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Abstract: The notion of meaningful scale was recently introduced to detect the amount of noise present along a digital

contour (Kerautret and Lachaud, 2009b). It relies on the asymptotic properties of the maximal digital straight

segment primitive. Even though very useful, the method is restricted to digital contour data and is not able

to process other types of geometric data like disconnected set of points. In this work, we propose a solution

to outcome this limitation. It exploits another primitive called the Blurred Segment (Debled-Rennesson et al.,

2006) which controls the straight segment recognition precision of disconnected sets of points. The resulting

noise detection provides precise results and is also more simple to implement. A first application of contour

smoothing demonstrates the efficiency of the proposed method. The algorithms can also be tested online

(Kerautret et al., 2011).

1 Introduction

Detecting if a contour is sampled at a meaning-

ful scale and estimate what are the correct scales to

apprehend it (if they exist) is an important issue in

shape analysis. For instance, it makes easierxf the au-

tomated parameterization in geometric shape analy-

sis, contour representation or pattern recognition. In

general, the noise is taken into account by a super-

vised parameter chosen according to the input data

quality. The choice of the parameter is largely influ-

ential on the quality of the process. For instance in

a deformable boundary segmentation technique, the

smoothing parameter has a great impact on the result.

Following a principle of perception from the

Gestalt theory, Desolneux et al. propose to detect

the meaningful edges of a grey level image by using

false alarm probability defined on the iso contours of

the image (Desolneux et al., 2001). This detection is

based on the image gradient and is not directly de-

fined for discrete contour representations. Along the

same lines, Cao exploits the false alarm probability

to define the notion of meaningful good continuation

(Cao, 2003). The false alarm probability was sim-

ply approximated by a curvature estimation of the in-

put curve. Other applications of Gestalt theory can be

found in a recent article (Desolneux, 2011).

The concept of meaningful scale along digital

contour (i.e. boundary of a digital region) has been
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Figure 1: Noise detection on polygonal curves defined both
with different sampling rate (s), image (a) and with several
gaussian noise intensity (σ), images (b,c). The resulting
noise detection of polygons (a-c) is given on (e-f) where
the detected noise level is represented by boxes.

introduced in a recent work to detect automatically

if the current scale is locally significant or not (Ker-

autret and Lachaud, 2009b). It relies on the study of

asymptotic properties of maximal digital straight seg-

ment which is a classic tool used to extract geomet-

ric parameter on a discrete contour (Lachaud et al.,

2005). More precisely the length of discrete maximal

segment is analyzed on the contour represented at dif-

ferent scales to determine locally if a pixel is mean-

ingful or not. In opposition with the work of Cao, the



method can also detect what is the local best scale to

analyze the considered shape (if it exists).

The limitation of the meaningful scale method lies

mainly in the fact that the analysis is only possbile on

a sequence of simple 4 or 8-connected pixels and can

not be applied on general polygon such the one illus-

trated on Fig. 1. This restriction is due to the intrinsic

properties of the discrete primitive. In this work, we

propose to define another new notion of meaningful

thickness by using a less restrictive primitive (the α-

thick Blurred Segment) that is described in the next

section.

2 Maximal Digital and Blurred

Straight Segment

Introduced in the 1970’s, the digital straightness

has been an active topic studied through many years

(e.g. (Rosenfeld, 1974; Dorst and Smeulders, 1984;

Bruckstein, 1991), and (Klette and Rosenfeld, 2004)

for a recent review). Its potential applications are

numerous from the definition of geometric estima-

tors like tangent, curvature (Kerautret and Lachaud,

2009a) to for instance polygonal contour representa-

tion (Bhowmick and Bhattacharya, 2007). Although

there are different definitions, we recall the classic

standard digital straight line (DSL) primitive used in

the concept of the meaningful scale detection.

A standard Digital Straight Line (DSL) is some

set {(x,y) ∈ Z
2,µ ≤ ax− by < µ+ |a|+ |b|}, where

(a,b,µ) are also integers and gcd(a,b) = 1. It is well

known that a DSL is a 4-connected simple path in the

digital plane. A digital straight segment (DSS) is a

4-connected piece of DSL. The interpixel contour of

a simple digital shape is a 4-connected closed path

without self-intersections. Given such a 4-connected

path C, a maximal segment M is a subset of C that is

a DSS and which is no more a DSS when adding any

other point of C \M.

