal thickness tmax
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√
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2 tmax = 15
√

2 tmax = 20
√
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• Noise threshold Tm

Tm = 0.2 Tm = 0.0 Tm = −0.2 Tm = −0.4
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3. Experiments

Comparison with the Meaningful Scales

[Kerautret&Lachaud,09]

Meaningful scale Meaningful thickness
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3. Experiments

Comparison with the Meaningful Scales (2)

[Kerautret&Lachaud,09]
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3. Experiments

Comparison with the Good Continuation approach [Cao 03]

(a) (b) ǫ = 0.001 (c) ǫ = 10
[Cao 03] [Cao 03]
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4. Simple Applications

Simple applications (1)

Meaningful contour extraction from image level sets

Extraction of all contours
Apply meaningful thickness detection
detection of straight parts.

source contour from level set meaningful parts
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4. Simple Applications

Simple applications (2)

Polygons denoising

Applying an iterative process on contour points Pi .

Each points are moved:

by a weighted average of its two neighbors.
from constraint defined from meaningful thickness.

Constraints are also defined between polygon vertex by linear interpolation.

iteration 1
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4. Simple Applications

Simple applications (2)

(d) source contour (e) meaningful thickness
constraint

(f) resulting reconstruction

(g) source contour (h) meaningful thickness
constraint

(i) resulting reconstruction
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5. Conclusion

Conclusion and discussion

New approach to detect locally the meaningful thickness

Simple to implement from the α-Thick Blurred Segments.

Can be considered as parameter free.

Equivalent quality for discrete data.

Demonstration available online:
http://kerrecherche.iutsd.uhp-nancy.fr/MeaningfulThickness
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Future (and current work)

Theoretical bounds of asymptotic behavior.

Meaningful scale detection on 3D discrete surfaces.
⇒ from the notion of 3D tangential cover
[Charrier and Lachaud, 2011].

Same principle on 3D surfaces mesh [Cuel, 2011].

Add the Meaningful Thickness detection in .
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