rcul ar 9

54506 Nancy Email: LORIA UMR Vandoeuvre-lès-Nancy, France University, Ca kerautre,nguyentp@loria CNRS sndw 7503 Scientifique fr

Abstract

shape field, arcs. Instead of polygonalizing a contour, Hausdorff distance. we introduce a new simple To do so, we exploit the recent curvature estimators [1, with as few arcs as possible at and efficient We ھ given propose to reconstruct t scale, algorithm specified to <u>ω</u>. Ьу

Keyword: Circular arc reconstruction, contour representation, curvature estimator

\vdash Introduction

Objectives:

- Represent م contour with a efficient way than polygon.
- Less primitive with equivalent precision.
- To be able to include a scale parameter

288

segments

27

arcs,

1 segment

 δ_H

= 2.018

 δ_H

2.011

(a)

(b)

S

Main idea:

Exploiting stable and robust to noise curvature estimators

[4].

- Using Avoiding to only one use parameter ھ curvature associated to post processing the scale. to reduce parameters

N Curvature estimators

- 1 **Global Minimisation Curvature** Taking into account all the real shapes having the same (GMC). [1] digiti ization.
- Minimise *f* $\kappa^2 ds$.
- Binomial Convolution Curvature (BCC). [3]
- Alternative to the Gaussian smoothing technique (Scale controlled by m). Successive convolutions of m (say) binomial kernels and Π
- Visual Curvature (VC). 2
- Illustration Filter non-significant features Measure the number and comparison of of extreme points from a height function. at a curvature given scale estimators: (Only qualitativ e

estimation).

econstruction 0 **d** gital cont

Bertrand Kerautret^{1,2} Than Phuong

approximate a digital ھ he From their curvature maximal shape with circular admissible ら Contour Reconstruction

with

Main steps of the algorithm:

- curved Decompose areas curvature estimation to extract significant
- Split/merge strategy (given maximal error E_{max})

Use an approximation of the hausdorff

 $\delta_H(\mathcal{A}_i,\mathcal{C}_i)$ $\max\{\max_{b\in\mathcal{C}_i} \{\min_{a\in\mathcal{A}_i} d(a,b)\}, \max_{a\in\mathcal{A}_i} \{\min_{b\in\mathcal{C}_i} d(a,b)\}\}$

Main algorithm

Data: C float maxArcError; Result: curve represented by a set $\{C_i\}_{i=1}^n$ ₌₀ digital curve, \mathcal{F} of arcs $\{\kappa_i\}_{i=1}^n$ and segments =0 curvature

egin Decompose κ into a set of constant curvature interval S

 $\{(b_0, f_0), ..., (b_i, f_i), ..., (b_M, f_M)\}.$ For each contour point C_i , store in store in regionIndex[i] the

S[k]. Extract from S the set S_m containing all the regions ٨h

 $S_{tmp} = S;$ while $nbElements(S_{tmp})! = 0$ do $S_{tmp} = SPLIT_REGIONS(S_{tmp}, S, regionI)$ // First extension from mini/maxima regions: regionIndex,

 S_m EXTEND_PLOT_REGIONS(S_m , S, regionIndex,

 $^{\prime}/$ Second extension from all others regions S_u

while $nbElements(S_u)!=0$ do set of index of valid non maxima/minima regions o

Verify or change primitive for region which are S_u EXTEND_PLOT_REGIONS(S_u , ${\mathfrak O}$ regionIndex, better 7

by straight segment

end checkBestPrimit ;ive(S,tabRegionIndex, maxArcErro

0

0

[4] J.-P. Salmon, Isabelle

[2] H. Liu, L. J. Latecki, and W. Liu. A unified curvature definition for regular, polygonal, and digital planar curves. J. Comput. Vision, 80(1):104–124, 2008. B. Kerautret and J.-O. Lachaud. Curvature estimation along noisy digital contours by approximate global optimization. Pattern Recognition, 42(10):2265 – 2278, 2009. J.-P. Salmon, Isabelle Debled-Rennesson, and Laurent curvature profiles. In *ICPR*, pages 387–390. IEEE, 2006. = 26.22619 34 -savoie. 9 \sim Wendling. 3.95 464 ms. 15596 ms. $\delta_H =$ NASR $\overline{A} = 1$, $\overline{S} = 16$ 171 ms. $\delta_H = 19.6977$ GMC: \overline{A} BCC \overline{A} $\overline{A} =$ and derivatives A new method to detect $44, \overline{S}$ \mathcal{O} δH fr $= 55, \delta_H = 35.44$: 20, <u>S</u> 17, 12, δ_H 7, $\overline{S} = 3$ **10.2849** 10.5289estimation from 9 5.99 33420 ms. 619 ms. NASR \overline{A} **190 ms.** $\delta_H = 32.8938$ GMC: BCC \overline{A} arcs A =noisy \mathcal{O} : 34, <u>S</u> and segments from \overline{A} δH : 33 , δ_H dis $\delta_H =$ $\|$ - 15, <u>S</u> $\overline{S}, 0$ cretizations 14, 9, δ_H 17 = 81.6217.7125 $|\Omega|$ 11 $\overline{3} = 2$.2402 Int. 8 149.93