A recognition process of a DSS is illustrated on

Fig. 2 (a) where a maximal segment is recognized by

adding step by step the sequence of points: P1, Q1,

P2, Q2, P3, Q3, P4, Q4, P5, Q5, Q6, Q7, Q8, Q9. After

adding the point P5 the DSS can only be extended on

the back (points Qi) since the point P6 does not belong

to the segment. The discrete length of this DDS is

defined as the number of step and is denoted as L j

where j is DSS number covering an initial point (L0 =
14 in the example of Fig. 2).

Blurred segments were introduced to address

noisy data (Debled-Rennesson et al., 2006). We use

the following definition (Faure et al., 2009): a set of

points is an α-thick Blurred Segment if and only if

its convex hull has an isothetic thickness less than

a given real number α. The isothetic thickness of a

convex hull is the smallest value between its vertical

height and its horizontal width. In the same way as

previously a maximal α-thick Blurred Segment can be

defined as a segment which can not be extended to the

front or to the back.

An illustration is given on Fig. 2 (b). An α-thick

Blurred Segment with α = 1 is recognized from the

point A by adding alternatively the points P1, Q1, P2,

Q2 and P3 (denoted as 1-thickBS1). Neither the points

P4 nor Q3 can be added to the maximal 1-thickBS1

since the resulting isothetic thickness will be greater

than α = 1. Another maximal segment 1-thickBS0

covering the point A is illustrated in light color on

Fig. 2 (b). For each segment 1-thickBSi, its length L 1
i

is illustrated in light gray and constitutes an essential

property which will be exploited in the definition of

meaningful thickness introduced in the next section.

3 Meaningful Thickness Detection

with Maximal Blurred Segment

Before introducing the new concept of Meaning-

ful Thickness we recall briefly the main idea the of

the meaningful scale (Kerautret and Lachaud, 2009b)

detection and show the main inconvenient.

3.1 Asymptotic property of maximal

segments

The meaningful scale detection relies on the analy-

sis of asymptotic property of maximal straight seg-

ments. This property is the discrete length (Lh
j ) of a

maximal segment belonging to a contour point given

at a digitization grid size h. In the following, we

will denote by Digh(S) the Gauss digitization pro-

cess (Digh(S) = X ∩hZ×hZ). From different analy-

sis shown in (Lachaud, 2006; Kerautret and Lachaud,

2009b), several property can be summed up as fol-

lows:

Property 1. Let S be a simply connected shape in R
2

with a piecewise C3 boundary. Let P be a point of the

boundary ∂S of S. Consider now an open connected

neighborhood U of P on ∂S. Let (Lh
j) be the digital

lengths of the maximal segments along the boundary

of Digh(S) and which cover P. Then

if U is strictly convex or concave, then

Ω(1/h1/3)≤ Lh
j ≤ O(1/h1/2) (1)

if U has null curvature, then

Ω(1/h)≤ Lh
j ≤ O(1/h) (2)
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Figure 2: Illustration of (a) a maximal DSS of characteristics (a,b,µ) = (2,5,0), and (b) two α-thick Blurred Segments with
α = 1 (denoted as 1-thick BSi with i = 0,1).

The strategy to exploit this property was to trans-

form the initial discrete contour with several grid sizes

h while keeping the point associations and checking

the discrete contour consistency. The resulting analy-

sis shows precise and fine noise detection but is how-

ever not general for the analysis of other type of non

discrete connected points.

A natural idea to generalize the analysis to polyg-

onal contour is to consider the primitive of the α-

thick Blurred Segment described in the previous sec-

tion which allows to deal with non integer points and

not necessary connected. The primitive presents an-

other advantage with its thickness parameter α that

can be used as a scale parameter.

3.2 Thickness asymptotic properties of

Blurred Segments

To define the notion of Meaningful Thickness with

the α-thick Blurred Segment, we need first to focus

on the asymptotic properties of the blurred segments

in the multi-thickness decomposition of a given con-

tour. The Euclidean length L will replace the digital

length L used in the previous Property 1. L is defined

as the length of the bounding box obtained from the

α-thick Blurred Segment convex hull. Fig. 2 (b) il-

lustrates such a bounding box with the length of two

1-thick Blurred Segments covering the point A (1-

thickBS0 and 1-thickBS1). Their bounding boxes are

given respectively by the points P1,Q1,Q2,Q3,Q4 and

Q2,P2,P3,P1,Q1.

