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Abstract. A robust discrete curvature estimator was recently proposed
by Kerautret et al. [1]. In this paper, we exploit the precision and sta-
bility of this estimator in order to define a contour extraction method
for analysing geometric features. We propose to use a reference curva-
ture function for extracting the frontier of a shape in a gray level image.
The frontier extraction is done by using both geometric information rep-
resented by the reference curvature and gradient information contained
in the source image. The application of this work is done in a medical
application.

1 Introduction

Extracting geometric characteristics of digi-
tal objects is an important step in the field
of image analysis. The application domain is
large like in medical imaging or in archaeol-
ogy. Area, perimeter or curvature estimator
can be used to characterize digital objects of
interest. Obtaining precise geometric measure is not always a simple task since
it depends both on the geometric estimators and on the technique providing the
digital contour. The main idea of this work is to propose a method for recovering
contour shape by directly extracting the frontier from geometric constraints. The
geometric constraints will be defined mainly by the curvature function allowing
to obtain a solution from user initialisation even when several contours can be
found (see figure above).

Numbers of different approaches were proposed throughout the literature deal-
ing with image segmentation. Generally the image components are extracted
from a contour or region approach which exploits additional and a priori infor-
mation. This information can be defined for example from smoothness
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constraints, geometric model of reference, or user interaction. A well known
example of Energy-minimizing approach including smoothness constraints are
snakes or active contours [2,3,4]. Another approach called Active Shape Model
(ASM) [5] used a parametric model based on statistical information. They used
statistical information to define parameters. Another well known technique for
discrete interactive segmentation is the intelligent scissors [6]. This technique
helps the user to define contours by computing image gradient and computing
minimal path from user defined points. It was frequently used in medical appli-
cation for shapes measures as in [7,8]. Other more recent techniques exploit this
idea (lazy snaping [9], enhanced lane [10] or grabcut [11]).

Exploiting directly the quantitative curvature evolution has not yet been ap-
plied to give a priori constraints for shape/contour extraction. Even if recently
Schoenemann and Cremers introduced curvature to determine globally an opti-
mal solution [12], their approach does not use quantitatively the curvature as a ref-
erence model. Another recent work from Färber et al. proposed a Live-wire based
segmentation approach to associate corresponding image structures. In that case,
the curvature was only used as a parameter for the contour association [7].

Our main objective is to use quantitative shape description from the curva-
ture values in order to extract contours and in a semi-automatics process. The
curvature will there guide the segmentation process. Our approach is based on
the Global Min-Curvature (GMC) estimator introduced in [1] and is using the
shortest path algorithm defined on the live-wire method. The main advantage
of the GMC estimator is its noise robustness and the stability which allows
to extract directly geometric information as for example local maxima/minima
curvature points.

The paper is organized as follows: some main notions of previous works on
curvature estimators are reviewed in the following section. Then section 3 in-
troduces the proposed method used to construct and select a list of candidates
for the contour between two reference points. Finally, section 4 is devoted to
the medical application which validates our approach by some experiments on
several types of normal and pathological MR images of human brain.

2 Global Min-Curvature Estimator (GMC)

The main idea of this estimator is first to take into account all the shapes having
the same digitization and to select the more probable shape defined as thus which
minimize the squared curvature. This selection is done with a global optimisation
process. By this way we can expect to obtain a precise estimator even with low
resolution shapes. The second idea is to obtain precise results even with non
perfect digitization processes inducing noisy contours.

The selection of the more probable shape is defined from geometric constraints
extracted from the tangential cover [13]. The notion of tangential cover is illus-
trated on the figure 1(a) which shows all the maximal segments of a discrete
shape. From each maximal segments the minimal and maximal possible values
of the tangent (see Fig. 1(b)) are used as constraints to estimate the shape min-
imizing the squared curvature. The optimisation process is then achieved with
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Fig. 1. (a): tangential cover of the boundary of a digitized shape, where each maximal
segment is drawn as a black bounding box aligned with its slope. (b): slope of a maximal
segment and estimation of maximal and minimal slopes with leaning points.

a relaxation approach. To obtain robustness to noise the maximal discrete seg-
ments from the tangential cover are replaced by the blurred maximal segments
[14] which allow to take into account the amount of noise. Note that a param-
eter ν permits to control the sensibility to noise. More details about the GMC
estimator are presented in [1].

