Robust Estim ation Of urvature along Digital ntours with Global ptimiza

Nancy Email: 54506 **Bertrand Kerautret** LORIA Vandoeuvre-lès-Nancy, France University, Campus Bertrand.Kerautret@loria. UMR CNRS 7503, Scientifique fr

Abstract

segments. The estimator is adapted to noisy contours by replacing maximal segments We present a new curvature estimator based on global optimisation. with maximal blurred digital straight segments. by using local bounds on tangent directions defined called Global Min-Curvature exploits the geometric by the properties

Keyword: curvature estimator, blurred segments, noise.

\vdash Introduction

If G is a multigrid convergent towards G iff for for which: geometric feature defined for a family ${\mathbb F}$ of any shape Xshape in \mathbb{R}^2 \square \mathbb{F} , there exists the estimator E_G is some h_X \lor \bigcirc

$$\forall h, 0 < h < h_X, \|E_G(\operatorname{Dig}_h(X)) - G(X)\| \leq 1 \\ \to \mathbb{R}^{+*} \text{ has a limit value 0 at } h = 0 \text{ and it}$$

(h),

convergence of E_G toward G. where au•• \mathbb{R}^+ defines the speed of

- Several critics: Precision only guaranteed for high resolution.
- Convergence obtained for perfect digitization process.
- **Objective:**
- Adapted to shape not perfectly digitized or noisy. Obtain a good precision even with coarse resolution.

Main idea:

Taking into account all the real shapes having the same to more probable shape

digitization

- Restricting the estimation which corresponds
- Best length estimator: minimise $\int ds$ ப

Curvature estimator: minimise $\int \kappa^2 ds$

こ Tangential Cover and Tangent Space

Definition: maximal segment

segment", that: $S(i, j) \land \neg S(i, j + 1) \land \neg S(i - 1, j)$. The tangential cover is defined by the set of maximal seg-By denoting S(i, j) the predicate " $C_{i,j}$ is a digital straight , a maximal segment of C is a sequence $C_{i,j}$ such

ments contained in a digital contour.

Bounds on the tangent direction

- Minimal and maximal directions defined from the upper and lower leaning points.
- For a maximal segment of characteristics (a, b) we have:

ng pts

$$p_{min} = \frac{a}{b} - \frac{1}{b}$$
 and $p_{max} = \frac{a}{b} + \frac{1}{b}$

200 d Vectorial generation 2

כ	nt	
. ר	nt	
	nt	400 api

200 dpi \mathbf{nt} Result of scan 300 dpi 400 dpi

nt nt

じ Cur vature Estimation by Optin misation

Principle:

- Shape of reference extracted from tangent space representation.
- ullet lts geometry is entirely defined by the mapping $heta_{\mathcal{C}}$ which associates of the tangent at point $\mathcal{C}(s)$ ($\theta_{\mathcal{C}} =$ Since the curvature is the derivative of the tangent direction $\simeq \angle (0x, \overline{\mathcal{C}'})).$
- curvature is then

$$J[\mathcal{C}] = \int_{\mathcal{C}} \kappa^2 = \int_0^L \kappa^2(s) ds = \int_0^L \left(\frac{d\theta_{\mathcal{C}}}{ds}\right)^2 ds.$$
(1)

Curvature estimation of referen

Find $(t_l)_l$, which minimizes $J[\mathcal{C}[\dots, t_l, \dots]] =$ ~M

subject to $\forall l, a_l \leq t_l \leq b_l.$

for each variable t_l while staying in the given interval. Geometrically, each straight segment joining $(s_{i_{l-1}}, t_{l-1})$ to $(s_{i_{l+1}}, t_{l+1})$. The *GMC* edefined as the derivative of the piecewise linear function joining points We use classical iterative numerical techniques to solve this optimization problem, ically, each variable GMC estimator $E_{\mu}^{(0)}$ (s_{i_l}, t_l) , rescaled by h. ble t_l is $E_{\kappa}^{\mathsf{GMC}}$ simply following $\frac{\partial J}{\partial t_l}$ is then simply moved toward

4 Adaptation to Blurred Segments

Maximal blurred segments

- Recognition algorithm proposed by Debled et al.

- are added with increasing x coordinate (as Roussillon et al.

Jacques-Olivier _AMA, UMR CNRS Lachaud 5127

000

73776 University Email: Le-Bourget-du-Lac Jacquesof Savoie, Olivier Campus Cedex, • Lachaud@univ Scientifique France

savoie

fг

to an arc length s the direction

the integral $J[\mathcal{C}]$ along \mathcal{C} of its squared

$$\left(\frac{t_{l+1}-t_l}{s_{i_{l+1}}-s_{i_l}}\right)^2 (s_{i_{l+1}}-s_{i_l}),$$

CT Results

Curvature extraction \mathbf{N} on noisy timator. Comparison with osculating circle essha pes estimator

Noisy shape generation (based on the docum ent degradation model of Kanungo [2]):

Initial shape

Results on noisy circle and flower and comparison with Nguyen and Debled Curvature estimator [3]: to the shape.

0 Conclusion

Woreover it allows to detect easily inflection points and maximal curvature areas. This new estimator shows precise results with di-blurred segments, the estimator is robust with different grid sizes. By replacing digital straight segments robust to noise and gives better results than other methods.

References

- Models and
- [2] T. Kanungo. Document Degradation University of Washington, 1996.
- [3] T.P. Nguyen and I. Debled-Rennesson.474–481. Springer, 2007. Curvature es
- [4] T. Roussillon,

- [5] F. Sloboda, B. Zaťko, and J. Stoer. and F. Sloboda, editors, *Advances i* in

Ition

h shapes

1.44

Connected component. Extracted contour.

 I. Debled-Rennesson, F. Feschet, and J Rouyer-Degli. Optimal blurred segments decomposition in linear time. In Proc. Int. Conf. DGCI, volume 3429 of LNCS, pages 371–382. Springer, 2005. a Methodology for Degradation Model Validation. PhD thesis

timation in noisy curves. In CAIP, volume 4673 of LNCS, pages

¹ Roussillon, L. Tougne, and I. Sivignon. Computation of binary objects sides number using discrete geometry appli-ation to automatic pebbles shape analysis. In Proc. 14th Int. Conf. on Image Analysis and Processing, 2007.

On approximation of planar one-dimensional continua. In R. Klette, A. Rosenfeld, 1 Digital and Computational Geometry, pages 113–160, 1998.