When the Euclidean lengths of blurred segments

around a point of a polygonal contour is computed,

we observe an increasing sequence of lengths for the

increasing sequence of real thicknesses αi = ik
√

2

where k is the mean distance between consecutive

polygon vertices. When plotted in logscale, its slope

is related to the localization of the point in a flat or

curved zone. More precisely, letting (L αi
j ) j=1,...,li be

the Euclidean lengths of the blurred segments along

the digital contour and covering a point, we have ob-

served experimentally the following behavior:

Property 2. (Multi-thickness). The plots of the

lengths L
αi
j /αi in log-scale are approximately affine

with negative slopes as specified besides:

expected slope

plot curved part flat part

(log(αi),log(max j L
αi
j /αi)) ≈− 1

2
≈−1

(log(αi),log(min j L
αi
j /αi)) ≈− 1

3
≈−1

Fig. 4 and Fig. 3 illustrates such a behaviour on

an ellipse shape represented by a disconnected set of

points with some missing parts. The set of α-thick

Blurred Segments covering a specific point P (li seg-

ments cover P) is represented on Fig. 4 with four dif-

ferent thicknesses (α =
√

2, 2
√

2, 3
√

2, 4
√

2). For

each thickness αi, the lengths (L αi
j ) j=1,..,li are repre-

sented on the plot of Fig. 4. On this simple example

we can check that the segment length verify the pre-

vious proposition Property 2 with their min and max

values near the slope − 1
2

and − 1
3

which corresponds

to the hypothesis of curved part contour.

As in the multi-scale computation (Kerautret and

Lachaud, 2009b), the multi-thickness results allows

us to distinguish between curved parts and flat parts

of an object boundary. This approach is not valid on

points that are (1) a transition between a curved and

a flat part, (2) corner points. Finally, this technique

assumes smooth objects with perfect digitization: if

the digital contour has been damaged by noise or dig-

itization artefact, these characterizations do not hold.

Although the two last remarks seem problematic

for analyzing shapes, we will use them to detect lo-

cally the amount of noise and to extract the local

meaningful thickness.
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Figure 3: Covering a point of the initial contour by the blurred segments obtained with different thicknesses (αi). For each
thickness the blurred segments covering the considered point (drawn in red) are drawn with blue boxes.
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Figure 4: Illustration of the Lengths L x
j from the set of

α-thick Blurred Segments given from illustration of Fig. 3.

The lines of slope −1, − 1
2 and − 1

3 are also given to illus-
trate the reference constraint of Property 2.

3.3 Local geometric evaluation with

multi-thickness criterion

We analyze now the local geometry of some point

P on a polygonal curve C having a mean distance

between vertices equals to k. For various values of

thickness αi = ik
√

2, i = 1..n, we compute the Eu-

clidean lengths L
αi
j of the blurred segments of C.

For a given thickness ik
√

2, the average length of all

blurred segments covering a point P is denoted as

L
αi = 1

li
∑ j L

αi
j , where li represents the number of

blurred segments containing P. Fig. 3 illustrates the

blurred segments covering a point, obtained on the

contour with several values of thickness αi.

The multi-thickness profile Pn(P) of a point P

is the graph (log(αi), log(L
αi/αi))i=1,...,n. We also

define the ideal multi-thickness criterion µn(P) of a

point P on the boundary of a digital object as the slope

coefficient of the simple linear regression of Pn(P).
Property 2 indicates that µn(P) should be around -

1 if P is in flat zone, whereas it should be within

[−1/2,−1/3] if P is in a strictly convex or concave

zone.

Detecting noise and local meaningful thickness.

The multi-thickness profile can be used to detect

noisy polygonal curves. We show on Fig. 5 (b) the

multi-thickness profile of a point PA located on a per-

fectly digitized curved zone and the multi-thickness

profiles of the points PB, PC and PD located in noisy

zones (image (a)). On the first profile, the decreas-

ing affine relation is immediately visible. On the lat-

ter profiles, it is increasing at fine resolution and then

falls back on a decreasing affine profile after a given

thickness. We apply also the multi-thickness pro-

files on the polygonal curve with flat and curved ar-

eas (Fig. 5 (c,d)). The difference between them is the

slope of the affine relation of the profiles (slope near

− 1
2

for the plots of points PC, PD and PE and near −1

for the plots of points PA and PB).

We then introduce a noise threshold αm which

discriminates between a curved zone and a noisy

zone. This threshold should be somewhere between

]− 1
3
,0[. However after several experiments on noisy

shapes it appears that the use of the upper threshold

value αm=0 gives best results both on curved or flat

noisy parts.