The resulting curvature estimator gives precise and stable results. As illus-
trated in Fig. 2, the precision obtained on a circle shows precise results compared
for example to the estimator based on the osculating circles [15]. The column
(c) of Fig. 2 illustrates the extraction of local minima/maxima on a generated
font obtained at 300 dpi. We can see that the GMC estimator gives good local
minima/maxima compared to the CC estimator. The bad results of the CC es-
timator are due to the lack of stability since numerous oscillations appear even
with large resolution. Note that the local minima/maxima values were simply
extracted from the curvature graph by a simple value quantification at a given
precision. Contrarily to other curvature estimators, no post-processing is needed
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Fig. 2. Results and comparisons with the CC estimator on a circle of radius 20 with
grid step =0.1 (graph (a) and (b)). Extraction of the local maxima/minima with GMC
(top of column (c)) and CC estimators (bottom of column (c)) . Dark (resp. light)
areas represent local minima (resp. maxima) (green (resp. blue) ).
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in order to exploit values and thus, there is no risk of degradation of the extracted
geometric informations.

Experiments and comparisons were applied on noisy shapes with different es-
timators. The GMC estimator was compared with the “blurred“ version of CC
estimator proposed by Nguyen and Debled-Rennesson [16] (called NDC estima-
tor). As in the smooth case, the GMC estimator always shows more precision
and stability than the NDC estimator. Details and comparisons can be found in
previous work [1].

In the following our main idea is to exploit the stability and the precision of the
GMC estimator in order to define a robust new approach for shape segmentation.
Moreover the resistance to noise with the choice of the parameters associated to
the width used for the analysis can contribute to new perspectives.

3 Contour Selection from Curvature Information

We define by Ps and Pe the two reference points which need to be initialized by
the user in respect to the reference curvature. The reference geometric informa-
tions of segment PsPe are defined as constant. From the initial reference shape,
we compute the mean curvature value Cref of PsPe by using GMC estimator
with a specific width ν defined according the amount of noise contained in the
image. We estimate a possible distance for a change of this curvature by two
values : Cmax and Cmin. A fourth parameter was defined by the admissible ratio
error of the perimeter Errperi of PsPe.

3.1 Construction of the List of the Potential Candidates

Let us construct a shortest path map from a target point to all other points
in the image. The cumulative cost of a path from a target pixel was proposed
by Mortensen et al. in 1995 [6]. The local cost of the image pixels is defined
from the different edge features. In this work, the Sobel operator was used to
compute the gradient magnitude fG and the gradient direction fD of the source
image. The information of laplacian zero-crossing fZ and Edge Pixel Value fI

are considered as the important components of the cost of the pixel. To increase
noise robustness, we chose the following function to determine the cost from a
point p to a neighboring point q:

l(p, q) = 0.7 ∗ fG + 0.1 ∗ fD + 0.1 ∗ fZ + 0.1 ∗ fI (1)

Note that the coefficients of fG, fD, dZ and fI are determined empirically as
mentioned by the author in [6]. After computing the local cost of the pixels,
we use the shortest path algorithm [17] to construct the relation map from a
reference point to all other points of the image.

We denote the shortest path from Ps and Pe by S(Ps, Pe) which is easy to
extract from the shortest path map of Ps. The shortest path getting from point
Ps to Pe through point pk is denoted by Sk: Sk = {S(Ps, pk), S(pk, Pe)}.
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In order to recover the closest contour to the ideal reference solution, we need
to obtain a list of potential candidates. For this purpose, we propose a method
to construct a list of potential candidates A associated to the segment PsPe.
We denote by P ′

s and P ′
e the image of Ps and Pe obtained by a rotation of θ

centered at M defined as the center of PsPe. The list of potential candidates Aθ

associated to the angle θ is defined by:

Aθ = {Qk|Qk ∈ μ′ < a′x + b′y + c′ < μ′ + ω′ and QkM > Qk+1M};

with: a′, b′, c′ associated to the straight segment de-

θ

P1

P2

M1,2

pi

pk

fined by (P ′
s, P

′
e). To increase the probability to ob-

tain the best candidate list, we use three values of
θ: π

4 , π
2 and 3π

4 . The total list of candidate points
A is then A = A

π
4 ∪A

π
2 ∪A

3π
4 . The construction of

the potential candidates is illustrated on the float-
ing figure on the right.