A meaningful thickness of a multi-thickness pro-

file (Xi,Yi)1≤i≤n is then a pair (i1, i2), 1 ≤ i1 < i2 ≤ n,

such that for all i, i1 ≤ i < i2,
Yi+1−Yi

Xi+1−Xi
≤ αm, and the

property is not true for i1 − 1 and i2. The first mean-

ingful thickness of a point P can be considered as a

noise level and is denoted as ατ(P).

From the example of Fig. 5(a,b), the point A lo-

cated on a not noisy contour part, has a meaning-

ful thickness equals to (1
√

2,14
√

2) with αtau(A) =

1
√

2. For the noisy contour parts, the points

PB, PC and PD have respectively a meaningful

thickness equals to (2
√

2,14
√

2), (3
√

2,14
√

2) and

(5
√

2,14
√

2). This example show that the meaningful

thickness is well identified and is related on the noise

intensity. Moreover the other example of Fig. 5(c,d)

demonstrates that the meaningful thickness detection

is not degraded by change of the sampling rate. This

experiment will be confirmed in the next section.
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Figure 5: Multi-thickness profiles (b,d) obtained on two
sampled contours (a,c). The curve (a) was obtained by
adding gaussian noise with std deviation σ.

To improve the notion ideal multi-thickness crite-

ria on noisy data, we adapt it with the use the previous

meaningful thickness. Then, if (i1, i2) is a meaning-

ful thickness of some profile Pn(P), the (i1, i2)-multi-

thickness criterion µi1,i2(P) of point P is then the slope

coefficient of the simple linear regression of Pn(P) re-

stricted to its samples from i1 to i2. This definition

will be used in experiments of the following section.

4 Experiment and Comparison

Before applying comparisons of the meaningful

thickness detection with the meaningful scale ap-

proach, it is important to measure the influence of the

parameter used in the method. The first parameter

is the maximal thickness defined to create the mean-

ingful thickness profile and the the second one is the

minimal slope to consider a point as noise (parameter

αm).

The first experiment of Fig. 6 (a-d) shows that the

parameter αmax does not change the quality of the de-

tection. The image (b-d) shows quite similar noise

levels. For the first experiment (a) the pixel drawn

in red shows that no meaningful thickness was found

since the maximal value αmax = 5
√

2 was to small and

the noise level is in fact greater than αmax. The stabil-

ity for the other parameter αm was also experimented.

The default value set to 0 was experimented as giving

best results but we can see that a large change of this

parameter does not really change the noise detection

quality. Other experiments1 confirm that the proposed

method can be considered as parameter free. Note

that for all other experiments these parameters were

set to αmax = 15 and αm = 0 (and also in the online

demonstration).

4.1 Experiment of meaningful thickness

detection

Comparison with the meaningful scale. To evalu-

ate the quality of the meaningful thickness detection

we perform some comparisons with the meaningful

scale detection. Fig. 7 presents results on a digital

shape where noise was added manually to the initial

curve. The detection accuracy appears as precise as

the meaningful scales if we except some corners of

the polygon which tends to be detected as noise with

the method based on the meaningful thickness (see

close up view of image (e) and (f)). Note that the

meaningful scale detection appears to be a little more

dynamic than the meaningful thickness. From a com-

putational point of view, the meaningful scale method

is faster (76 ms and 87 ms for respectively (b) and (e))

than the meaningful thickness approach (542 ms and

485 ms. for respectively (c) and (f) on a Mac OS X 2.8

Ghz Core 2 Duo), but the thickness detection uses an

O(n2) version of the blurred segment detection while

all maximal straight segments are computed in linear

time according to the number of contour point. More

objective time comparisons are let to future works.

Experiment on polygonal curves. To experiment the

new possibility to detect the meaningful thickness on

polygonal curves, we performed several experiments

as shown in Fig. 8. The first experiment applies the

detection on a non uniformly sampled contour (con-

tour of Fig. 5 (a)). The resulting meaningful thick-

ness is everywhere 1 as expected (Fig. 8 (a)). By

adding noise on different quadrants of the previous

contour, the detector consistently increases the mean-

ingful thickness (image (c)). The other experiment

applied on ellipse also show nice meaningful thick-

ness detection (d).

To apply comparisons with other comparable ap-

proach, we have experimented the method of the

meaningful good continuation of Cao (Cao, 2003).

As briefly described in the introduction and contrary

to our method this approach needs a parameter ε to

define what can be considered as meaningful or not.

On results of Fig. 8 we can see that the choice of the

parameter is important and the method does not give

automatically the good meaningful scale. However it

1Other experiments can be done online (Kerautret et al.,
2011)
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Figure 6: Evaluation of the independence of the meaningful thickness detection from the different parameters. The first row
presents the evaluation by varying the maximal thickness used to define the multi-thickness profile (αmax). The red color
indicates present on image (a) indicates that there exists no meaningful thickness less than αmax. The second row shows the
stability by the change of the noise threshold parameter αm.

is interesting to see that the two detection give results

that are not in contradictory.

Application to extract meaningful contours in im-

ages. The meaningful thickness detection can be ap-

plied on every level set of the image. Fig. 9 (b) shows

all the set of such a contour extracted after track-

ing the frontier of the connected components defined

from each threshold step. Here 256 gray levels were

considered with a step of 10. The image (c) of Fig. 9

show all the contour parts with a meaningful thickness

equals to one (i.e. no noise). From all the contours,

we also detect the straight contour parts by applying a

threshold to the slope of the multi-thickness criterion

µi1,i2(P) by −0.46.

4.2 Simple application for contour

smoothing

This meaningful thickness detection can be used in

numerous applications (in particular, in most of the

algorithms which use the α-thick Blurred Segment

primitive). We present here a simple potential appli-

cation of contour smoothing by taking the meaningful

thickness as a constraint for a curve reconstruction.

The reconstruction method is an iterative process that

computes the new points as a weighted average of its

neighbors, constrained by the meaningful thickness

(displayed in light blue on Fig. 10 (b,e,h). Note that

these constraints were defined from the meaningful

thickness on all polygon contour by using linear in-

terpolation between vertex polygon.

The resulting reconstruction visible on images

Fig. 10 (c,f,i) show very fine polygonal contours

where noise are no more visible. Moreover all ini-

tial contour parts with no noise are well preserved af-

ter the reconstruction. Another interesting quality is

visible with the preservation of all discontinuities in

particular for the open contour of Fig. 10 (g-i).

5 Conclusion

A new concept of meaningful thickness was pre-

sented. The proposed method can be considered as

parameter free and can be applied both on discrete or

polygonal contour. The results are very promising and

open the door to new unsupervised applications. The

simple contour smoothing application is a first appli-

cation which already show fine results whithout the

need to set any particular parameter. The proposed

method is simple to implement and the user can test

the algorithm with their own data (Kerautret et al.,

2011). The source code is also already available from

the ImaGene library (Ima, 2011) and also planned to

be intrated as a module in the new DGtal library (DGt,

2011).



(a) 828 points (d) 966 points

(b) Meaningful scale. (e) Meaningful scale.

(c) Meaningful thickness. (f) Meaningful thickness.

Figure 7: Comparison between meaningful scale (second line) and meaningful thickness (third line). The size of the blue boxes
represents for each pixel the obtained meaningful scale or thickness ατ. The amount of noise is well evaluated everywhere.
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(d) (e) ε = 0.001 (f) ε = 10

(Cao, 2003) (Cao, 2003)

Figure 8: Meaningful thickness detection on polygonal curves. The polygonal curve (a) was obtained after applying a sam-
pling process defined for each quadrant (the same than for Fig. 5 (a)). The polygon (b) was obtained after adding some noise
specifically to each sector and its detected meaningful thickness is represented in (c). (d) shows the same results obtained on
the ellipse of the Fig. 5 (c) and (d,e) show comparisons with the meaningful good continuation method (Cao, 2003) (in thick
red plot) obtained with different values of ε.
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ence, France. (en français).
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(a) source (b) iso contours

(c) Meaningful contours (d) straight parts

Figure 9: Application to meaningful contours extraction (image (c)) using all iso level contours (image (b)). The straight parts
obtained from meaningful multi-thickness profile are represented in (d).



(a) source contour (b) meaningful thickness constraint (c) resulting reconstruction

(d) source contour (e) meaningful thickness constraint (f) resulting reconstruction

(g) source contour (h) meaningful thickness constraint (i) resulting reconstruction

Figure 10: Application of contour smoothing using the meaningful thickness on several shapes. The initial noisy source
contour are given in image (a,d,g). The blue areas represent the noise constraints and the resulting smoothed contour is
represented in red on (a) and (c).