3.2 Selection through the Possible Candidates

From the list of possible potential candidates, we propose the following three
selection steps in order to select the best contour according the geometric and
photometric image constraints.

• Selection Based on Local Minima Value of Energy
The first selection of candidates is based on its energy value in order to retain
only the significant points and to reduce the number of candidates. We compute
the energy Ek defined for each point pk ∈ A by:

Ek = G(Sk) = G(S(Ps, pk)) + G(S(pk, Pe))
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Fig. 3. Illustration of the energy curve associated to each candidate (computed on the
segment Ps, Pe). The candidates with local minimal energy are represented by a cross
(a). The contours associated to each candidate are is represented in figure (b). The
contour with local minimal energy are represented with large line width (in dark).
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The function G gives the average value of a path coast and can be defined
as:

∑
i=0,n g(xi)

n with g(x) giving the coast function of the discrete point x in the
shortest path algorithm and n represents the number of contour points.

Then, the new list of candidates A1 is selected by minimizing locally the
energy Ek of all the candidates of the list A.

• Selection According Length Constraint
After using the information of local energy to remove the weak candidates, we
can bypass the particular ambiguous cases of candidate by using the length
constraint. It is particularly relevant because in some particular cases there can
exist several contour solutions with the same curvature value.

The following figure on the right illustrates such a particular

Ps

Pe

case. To avoid this ambiguity, we estimate the length Lk defined
for each candidate pk ∈ A1 of PsPe as follows:

∑
d(xi, xi+1)

where d(xi, xi+1) gives the distance from xi to the next neigh-
bouring in the contour candidate xi+1. In order to get a sig-
nificant value of length for a candidate, we must detect special
configurations where the contours overlap. From the information of length Lk of
contour, we select the new list of candidates A2 by the following constraint:

A2 = {pk ∈ A1|
|Lk − Lref |

Lref
≤ Errperi};

Fig. 4 shows an example of candidate selection obtained from the initial list
(a) representing all the initial candidates.

• Adding Curvature Constraints
When the second selection of candidates is done, we use GMC estimator to
measure the curvature value Ci

k of the points i in the candidate list pk ∈ A2 of
PsPe. Since the curvature estimator is stable enough, the curvature values are

(a) (b) (c) Errperi < 10% (d) Errperi < 5%

Fig. 4. Illustration of the candidates obtained on a noisy circle (R = 61). Four points
on the top, bottom, left, right of the circle are used to build the list of four segments
PsPe. Image (a) represents all potential candidates. Image (b) shows the contours of
(a) which have the minimal local energy and without the overlapping contours. The
two images (c) and (d) show the selected candidates which satisfy the length constraint
Errperi.
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useful to evaluate these remaining candidates and to select the best candidate
of an interval PsPe.

The average value of curvatures C∗
k of candidate k is defined as C∗

k=
∑

i=0,n (Ci
k)

n
where n is the number of points for this candidate. The smallest list of candidate
A3 will be selected by a constraint to limit the range of curvature :

A3 = {pk ∈ A2|CMin ≤ C∗
k ≤ CMax};

We calculate the quadratic error between the average curvature of candidate
pk ∈ A3 and the curvature of its reference which is defined as : Errquad =
(C∗

k −Cref )2. The minimal value of Errquad is used to determine the best contour
of interval PsPe.

4 Experiments and Application

Our first experiment (Fig. 5) illustrates the results obtained on a damaged circu-
lar test shape. The reconstruction was obtained from a constant curvature value
of 0.0163 and the length error constraint was set to 20%. All of candidates are
represented in light blue. The contours were well recovered in white, even with
a non precise initialisation (c), the global contour is correct. Note that initial
points could be easily adjusted in a post processing step. The illustration im-
ages of the introduction shows the results on noisy images obtained with several
reference curvature values.

The main objective of our approach is to use quantitative description of the
shape from the curvature values in order to extract contours. An application of
the use of these curvature values is to make an early diagnostic of a particu-
lar Parkinson’s disease syndrome. Progressive Supranuclear Palsy (PSP) is an
atypical degenerative parkinsonian syndrome [18]. It leads to postural instabil-
ity with falls up to subcortical dementia. Its diagnostic can be established by

(a) (b) (c)

Fig. 5. Results obtained on a test image (a). The curvature of reference was set to
0.0163. The lines in light blue represent all the candidates for the segmentation and
the white contour is the result of the segmentation. Image (c) shows the result with a
non perfect initialisation.
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(a) patient (1) (b) all candidates (c)curvature value C=0.0540354

(d) patient (2) (e) all candidates (f)curvature value C=0.0605799

(g) (h) (i)

Image Cref Errperi CMax CMin CResult Nall Nest time(ms)
g1 0.0549 1 0.05 0.1 0.0601736 128 80 3153
g2 -0.15 0.5 -0.1 -0.2 -0.186659 25 19 170
g3 0.087 1 0.06 0.1 0.0845255 70 32 671

(j)

Fig. 6. Results and comparisons on two MR images (first and second row). Images (b,e)
illustrate all the candidates used for the solution selection and the selected contours
are shown in (c,f). The third row show other contours extraction obtained with other
curvature parameters. Tabular (j) shows parameter values and time measures.
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clinicians using conventional MRI exams. However, the differentiation between
different parkinsonian syndromes is not easy and often leads to erroneous diag-
nostics [19]. Furthermore this differentiation is only qualitative and very difficult
to achieve in the earlier stages of the syndrome, when medical treatment is still
able to slow down the degenerative process. It is thus important to develop a
quantitative method to make an earlier diagnostic for this particular syndrome.
PSP can be spotted in MR images as an atrophy of the mid-brain part of the
brain stem. This atrophy leads to a curvature changing on the upper surface of
the mid-brain.

The images used in the following experimentation were undertaken on a
Philips Medical Systems 1.5 Tesla Intera MR acquisition system using a T1
SE (Spin Echo) scanning sequence. Fig. 6 shows the result obtained on two
cases extracted from MR images which were used to diagnose PSP. The results
shown on the first row were obtained from a set of reference values λ1(Cref =
0.0549, Errperi = 1, CMin = 0.05, CMax = 0.1). The contours were correctly ex-
tracted with the curvature value C1 = 0.0540354. Since the curvature result
of the healthy patient is close with the Cref of λ1, we continued to used the λ1
for the comparison with the others MR images. The image in the second row
seems to be a suspected case of PSP. The curvature value of the best contour was
C2 = 0.0605799. The distance between the obtained curvature value to the
reference value Cref is used to discriminate the images and to diagnose patho-
logical cases. Our last experiment for this approach is depicted in the third row
of Fig. 6 which shows the contour extraction of three parts of the brain stem
of MR image. Here, we must use three sets of reference value. Note that the
curvature sign of (c) is negative since we consider the initialisation order. The
tabular in figure Fig. 6(j) shows timing measures with the number of candidates
needed by the optimization process, where Nall and Nest are respectively the
total number of candidates and the number of candidates which have been eval-
uated. This measures were obtained on a 1.5GHz Intel Celeron M processor with
MR images of resolution 300 × 300 pixels.

5 Conclusion

The main contribution of this work was a proposition of a new simple method
to extract image contours by using predefined curvature informations. The ex-
traction was based on a robust curvature estimator and on the construction of
shortest paths from image gradient informations. The application to medical
application appears promising and future work will deal with the medical vali-
dation in the context of the parkinson’s atypical disease. Another future work
will deal with the extension of this approach to 3D images.
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16. Nguyen, T., Debled-Rennesson, I.: Curvature estimation in noisy curves. In:
Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673,
pp. 474–481. Springer, Heidelberg (2007)

17. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik, 269–271 (1959)

18. Savoiardo, M.: Differential diagnosis of parkinson’s disease and atypical parkinso-
nian disorders by mangnetic resonance imaging. Neurol. Sci. 24, 35–37 (2003)

19. Schrag, A., Good, C., Miszriel, K., Morris, H., Mathias, C., Lees, A., Quinn, N.: Dif-
ferentiation of atypical parkinsonian syndromes with routine mri. Neurology 54(3),
697–707 (2002)


	Discrete Contour Extraction from Reference Curvature Function
	Introduction
	Global Min-Curvature Estimator (GMC)
	Contour Selection from Curvature Information
	Construction of the List of the Potential Candidates
	Selection through the Possible Candidates

	Experiments and Application
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




